
CS559: Computer Graphics

Lecture 8: 3D Transforms

Li Zhang

Spring 2008

Most Slides from Stephen Chenney

Today

• Finish Color space

• 3D Transforms and Coordinate system

• Reading:

– Shirley ch 6

RGB and HSV

Black (0,0,0) Red (1,0,0)

Green(0,1,0)

Blue (0,0,1)
Magenta (0,1,1)

White(1,1,1)

Yellow (1,1,0)

Cyan (0,1,1)

Different ways to represent/parameterize color

Photoshop Color Picker

L-A-B Color Space

• L-A-B

– L: luminance/Brightness

– A: position between magenta and green (negative
values indicate green while positive values indicate
magenta)

– B: position between yellow and blue (negative
values indicate blue and positive values indicate
yellow)

http://en.wikipedia.org/wiki/Lab_color_space

http://en.wikipedia.org/wiki/CIE_1931_color_space

Spatial resolution and color

R

G

B

original

Blurring the G component

R

G

B

original processed

Blurring the R component

original processed

R

G

B

Blurring the B component

original

R

G

B
processed

L

a

b

A rotation of the

color coordinates

into directions that

are more

perceptually

meaningful:

L: luminance,

a: magenta-green,

b: blue-yellow

Lab Color Component

L

a

b

original processed

Bluring L

original

L

a

b

processed

Bluring a

original

L

a

b

processed

Bluring b

Application to image compression

• (compression is about hiding differences from the
true image where you can’t see them).

Where to now…

• We are now done with images

• We will spend several weeks on the mechanics of
3D graphics

– 3D Transform

– Coordinate systems and Viewing

– Drawing lines and polygons

– Lighting and shading

• We will finish the semester with modeling and
some additional topics

3D Graphics Pipeline

Rendering
(Creating, shading images

from geometry, lighting,

materials)

Modeling
(Creating 3D Geometry)

3D Graphics Pipeline

Rendering
(Creating, shading images

from geometry, lighting,

materials)

Modeling
(Creating 3D Geometry)

Want to place it at correct location in the world

Want to view it from different angles

Want to scale it to make it bigger or smaller

Need transformation between coordinate systems

-- Represent transformations using matrices and

matrix-vector multiplications.

Recall: All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,

– Rotation,

– Shear, and

– Mirror



























y

x

dc

ba

y

x

'

'

2D Rotation

• Rotate counter-clockwise about the origin by an
angle 
















 














y

x

y

x





cossin

sincos

x

y

x

y



Rotating About An Arbitrary Point

• What happens when you apply a rotation
transformation to an object that is not at the
origin?

x

y

?

Rotating About An Arbitrary Point

• What happens when you apply a rotation
transformation to an object that is not at the
origin?

– It translates as well

x

y

x

How Do We Fix it?

• How do we rotate an about an arbitrary point?

– Hint: we know how to rotate about the origin of a
coordinate system

Rotating About An Arbitrary Point

x

y

x

y

x

y

x

y

Scaling an Object not at the Origin

• What happens if you apply the scaling
transformation to an object not at the origin?

• Based on the rotating about a point composition,
what should you do to resize an object about its
own center?

Back to Rotation About a Pt

• Say R is the rotation matrix to apply, and p is the
point about which to rotate

• Translation to Origin:

• Rotation:

• Translate back:

• How to express all the transformation using
matrix multiplication?

pxx 

RpRxpxRxRx )(

 pRpRxpxx 

Homogeneous Coordinates

• Use three numbers to represent a point

• Translation can now be done with matrix
multiplication!























































11001

y

x

baa

baa

y

x

yyyyx

xxyxx

1 usually w 0,any wfor 


























w

wy

wx

y

x


























w

y

x

wy

wx

/

/










y

x













y

x

Homogeneous Coordinates

• Use three numbers to represent a point

• Translation can now be done with matrix
multiplication!







































11

54321 y

x

MMMMMy

x

1 usually w 0,any wfor 


























w

wy

wx

y

x


























w

y

x

wy

wx

/

/










y

x













y

x

Basic Transformations

• Translation: Rotation:

• Scaling:

















100

10

01

y

x

b

b

















100

00

00

y

x

s

s















 

100

0cossin

0sincos





Composing rotations, scales

3 2 2 1

3 1 1

3 1

() ()

x Rx x Sx

x R Sx RS x

x SRx

 

 


Rotation and scaling are not commutative.

