CS559: Computer Graphics

Lecture 16: Shading and OpenGL
Li Zhang
Spring 2008

Today

* Finish shading
e How to do shading in OpenGL

e Reading
— Shirley, Ch 13.3
— Red book, Ch 4&5 (except color index mode)

3D Example: A robot arm

e Consider this robot arm with 3 degrees of freedom:
— Base rotates about its vertical axis by 0
— Upper arm rotates in its xy-plane by ¢
— Lower arm rotates in its xy-plane by y

y

Lower arm

Q: What matrix do we use to transform the base to the world?
* R_y(6)

e Q: What matrix for the upper arm to the base?
e T(0,h1,0)R_z(d)

Q: What matrix for the lower arm to the upper arm?
 T(0,h2,0)R_z(y)

3D Example: A robot arm

e Consider this robot arm with 3 degrees of freedom:
— Base rotates about its vertical axis by 0
— Upper arm rotates in its xy-plane by ¢
— Lower arm rotates in its xy-plane by y

y

Lower arm

Q: What matrix do we use to transform the base to the world?
* R_y(6)

e Q: What matrix for the upper arm to the base?
e T(0,h1,0)R_z(d)

Q: What matrix for the lower arm to the upper arm?
 T(0,h2,0)R_z(y)

Shading problem

INJ] = fleff =iV = 1

* Given:
— a point P on a surface visible through pixel p
— The normal N at P
— The lighting direction, L, and intensity, L ,at P
— The viewing direction, V, at P
— The shading coefficients at P

e Compute the color, I, of pixel p.

| =k, +k,L, +k,L, -max(0,L-N)

Diffuse Shading

hang'teaching',cs559'spring2008} users'lizhang' teaching',cs559 spring2 008}

di\usersilizhanglteaching|cs559 spring2008ihtmlisyllabusi02-20-0pe

| =k, +k,L, +k,L, -max(0,L-N)

Diffuse Shading

| =k, +Kk, L, +k L, -max(0,L-N)

Specular reflection

e Specular reflection accounts for the highlight that
you see on some objects.

e |tis particularly important for smooth, shiny
surfaces, such as:

— Metal, polished stone, plastics, apples, Skin

Specular Reflection

Diffuse Specular

di\usersilizhanglteaching|cs559 spring2008ihtmlisyllabusi02-20-0pe

Specular reflection “derivation”

| B A R

For a perfect mirror reflector, light is reflected about N, so

| L ifV =R
|0 otherwise

For a near-perfect reflector, you might expect the highlight
to fall off quickly with increasing angle ¢.
Also known as:

— “rough specular” reflection

— “directional diffuse” reflection

— “glossy” reflection

Derivation, cont.

cos’ls ¢
1 T

e One way to get this effect is to take (R:V), raised
to a power n..
e As n_gets larger,
— the dropoff becomes {more,less} gradual
— gives a {larger,smaller} highlight
— simulates a {more,less} mirror-like surface

“Iteration three”

 The next update to the Phong shading model is
then:

| =k, +k,L, +Kk,L, -max(0,L-N)+kL,-max(0,V-R)™

* where:
— k. is the specular reflection coefficient
— n. is the specular exponent or shininess

— R is the reflection of the light about the normal (unit
vector)

— Vis viewing direction (unit vector)

Shininess

Specular vs Diffuse reflection

e What's the key difference Properties:

— Specular reflection depends on the viewing
direction V.

Specular Reflection Improvement
| =k, +k,L, +k,L, -max(0,L-N)+Kk.L,-max(0,V-R)™

H=(L+V)/L+V| L ANV
ksLs(H°N)p V

e Compute based on normal vector and “halfway”
vector, H

— Always positive when the light and eye are above the
tangent plane

— Not quite the same result as the other formulation

Putting It Together

Phong Shading Model

| =k, +k, L, +k,L, -max(0,L-N)+k.L, -(H-N)%

GLfloat ke[] = { 0.1,
GLfloat ka[] = { 0.1,
GLfloat kd[] = { ©.3,
GLfloat ks[] = { 0.2,
GLfloat ns[] = { 50.0

glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,

J

GL_EMISSION, ke);
GL_AMBIENT, ka);
GL_DIFFUSE, kd);
GL_SPECULAR, ks);
GL_SHININESS, ns);

Lights

 OpenGL supports three different kinds of lights:
ambient, directional, and point. Spot lights are
also supported as a special form of point light.

e We’'ve seen ambient light sources, which are not
really geometric.

* Directional light sources have a single direction
and intensity associated with them.

~ 1 s
O
TN

Point lights

The direction of a point light sources is determined by
the vector from the light position to the surface point.

E-P
|E - Pl

L =

d = [E-P]

Physics tells us the intensity must drop off inversely with

the square of the distance: .

fatten o d 2

Sometimes, this distance-squared dropoff is considered

too “harsh.” A common alternative is:
1

fatten = a+bd+ cd?

with user-supplied constants for a, b, and c.

