CS559: Computer Graphics

Lecture 12: Antialiasing & Visibility
Li Zhang
Spring 2008

Today

e Antialising
e Hidden Surface Removal

e Reading:
— Shirleych 3.7, 8
— OpenGLch 1

Last time

...

..

.............................

Line drawing Triangle filling

Aliasing in rendering

 One of the most common rendering artifacts is
the “jaggies”. Consider rendering a white
polygon against a black background:

e We would instead like to get a smoother

transition: '

Other types of Aliasing

* Image warping

Original Aliased Anti-Aliased

Images from answers.com

 Motion Aliasing

*If you were to only look at the clock every 50 minutes then the minute hand would appear to rotate anticlockwise.
*The hour hand would still rotate in the correct direction as you have satisfied nyquist.
*The second hand would jitter around depending on how accurate you were with your observations.

http://www.diracdelta.co.uk/science/source/a/l/aliasing/source.html

Anti-aliasing
e Q: How do we avoid aliasing artifacts?
1. Sampling:
Increase sampling rate -- not practical for fixed resolution display.

2. Pre-filtering:

Smooth out high frequences analytically. Requires an analytic
function.

3. Combination:

Supersample and average down.

e Example - polygon:

e Memory requirement?

Anti-aliasing
e Q: How do we avoid aliasing artifacts?
1. Sampling:
Increase sampling rate -- not practical for fixed resolution display.

2. Pre-filtering:

Smooth out high frequences analytically. Requires an analytic
function.

Box filter

e Consider a line as having thickness

(all good drawing programs do ol olo /8 | o
this)
. der pivels as litt] o | o 1141 014
Consider pixels as little squares / w8
e Set brightness according to the 0 1/4//_914/ 0
proportion of the square covered A 14

/
- 1/8
by the line @ﬂ/m 0 |0

1/8| © O |0

Weighted Sampling

e Place the “filter” at each pixel, and

integrate product of pixel and line

e Common filters are Gaussians

Anti-aliasing

e Q: How do we avoid aliasing artifacts?

1.

Sampling:

Increase sampling rate -- not practical for fixed resolution display.

. Pre-filtering:

Smooth out high frequences analytically. Requires an analytic

function.

. Combination:

Supersample and average down.

Example - polygon:

ONN NN BEO
ONN NN BN
ONN NN BN
ONN NN BN

Memory
requirement?

Implementing antialiasing

EEEEEEE
HEEV/NEE
T I Y IN I

ERV/EENE
EVSAEELE
2T
AEEEEEEE

Assuming this is a 2X supersampling grid, how to achieve
anti-aliasing without using 4X memory?

Rasterize shifted versions of the triangle on the original grid, accumulate
the color, and divide the final image by the number of shifts

Canonical - Window Transform
(Xmax’ ymax)z(nx'0-51ny'o-5)

Ny A

(1,1)

/ \ ->
/
(-1,-1)
'
(Xmin’ymin):(' T

_Xpixel | _(Xmax B Xmin)/2 0 0 (Xmax + Xmin)/z_ _Xcanonical_

ypixel _ 0 (ymax o ymin)/2 0 (ymax T ymin)/2 ycanonical

Zpixel 0 0 1 0 Z canonical
1| o0 0 0 1 | 1]

*
M

canonical—> pixel

Polygon anti-aliasing

Without antialiasing

With antialiasing

Magnification

3D Geometry Pipeline

! ~ Ye
- SR VA —

Yo

Rotation Lw Rotation
Translation Translation
é - o Te
L2 Resizing Fw
z3 I\/Iworld—>vie\’/v-/ Eve S
Model Space World Space (V_ye Space)
(Object Space) I€W Space

view—>canonical

Canonical View Space Screen Space (2D)
Raster Space

Image Space (pixels)

Visibility
e Given a set of polygons, which is visible at each

pixel? (in front, etc.). Also called hidden surface
removal

e Very large number of different algorithms known.
Two main classes:
— Object precision
e computations that operate on primitives
— triangle A occludes triangle B

— Image precision
e computations at the pixel level
— pixel P sees point Q

Painter’s Algorithm

Ve .\

Draw objects in a back-to-front order

Painter’s algorithm

Failure case

/-buffer (image precision)

e The Z-buffer or depth buffer algorithm
[Catmull, 1974] is probably the simplest and
most widely used.

* For each pixel on screen, have at least two buffers
— Color buffer stores the current color of each pixel
e The thing to ultimately display

— Z-buffer stores at each pixel the depth of the
nearest thing seen so far

e Also called the depth buffer

Z-buffer

* Here is pseudocode for the Z-buffer hidden surface algorithm:

for each pixel (iJ) do el |-
Z-bUﬁer[M] {—FAR
Framebufferii,j] « <background color>
end for AN
foreachpolygonAdo [T
for each pixel in A do e —
Compute depth z and shade s|of A at (i) T [[]
it2 > Z-buffer [L] then AR
Z'b”ffer[u] 2z . T, e e, D e e et
FramebufferliJ] «s Triangle filling
end if
end for

end for

How to compute shades/color?
How to compute depth z?

