CS559: Computer Graphics

Lecture 12: OpenGL - Transformation
Li Zhang
Spring 2008

Today

* Finish transformation in OpenGL
e Lighting

e Reading
— Shirley, Ch 9.1, 9.2

Connecting primitives

LL

>
glLoadIdentity(); glLoadIdentity();
draw_block A(); draw_block_A();
glTranslate(9, h, 0); glTranslate(@, h, 0);
Draw_block B(); glRotate(-90, 0, 0, 1);
Draw_block B();

3D Example: A robot arm

e Consider this robot arm with 3 degrees of freedom:
— Base rotates about its vertical axis by 0
— Upper arm rotates in its xy-plane by ¢
— Lower arm rotates in its xy-plane by y

y

Lower arm

Q: What matrix do we use to transform the base to the world?
* R_y(6)

e Q: What matrix for the upper arm to the base?
e T(0,h1,0)R_z(d)

Q: What matrix for the lower arm to the upper arm?
 T(0,h2,0)R_z(y)

Robot arm implementation

 The robot arm can be displayed by keeping a global matrix and computing it
at each step:

Matrix M model; e Q: What matrix do we use to transform the base to the world?
display () { e R_y(0)
e Q: What matrix for the upper arm to the base?

e T(0,h1,0)R_z(d)

robot arm() ;

) e Q: What matrix for the lower arm to the upper arm?
robot arm() ° T(O,hZ,O)R_Z(\V)
{

M model = R y(theta);

base() ;

M model = R y(theta)*T(0,hl,0)*R z(phi);

upper armf() ;

M model = R y(theta)*T(0,hl,0)*R z(phi)*T(0,h2,0)*R z(psi);

lower arm() ;

How to translate the whole robot?
Do the matrix computations seem wasteful?

Robot arm implementation, better

* Instead of recalculating the global matrix each time, we can just update it in
place by concatenating matrices on the right:

Matrix M model;

display () {

M model = identity;

robot arm() ;

}

robot arm()
{
M model *= R y(theta);
base () ;
M model *= T(0,hl,0)*R _z(phi);
upper arm() ;
M model *= T(0,h2,0)*R _z(psi);

lower arm() ;

Robot arm implementation, OpenGL

OpenGL maintains the model-view matrix, as a global state variable which is
updated by concatenating matrices on the right.

display ()

{

glMatrixMode (GL MODELVIEW) ;
glLoadIdentity () ;

robot arm() ;

}

robot arm()
{
glRotatef (theta, 0.0, 1.0, 0.0);
base () ;
glTranslatef(0.0, hl, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);
lower arm() ;
glTranslatef(0.0, h2, 0.0);
glRotatef(psi, 0.0, 0.0, 1.0);

upper arm() ;

Hierarchical modeling

 Hierarchical models can be composed of

Instances using trees:

Right-front Right-rear Left-front I _eft-rear
wheel wheel wheel wheel

|

Chassis }

R-R L—1§
R-F | /L—R
Wheel

— edges contain geometric transformations
— nodes contain geometry (and possibly drawing

attributes)

How might we draw the tree for the robot arm?

A complex example: human figure

Mo M, My M
Head Left-upper || |Right-upper| | Left-upper | Right-upper
arm arm leg leg
My, M, My M.y
Left-lower || | Right-lower|| =Left-lower || Right-lower
arm leg leg

e Q: What'’s the most sensible way to traverse

arm

this tree?

Human figure implementation, OpenGL

figure ()
{
torso() ;
glPushMatrix () ;
glTranslate(...);
glRotate(...):
head () ;
glPopMatrix () ;
glPushMatrix () ;
glTranslate(...);
glRotate(...):;
left upper arm();
glPushMatrix () ;
glTranslate(...);
glRotate(...):;
left lower arm();
glPopMatrix () ;
glPopMatrix () ;

So far...

 We've talked exclusively about geometry.

— What is the shape of an object?
e g|Begin() ... glEnd()

— How do | place it in a virtual 3D space?
e g|MatrixMode() ...

— How to change viewpoints
e gluLookAt()

— How do | know which pixels it covers?
e Rasterization

— How do | know which of the pixels | should actually
draw?

e Z-buffer, BSP

So far

glColor(..);

o
I

Apply transforms ()

jects () ;

jec

Draw ob

R S IR
n-_mu_ e

VI
Ll -.“"L, g

SR

;,m“*Lm
ey i

£rTe
k}e\ .J- -— i

L
_r.n 1 i

Lit surface

Flat shaded

Next...

Once we know geometry, we have to ask one
more important question:

— To what value do | set each pixel?