Inverting Composite Transforms

• Say I want to invert a combination of 3 transforms

• Option 1: Find composite matrix, invert

• Option 2: Invert each transform and swap order

1 2 3

1 1 1 1

3 2 1

1 1 1 1

3 2 1 1 2 3(())

M M M M

M M M M

M M M M M M M M

   

   







Inverting Composite Transforms

• Say I want to invert a combination of 3 transforms

• Option 1: Find composite matrix, invert

• Option 2: Invert each transform and swap order

• Obvious from properties of matrices

1 2 3

1 1 1 1

3 2 1

1 1 1 1

3 2 1 1 2 3(())

M M M M

M M M M

M M M M M M M M

   

   







Homogeneous Transform Advantages

• Unified view of transformation as matrix
multiplication

– Easier in hardware and software

• To compose transformations, simply multiply
matrices

– Order matters: BA vs AB

• Allows for transforming directional vectors

• Allows for non-affine transformations:

– Perspective projections!

Directions vs. Points

• We have been talking about transforming points

• Directions are also important in graphics

– Viewing directions

– Normal vectors

– Ray directions

• Directions are represented by vectors, like points,
and can be transformed, but not like points

(1,1)
(-2,-1)

x

y

Transforming Directions

• Say I define a direction as the difference of two
points: d=a–b

– This represents the direction of the line between
two points

• Now I translate the points by the same amount:
a’=a+t, b’=b+t

• d’=a’–b’=d

• How should I transform d?

Homogeneous Directions

• Translation does not affect directions!
• Homogeneous coordinates give us a very clean way

of handling this
• The direction (x,y) becomes the homogeneous

direction (x,y,0)

• The correct thing happens for rotation and scaling
also
– Scaling changes the length of the vector, but not the

direction
– Normal vectors are slightly different – we’ll see more

later



















































00100

10

01

y

x

y

x

b

b

y

x

Transforming normal vectors

tangentnormal

tangent’

normal’

M

0T tn
0''T tn

Mtt '

0))((1T 
MtMn

T1T)('  Mnn nM
T1)(

If M is a rotation,

MM  T1)(

3D Transformations

• Homogeneous coordinates: (x,y,z)=(wx,wy,wz,w)

• Transformations are now represented as 4x4
matrices

1 usually w 0,any wfor 





































w

wz

wy

wx

z

y

x





































w

z

y

x

wz

wy

wx

/

/

/































































11000

100

010

001

1

z

y

x

t

t

t

z

y

x

z

y

x

3D Affine Transform































































110001

z

y

x

tihg

tfed

tcba

z

y

x

z

y

x

3D Rotation

• Rotation in 3D is about an axis in 3D space
passing through the origin

• Using a matrix representation, any matrix with an
orthonormal top-left 3x3 sub-matrix is a rotation

– Rows/columns are mutually orthogonal (0 dot
product)

– Determinant is 1

– Implies columns are also orthogonal, and that the
transpose is equal to the inverse

.1,1,1,0,0,0 then

1000

0|||

0

0|||

 332211323121

321




















 rrrrrrrrrrrr
rrr

R

Specifying a rotation matrix

http://pratt.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm

Specifying a rotation matrix

• Euler angles: Specify how much to rotate about X,
then how much about Y, then how much about Z

– Hard to think about, and hard to compose

• Specify the axis and the angle (OpenGL method)

– Hard to compose multiple rotations

A rotation by an angle around axis specified by the unit vector

is given by

Alternative Representations

http://mathworld.wolfram.com/RodriguesRotationFormula.html

Non-Commutativity

• Not Commutative (unlike in 2D)!!

• Rotate by x, then y is not same as y then x

• Order of applying rotations does matter

• Follows from matrix multiplication not
commutative
– R1 * R2 is not the same as R2 * R1

Other Rotation Issues

• Rotation is about an axis at the origin

– For rotation about an arbitrary axis, use the same
trick as in 2D: Translate the axis to the origin, rotate,
and translate back again

Transformation Leftovers

• Scale, shear etc extend naturally from 2D to 3D

• Rotation and Translation are the rigid-body
transformations:

– Do not change lengths or angles, so a body does not
deform when transformed

Coordinate Frames

• All of discussion in terms of operating on points

• But can also change coordinate system

• Example, motion means either point moves
backward, or coordinate system moves forward

(2,1)P  ' (1,1)P  (1,1)P 

Coordinate Frames: Rotations

x

y

P

'P



cos sin

sin cos
R

 

 

 
  
 


















 










y

x

v

u





cossin

sincos




u

v

P P

'P

Geometric Interpretation 3D Rotations

• Rows of matrix are 3 unit vectors of new coord frame

• Can construct rotation matrix from 3 orthonormal vectors

• Effectively, projections of point into new coord frame

u u u

uvw v v v u u u

w w w

x y z

R x y z u x X y Y z Z

x y z

 
 

    
 
 

?

u u u p

v v v p

w w w p

x y z x

Rp x y z y

x y z z

  
  

   
  
  

u p

v p

w p

 
 

 
  

