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Today

• Finish Color space

• 3D Transforms and Coordinate system

• Reading: 

– Shirley ch 6



RGB and HSV

Black (0,0,0) Red (1,0,0)

Green(0,1,0)

Blue (0,0,1)
Magenta (0,1,1)

White(1,1,1)

Yellow (1,1,0)

Cyan (0,1,1)

Different ways to represent/parameterize color



Photoshop Color Picker



L-A-B Color Space

• L-A-B

– L: luminance/Brightness

– A: position between magenta and green (negative 
values indicate green while positive values indicate 
magenta) 

– B: position between yellow and blue (negative 
values indicate blue and positive values indicate 
yellow) 

http://en.wikipedia.org/wiki/Lab_color_space 

http://en.wikipedia.org/wiki/CIE_1931_color_space 



Spatial resolution and color
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Blurring the G component
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Blurring the R component
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Blurring the B component
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A rotation of the 

color coordinates 

into directions that 

are more 

perceptually 

meaningful:  

L: luminance, 

a: magenta-green, 

b: blue-yellow

Lab Color Component
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Application to image compression

• (compression is about hiding differences from the 
true image where you can’t see them).



Where to now…

• We are now done with images

• We will spend several weeks on the mechanics of 
3D graphics

– 3D Transform

– Coordinate systems and Viewing

– Drawing lines and polygons

– Lighting and shading

• We will finish the semester with modeling and 
some additional topics



3D Graphics Pipeline

Rendering
(Creating, shading images 

from  geometry, lighting, 

materials)

Modeling
(Creating  3D Geometry)



3D Graphics Pipeline

Rendering
(Creating, shading images 

from  geometry, lighting, 

materials)

Modeling
(Creating  3D Geometry)

Want to place it at correct location in the world

Want to view it from different angles

Want to scale it to make it bigger or smaller

Need transformation between coordinate systems 

-- Represent transformations using matrices and 

matrix-vector multiplications.  



Recall: All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,

– Rotation,

– Shear, and

– Mirror
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2D Rotation

• Rotate counter-clockwise about the origin by an 
angle 
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Rotating About An Arbitrary Point

• What happens when you apply a rotation 
transformation to an object that is not at the 
origin?
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Rotating About An Arbitrary Point

• What happens when you apply a rotation 
transformation to an object that is not at the 
origin?

– It translates as well
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How Do We Fix it?

• How do we rotate an about an arbitrary point?

– Hint: we know how to rotate about the origin of a 
coordinate system



Rotating About An Arbitrary Point
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Scaling an Object not at the Origin

• What happens if you apply the scaling 
transformation to an object not at the origin?

• Based on the rotating about a point composition, 
what should you do to resize an object about its 
own center?



Back to Rotation About a Pt

• Say R is the rotation matrix to apply, and p is the 
point about which to rotate

• Translation to Origin:

• Rotation:

• Translate back:

• How to express all the transformation using 
matrix multiplication? 

pxx 

RpRxpxRxRx  )(

 pRpRxpxx 



Homogeneous Coordinates

• Use three numbers to represent a point

• Translation can now be done with matrix 
multiplication!
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Homogeneous Coordinates

• Use three numbers to represent a point

• Translation can now be done with matrix 
multiplication!
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Basic Transformations

• Translation:                     Rotation:

• Scaling:
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Composing rotations, scales

3 2 2 1

3 1 1

3 1

( ) ( )

x Rx x Sx

x R Sx RS x

x SRx

 

 


Rotation and scaling are not commutative.



Inverting Composite Transforms

• Say I want to invert a combination of 3 transforms

• Option 1: Find composite matrix, invert

• Option 2: Invert each transform and swap order
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Inverting Composite Transforms

• Say I want to invert a combination of 3 transforms

• Option 1: Find composite matrix, invert

• Option 2: Invert each transform and swap order

• Obvious from properties of matrices
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Homogeneous Transform Advantages

• Unified view of transformation as matrix 
multiplication

– Easier in hardware and software

• To compose transformations, simply multiply 
matrices

– Order matters: BA vs AB

• Allows for transforming directional vectors

• Allows for non-affine transformations:

– Perspective projections!



Directions vs. Points

• We have been talking about transforming points

• Directions are also important in graphics

– Viewing directions

– Normal vectors

– Ray directions

• Directions are represented by vectors, like points, 
and can be transformed, but not like points

(1,1)
(-2,-1)

x

y



Transforming Directions

• Say I define a direction as the difference of two 
points: d=a–b

– This represents the direction of the line between 
two points

• Now I translate the points by the same amount: 
a’=a+t, b’=b+t

• d’=a’–b’=d

• How should I transform d?



Homogeneous Directions

• Translation does not affect directions!
• Homogeneous coordinates give us a very clean way 

of handling this
• The direction (x,y) becomes the homogeneous 

direction (x,y,0)

• The correct thing happens for rotation and scaling 
also
– Scaling changes the length of the vector, but not the 

direction
– Normal vectors are slightly different – we’ll see more 

later
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Transforming normal vectors 

tangentnormal

tangent’

normal’

M

0T tn
0''T tn

Mtt '

0))(( 1T 
MtMn

T1T )('  Mnn nM
T1)( 

If M is a rotation, 

MM  T1)(



3D Transformations

• Homogeneous coordinates: (x,y,z)=(wx,wy,wz,w)

• Transformations are now represented as 4x4 
matrices
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3D Affine Transform
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3D Rotation

• Rotation in 3D is about an axis in 3D space 
passing through the origin

• Using a matrix representation, any matrix with an 
orthonormal top-left 3x3 sub-matrix is a rotation

– Rows/columns are mutually orthogonal (0 dot 
product)

– Determinant is 1

– Implies columns are also orthogonal, and that the 
transpose is equal to the inverse
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Specifying a rotation matrix

http://pratt.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm 



Specifying a rotation matrix

• Euler angles: Specify how much to rotate about X, 
then how much about Y, then how much about Z

– Hard to think about, and hard to compose



• Specify the axis and the angle (OpenGL method)

– Hard to compose multiple rotations

A rotation by an angle           around axis specified by the unit vector 

is given by   

Alternative Representations

http://mathworld.wolfram.com/RodriguesRotationFormula.html 



Non-Commutativity

• Not Commutative (unlike in 2D)!!

• Rotate by x, then y is not same as y then x

• Order of applying rotations does matter

• Follows from matrix multiplication not 
commutative
– R1 * R2 is not the same as R2 * R1



Other Rotation Issues

• Rotation is about an axis at the origin

– For rotation about an arbitrary axis, use the same 
trick as in 2D: Translate the axis to the origin, rotate, 
and translate back again



Transformation Leftovers

• Scale, shear etc extend naturally from 2D to 3D

• Rotation and Translation are the rigid-body 
transformations:

– Do not change lengths or angles, so a body does not 
deform when transformed



Coordinate Frames

• All of discussion in terms of operating on points

• But can also change coordinate system 

• Example, motion means either point moves 
backward, or coordinate system moves forward

(2,1)P  ' (1,1)P  (1,1)P 



Coordinate Frames: Rotations
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Geometric Interpretation 3D Rotations

• Rows of matrix are 3 unit vectors of new coord frame

• Can construct rotation matrix from 3 orthonormal vectors

• Effectively, projections of point into new coord frame
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