Answering this question is the job of the shading
model.

Other names:

— Lighting model

— Light reflection model

— Local illumination model

— Reflectance model
— BRDF

An abundance of photons

* Properly determining the right color is really
hard.

Particle Scattering

An abundance of photons

* Properly determining the right color is really
hard.

Translucency

An abundance of photons

* Properly determining the right color is really
hard.

Refraction

An abundance of photons

* Properly determining the right color is really
hard.

Global Effect

Our problem

We’re going to build up to an approximation of
reality called the Phong illumination model.

It has the following characteristics:

— not physically based

— gives a “first-order” approximation to physical light
reflection

— very fast
— widely used

In addition, we will assume local illumination, i.e.,
light goes: light source -> surface -> viewer.

No interreflections, no shadows.

INJ] = fleff =iV = 1

* @Given:
— a point P on a surface visible through pixel p
— The normal N at P
— The lighting direction, L, and intensity, L ,at P
— The viewing direction, V, at P
— The shading coefficients at P

e Compute the color, I, of pixel p.

e Assume that the direction vectors are normalized:

“Iteration zero”

The simplest thing you can do is...
Assign each polygon a single color:

| = k

e
where
— | is the resulting intensity

— k. is the emissivity or intrinsic shade associated
with the object

This has some special-purpose uses, but not
really good for drawing a scene.

“Iteration one”

* Let’s make the color at least dependent on the
overall quantity of light available in the scene:

| = k., + k_L,

e

— k, is the ambient reflection coefficient.
 really the reflectance of ambient light
e “ambient” light is assumed to be equal in all directions

— L is the ambient light intensity.

e Physically, what is “ambient” light?

Ambient Term

 Hack to simulate multiple bounces, scattering of
light

e Assume light equally from all directions

tel
e

Slide from Ravi Ramamoorthi

Wavelength dependence

Really, k., k,, and L, are functions over all wavelengths A.

Ideally, we would do the calculation on these functions. For
the ambient shading equation, we would start with:

1(A)= K, (4)L, (1)

then we would find good RGB values to represent the
spectrum /(A).

Traditionally, though, k, and I, are represented as RGB triples,
and the computation is performed on each color channel
separately:

R (a,R — a ,R
G (a,G - a .G
B (a,B — a ,B

Diffuse reflection

| = k, + kL,

e So far, objects are uniformly lit.
— not the way things really appear

— in reality, light sources are localized in position or
direction

e Diffuse, or Lambertian reflection will allow

reflected intensity to vary with the direction of
the light.

Diffuse reflectors
e Diffuse reflection occurs from dull, matte
surfaces, like latex paint, or chalk.

 These diffuse or Lambertian reflectors
reradiate light equally in all directions.

Diffuse reflectors

e Diffuse reflection occurs from dull, matte
surfaces, like latex paint, or chalk.

 These diffuse or Lambertian reflectors
reradiate light equally in all directions.

e Picture a rough surface with lots of tiny
microfacets.

n{i}\\ l‘»

<] : ~,]

Diffuse reflectors

e ...Or picture a surface with little pigment particles

embedded beneath the surface (neglect reflection at the
surface for the moment):

NN

T 4 W

N

 The microfacets and pigments distribute light rays in all
directions.

e Embedded pigments are responsible for the coloration of
diffusely reflected light in plastics and paints.

 Note: the figures above are intuitive, but not strictly
(physically) correct.

Diffuse reflectors, cont.

 The reflected intensity from a diffuse surface
does not depend on the direction of the
viewer. The incoming light, though, does
depend on the direction of the light source:

T

“Iteration two”

* The incoming energy is proportional to _cos
giving the diffuse reflection equations:

| =k, +k.L

k,L-(L-N)

=k, +k, L, +k,L-max(0,L-N)

e where:

— k, is the diffuse reflection coefficient

— L, is the intensity of the light source

— N is the normal to the surface (unit vector)

— L is the direction to the light source (unit vector)

	CS559: Computer Graphics
	Today
	Connecting primitives
	3D Example: A robot arm
	Robot arm implementation
	Robot arm implementation, better
	Robot arm implementation, OpenGL
	Hierarchical modeling
	A complex example: human figure
	Human figure implementation, OpenGL
	So far…
	So far
	Next…
	An abundance of photons
	An abundance of photons
	An abundance of photons
	An abundance of photons
	Our problem
	Setup…
	“Iteration zero”
	“Iteration one”
	Ambient Term
	Wavelength dependence
	Diffuse reflection
	Diffuse reflectors
	Diffuse reflectors
	Diffuse reflectors
	Diffuse reflectors, cont.
	“Iteration two”