Precision of depth

d

| >-Z

fn

7 =f+n-

ortho

V4

perspective

fn
AZ ~ AZ

ortho 2 perspective
7 _ n ! !
perspective f

ZZ

 _ perspective
AZ perspective f AZ

f
A7™ ~— Az f
n

ortho

perspective ortho

Depth resolution not uniform
More close to near plane, less further away

Common mistake: set near = 0, far = infty. Don’t do - >
this. Can’t set near = 0; lose depth resolution. n f Z perspective

Other issues of Z buffer

 Advantages:

— Simple and now ubiquitous in hardware

e A z-buffer is part of what makes a graphics card “3D”

— Computing the required depth values is simple

 Disadvantages:
— Depth quantization errors can be annoying
— Can’t easily do transparency

(], over a,l,) over a.l,

(], over a,l,) over a,l,

The A-buffer (Image Precision)

 Handles transparent surfaces and filter anti-
aliasing

e At each pixel, maintain a pointer to a list of
polygons sorted by depth

for each pix

The A-buffer (Image Precision)

el (i) do

Z-buffer[ij] « FAR
Framebufferijl « <background color>

end for

for each polygon A do

for each pixel in A do
Compute depth zand shade s of A at (1))

> Z=buffer[iJ] th
Z-buffer[i <z
Frameoutfedl,
if

«—3

end for
end for

if polygon is opaque and covers
pixel, insert into list, removing
all polygons farther away

if polygon is transparent, insert
into list, but don’t remove
farther polygons

A-Buffer Composite

For each pixel, we have a list of

(o, 11, 2)) (e, 15, 2,) (e Dy 2y)

composite{(e,, 1,,2,) (,,1,,2,) (g, 1y, 2y)}

= composite{(a,, |, 2,),composite{(c,, 1, Z,) - (ay, 1y, Zy) }}

=yl + (1)), + (- a))(agly + a1y)

The A-buffer (2)

 Advantage:

— Can do more than Z-buffer

— Alpha can represent partial coverage as well
 Disadvantages:

— Not in hardware, and slow in software

— Still at heart a z-buffer: depth quantization problems

e But, used in high quality rendering tools

Binary-space partltlonmg (BSP) trees

Problem for Painter’s algorithm:
e Orderisview dependent

Idea: D E

— Do extra preprocessing to allow quick display from any viewpoint.

Key observation: A polygon A is painted in correct order if
— Polygons on far side of A are painted first
— Ais painted next
— Polygons on near side of A are painted last.

Solution: build a tree to recursively partition the space and group polygons

Why it works? What’s the assumption?

7/ 3
L 7
L s — 4
NS

BSP tree creation

procedure MakeBSPTree:

takes PolygonlList L

returns BSPTree
Choose polygon A from L to serve as root
Split all polygons in L according to A
node < A
node.neg <— MakeBSPTree(Polygons on neg. side of A)
node.pos <— MakeBSPTree(Polygons on pos. side of A)
return node

end procedure

Plane equation

n= (b-a)x(c-a)

Plane equation: f(p) = nT(p-a)

P

Positive side f(p) > 0
Negative side f(p) <0

Split Triangles

a E

abc => aED, Ebc, EcD

BSP tree display

procedure DisplayBSPTree:
Takes BSPTree T
if Tis empty then return
if viewer is in front (on pos. side) of T.node
DisplayBSPTree(T.)
Draw T.node
DisplayBSPTree(T.)

else
DisplayBSPTree(T.)
Draw T.node
DisplayBSPTree(T.)
end if

end procedure

Performance Notes

Does how well the tree is balanced matter?

— No

Does the number of triangles matter?

— Yes

Performance is improved when fewer polygons

are split --- in practice, best of ¥ 5 random
splitting polygons are chosen.

BSP is created in world coordinates. No
projective matrices are applied before building
tree.

BSP-Tree Rendering (2)

 Advantages:
— One tree works for any viewing point

— transparency works
e Have back to front ordering for compositing

— Can also render front to back, and avoid drawing
back polygons that cannot contribute to the view

 Major innovation in Quake
* Disadvantages:
— Can be many small pieces of polygon

3D Geometry Pipeline

! ~ Ye
- SR VA —

Yo

Rotation Lw Rotation
Translation Translation
é - o Te
L2 Resizing Fw
z3 I\/Iworld—>vie\’/v-/ Eve S
Model Space World Space (V_ye Space)
(Object Space) I€W Space

view—>canonical

Canonical View Space Screen Space (2D)
Raster Space

Image Space (pixels)

	CS559: Computer Graphics
	Today
	Last time
	Aliasing in rendering
	Other types of Aliasing
	Anti-aliasing
	Anti-aliasing
	Box filter
	Weighted Sampling
	Anti-aliasing
	Implementing antialiasing
	Canonical  Window Transform
	Polygon anti-aliasing
	3D Geometry Pipeline
	Visibility
	Painter’s Algorithm
	Painter’s algorithm
	Z-buffer (image precision)
	Z-buffer
	Precision of depth
	Other issues of Z buffer
	The A-buffer (Image Precision)
	The A-buffer (Image Precision)
	A-Buffer Composite
	The A-buffer (2)
	Binary-space partitioning (BSP) trees
	BSP tree creation
	Plane equation
	Split Triangles
	BSP tree display
	Performance Notes
	BSP-Tree Rendering (2)
	3D Geometry Pipeline