Spotlights

* OpenGL also allows one to apply a directional
attenuation of a point light source, giving a
spotlight effect

| =)

 The spotlight intensity factor is computed in

OpenGL as:
o = Max{s—arccos(L -S),0}f
e where
— Lis the direction to the point light.
— S is the center direction of the spotlight.
— fis the cutoff angle for the spotlight
— e is the angular falloff coefficient

“Iteration four”

Since light is additive, we can handle multiple
lights by taking the sum over every light.

Our equation is now:
f

=LYl maxo LN L (N

This is the Phong illumination model in OpenGL.
Which quantities are spatial vectors?

Which are RGB triples?

Choosing the parameters

 Experiment with different parameter settings.
To get you started, here are a few suggestions:

— Try n, in the range [0,100]

—Try k, +k,+ k. <1
— Use a small k, (~0.1)

Ng kd ks
Metal large Small, color of metal Large, color of
metal
Plastic medium Medl_um, color of Medium. white
plastic
Planet 0 varying 0

Shading in OpenGL

e The OpenGL lighting model allows you to
associate different lighting colors according to
material properties they will influence.

 Thus, our original shading equation becomes:

f

okl YL, kol max0.LN)+k L, (H-N)P
~a, +b.D+c,D* " ‘ |

 where you can have a global ambient light with
intensity L, in addition to having an ambient

light intensity L, ; associated with each individual
light.

BRDF

The Phong illumination model is a function that
maps light from incoming (light) directions w,, to
outgoing (viewing) directions w,:

fr (a) in +@ out)
Here’s a plot with @, held constant:

in » @ out)

This function is called the Bi-directional
Reflectance Distribution Function (BRDF).

BRDF’s can be quite sophisticated...

BRDF measurement

> Jamp -

camera f‘j "

Stanford Graphics Lab

Brdf Viewer plots

Anisotropic

written by Szymon Rusinkiewicz

More sophisticated BRDF’s

Cook and
Torrance, 1982

Surface Shading

e Now we know how to compute the color at a
point on a surface using the Phong lighting
model.

* Does graphics hardware do this calculation at
every point? Typically not (although this is
changing)...

 Smooth surfaces are often approximated by
polygonal facets. So How do we compute the
shading for such a surface?

Faceted shading

e Assume each face has a constant normal:

* |f we have constant material properties over the
surface, how will the color of each triangle vary?

e Result: faceted, not smooth, appearance.

£
(LF RV

AR

<= u NN 111

Gouraud interpolation

* To get a smoother result that is easily performed in hardware,
we can do Gouraud interpolation.

e Here’s how it works:
1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.

Facted shading vs. Gouraud interpolation

Gouraud interpolation

Gouraud interpolation artifacts

 Gouraud interpolation has significant limitations.

— |If the polygonal approximation is too coarse, we can
miss specular highlights.

Phong interpolation

 To get an even smoother result with fewer
artifacts, we can perform Phong interpolation.
 Here’s how it works:
1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

N,
N, 2 :\1
N.

'

Interpolate

v

- iN
\
Shade
}

Gouraud vs. Phong interpolation

How to compute vertex normals

A weighted average of normals of neighboring triangles

Z areatrianglentriangle

__ triangle

vertex
Z areatriangle

triangle

How to compute vertex normals

A weighted average of normals of neighboring triangles

Z ar.ea'trianglentriangle

__triangle

Z area‘triangleﬂtriangle

triangle

Define a light in OpenGL

GLfloat ke[] = { 0.1,
GLfloat ka[] = { 0.1,
GLfloat kd[] = { 0.3,
GLfloat ks[] = { 0.2,
GLfloat ns[] = { 50.0

glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,

glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,
glMaterialfv(GL_FRONT,

GL_EMISSION, ke);
GL_AMBIENT, ka);
GL_DIFFUSE, kd);
GL_SPECULAR, ks);
GL_SHININESS, ns);

| =k, +k, L, +Kk,L,-max(0,L-N)+Kk,L,

(H-NY

GLfloat light ambient][]
GLfloat light diffuse[]

GLfloat light specular[] = { 1 9, 1.0, 1.0, 1.0 };
}

GLfloat light position[] = { 1.0,

{ e.e, e
{1

1.9, 1.9, 0.0

glLightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHT@, GL_DIFFUSE,

gllLightfv(GL_LIGHTO, GL_SPECULAR,
glLightfv(GL_LIGHT®, GL_POSITION,

light diffuse);

light specular);
light position);

Demo

SEPEAN-1pace v Commara mavipalsion window

Gl float ight_pos[] = {

Glfloat light_Ka[]={ 0.

Glfloat light_Kd[]={ 100 ,

Glfloat light_Ks[]={ 100 ,1.00 ,1.00

Glfloat material_Ka[]={ 011 , 0.08

GlLfloat material_Kd[]={ 0.43 , 0.47

GlLfloat maternal_Ks[] = { 0.33 ,

GlLfloat matemal_Ke[] ={ 0.00 , 0.00 , 0,00
GlLfloat materal_Se = 10 ;

4T, 5L

WONa-SpRCE Vi

Click on the arguments and move the mouse to modify values,

Light.c

void init(void) {

GLfloat mat_specular[] = { 1.0,
GLfloat mat_shininess[] = { 50.0 };
GLfloat light position[] = { 1.0, 1.0, 1.0, 0.0 };
glClearColor (0.0, 0.0, 0.0, 0.0);

glShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light position);
glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);

glEnable(GL_DEPTH_TEST);

1.0, 1.0, 1.0 };

void display(void) {

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere (1.0, 20, 16);
glFlush ();

Light.c

Complex lighting

ow to have multiple lights?
ow to change lighting positions?
ow to change color material?

Multiple lights

fspot-
a, +b,D+c, D?

| =k +k La+2

kL, kL, -max@,L-N)+k,L -(H-N)"|

GLfloat lightl ambient[]
GLfloat lightl diffuse[]

GLfloat lightl specular[] = { 1.0, , 1.0, 1.
GLfloat lightl position[] = { -2.0, 2.0, 1.0, 1.0 };
GLfloat spot direction[] = { -1.0, -1.0, 0.0 };

glLightfv(GL_LIGHT1, GL_AMBIENT, lightl ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, lightl diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, lightl specular);

glLightfv(GL_LIGHT1, GL_POSITION, lightl position);
glLightf(GL_LIGHT1, GL_CONSTANT ATTENUATION, 1.5);
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, ©.5);

glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2);

glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot direction);
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0);

glEnable(GL_LIGHT1);

Moving light source

e Method 1:
— Use glLightfv(GL_LIGHT1, GL_POSITION, lightl position);
e Method 2:

— Use transformation

Moving a light source

* Use glLightfv(GL_LIGHT1, GL_POSITION, light1_position);

Gl floes I:L:|II|1'I = 1.5D 1

pElookAN 000 000 20D

gilightte{ Gl _LIGHTD, G PO TI0, peo)

Cheh on the Episss snd moene The mouse 1o soaly vl

Moving light source

e Use transformation

static GLdouble spin;
void display(void) {
GLfloat light position[] = { 0.0, 0.0, 1.5, 1.0 };
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER BIT);
glPushMatrix();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.9);
glPushMatrix();
glRotated(spin, 1.0, 0.0, 0.0);
glLightfv(GL_LIGHTO, GL_POSITION, light position);
glPopMatrix();
glutSolidTorus (©.275, 0.85, 8, 15);
glPopMatrix();
glFlush();

Demo

e Rotating a light source demo.

glColorMaterial

glEnable(GL_COLOR_MATERIAL);

glColorMaterial (GL_FRONT, GL_DIFFUSE);

/* now glColor* changes diffuse reflection */
glColor3f(e.2, 0.5, 0.8);

/* draw some objects here */

glColorMaterial (GL_FRONT, GL_SPECULAR);

/* glColor* no longer changes diffuse reflection */
/* now glColor* changes specular reflection */
glColor3f(e.9, 0.0, 0.2);

/* draw other objects here */
glDisable(GL_COLOR_MATERIAL);

glColorMaterial

e Demo

void mouse(int button, int state, int x, int y) {
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
/* change red */
diffuseMaterial[@] += 0.1;
if (diffuseMaterial[@] > 1.0) diffuseMaterial[@] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
case GLUT _MIDDLE BUTTON:
if (state == GLUT_DOWN) {
/* change green */
diffuseMaterial[l] += 0.1;
if (diffuseMaterial[1l] > 1.0) diffuseMaterial[l] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN) {
/* change blue */
diffuseMaterial[2] += 0.1;
if (diffuseMaterial[2] > 1.0) diffuseMaterial[2] = 0.0;
glColor4fv(diffuseMaterial);
glutPostRedisplay();
}
break;
default:
break;

Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a scene.
This number is system-dependent.

For directional lights, you specify a light direction, not position, and
the attenuation and spotlight terms are ignored.

The directions of directional lights and spotlights are specified in
the world coordinate systems, not the object coordinate system.

	CS559: Computer Graphics
	Today
	3D Example: A robot arm
	3D Example: A robot arm
	Shading problem
	Diffuse Shading
	Diffuse Shading
	Specular reflection
	Specular Reflection
	Specular reflection “derivation”
	Derivation, cont.
	“Iteration three”
	Shininess
	Specular vs Diffuse reflection
	Specular Reflection Improvement
	Putting It Together
	Lights
	Point lights
	Spotlights
	“Iteration four”
	Choosing the parameters
	Shading in OpenGL
	BRDF
	BRDF measurement
	Brdf Viewer plots
	More sophisticated BRDF’s
	Surface Shading
	Faceted shading
	Faceted shading (cont’d)
	Gouraud interpolation
	Facted shading vs. Gouraud interpolation
	Gouraud interpolation
	Gouraud interpolation artifacts
	Phong interpolation
	Gouraud vs. Phong interpolation
	How to compute vertex normals
	How to compute vertex normals
	Define a light in OpenGL
	Demo
	Light.c
	Light.c
	Complex lighting
	Multiple lights
	Moving light source
	Moving a light source
	Moving light source
	Demo
	glColorMaterial
	glColorMaterial
	glColorMaterial
	Shading in OpenGL, cont’d

