CS559: Computer Graphics

Lecture 33: Shape Modeling
Li Zhang
Spring 2008

Today
e Shape Modeling

e Reading
— (optional) Shirley: ch 13.1-13.3
— Redbook: ch 2, if you haven’t read it before

Shape model

* You have some experience with shape modeling
— Rails as curves
— Tree = cone + cylinder

e There are many ways to represent the shape
of an object

 choosing a representation depends on
application and requirement

Boundary vs. Solid Representations

 B-rep: boundary representation
— Sometimes we only care about the surface
— Rendering opaque objects

e Solid modeling

— Some representations are best thought of defining
the space filled, rather than the surface around the
space

— Medical data with information attached to the space
— Transparent objects with internal structure

— Taking cuts out of an object; “What will | see if |
break this object?”

Shape Representation

Parametric models
mplicit models

Procedural models

Parametric Model

e generates all the points on a surface (volume) by
“plugging in a parameter”

— Eg (sin ¢ cos@,sin gsin @, cos @)
0<O<27, 0<gp<nx

— Easy to render, how?
— Easy to texture map

Implicit Models

* Implicit models use an equation that is O if the
point is on the surface

— Essentially a function to test the status of a point
—Eg x°+y*+2°-1=0

— Easy to test inside/outside/on

— Hard to?

— Render
— Texture map

Parametric Model

e generates all the points on a surface (volume) by
“plugging in a parameter”
— Eg (sin ¢ cos @, sin ¢sin @, cos @)
0<f<2z, 0<g¢<nx
— Easy to render, how?
— Easy to texture map

— Hard to
» Test inside/outside/on

Procedural Modeling

e a procedure is used to describe how the shapeis
formed

Simple procedure

Parameterization

 Parameterization is the process of associating a set of parameters with
every point on an object
— Forinstance, a line is easily parameterized by a single value
— Triangles in 2D can be parameterized by their barycentric coordinates
— Triangles in 3D can be parameterized by 3 vertices and the barycentric
coordinates (need both to locate a point in 3D space)
e Several properties of a parameterization are important:
— The smoothness of the mapping from parameter space to 3D points
— The ease with which the parameter mapping can be inverted
 We care about parameterizations for several reasons
— Texture mapping is the most obvious one you have seen so far; require (s,t)
parameters for every point in a triangle

Popular Modeling Techniques

Polygon meshes
— Surface representation, Parametric representation

Prototype instancing and hierarchical modeling
(done)

— Surface or Volume, Parametric

Volume enumeration schemes
— Volume, Parametric or Implicit

Parametric curves and surfaces
— Surface, Parametric

Subdivision curves and surfaces
Procedural models

Polygon Modeling

* Polygons are the dominant force in modeling for real-
time graphics

e Why?

Polygons Dominate because

Everything can be turned into polygons (almost
everything)

— Normally an error associated with the conversion, but
with time and space it may be possible to reduce this
error

We know how to render polygons quickly
Many operations are easy to do with polygons
Memory and disk space is cheap

Simplicity

What’s Bad About Polygons?

e What are some disadvantages of polygonal
representations?

Polygons Aren’t Great

 They are always an approximation to curved surfaces

— Most real-world surfaces are curved, particularly natural
surfaces

— They throw away information
— Normal vectors are approximate

— But can be as good as you want, if you are willing to pay
in size

 They can be very unstructured

 They are hard to globally parameterize (complex
concept)

— How do we parameterize them for texture mapping?

e |tis difficult to perform many geometric operations
— Results can be unduly complex, for instance

Polygon Meshes

e A mesh is a set of polygons connected to form an
object

A mesh has several components, or geometrlc
entities:

— Faces
— Edges

e the boundary between faces
— Vertices

e the boundaries between edges,
e or where three or more faces meet
— Normals, Texture coordinates, colors, shadlng
coefficients, etc

e What is the counterpart of a polygon mesh in
curve modeling?

Polygonal Data Structures

e Polygon mesh data structures are application
dependent

» Different applications require different operations
to be fast
— Find the neighbor of a given face
— Find the faces that surround a vertex
— Intersect two polygon meshes

* You typically choose:
— Which features to store explicitly (vertices, faces,
normals, etc)

— Which relationships you want to be explicit (vertices
belonging to faces, neighbors, faces at a vertex, etc)

Polygon Soup

« Many polygon models are just lists of polygons

struct Vertex {
float coords[3];
}

struct Triangle {
struct Vertex verts|[3];
}

struct Triangle mesh[n];

glBegin(GL_TRIANGLES)
for (1 =0 ;1 <n ;

{

1++)

glVertex3fv(mesh[i].verts[0]);
glVertex3fv(mesh[i].verts[1]);
glVertex3fv(mesh[i].verts[2]);

)
gIENdQ); w "
g v
A
GL_TRIANGLES

Important Point: OpenGL,
and almost everything else,
assumes a constant vertex
ordering: clockwise or
counter-clockwise. Default,
and slightly more standard, is
counter-clockwise

v W2 wi vi -
L |
¥
v3 o5 V4
GL_TRIANIGLE _STRIP GL_TRIAMSGLE _FAM

Cube Soup

struct Triangle Cube[12] =
{{{1,1,1},{1,0,0},{1,1,0}},
{{1,1,1},{1.,0,1},{1,0,0}},
{{0,1,1},{1,1,1},{0,1,0}},
{{1,1,1},{1,1,03},{0,1,0}},

. (0,0,1)
(1,0,1

(0,1,1)

1,1)

(0;0,0) (0,1,0)

(1,0,0) (1,1,0)

Polygon Soup Evaluation

e What are the advantages?
e What are the disadvantages?

Polygon Soup Evaluation

e What are the advantages?
— It’s very simple to read, write, transmit, etc.
— A common output format from CAD modelers
— The format required for OpenGL
* BIG disadvantage: No higher order information
— No information about neighbors
— No open/closed information
— No guarantees on degeneracies

Vertex Indirection

vO

va vertices |vO|vi|wv2

v3

v4

faces ol2(1(fol1114l|1

v2

v3

 There are reasons not to store the vertices explicitly at each polygon

— Wastes memory - each vertex repeated many times
— Very messy to find neighboring polygons
— Difficult to ensure that polygons meet correctly
e Solution: Indirection
— Put all the vertices in a list
— Each face stores the indices of its vertices

e Advantages? Disadvantages?

Cube with Indirection

struct Vertex CubeVerts[8] =
{{0,0,0},{1,0,0%},{1,1,0},{0,1,0},
{0,0,1}.{1,0,1}.{1,1,1}.{0,1,1}};
struct Triangle CubeTriangles[12] =
{{6,1,2},{6,5,1},{6,2,3},{6,3,7},
{4,7,3},{4,3,0},{4,0,1},{4,1,5},
{6,4,5},{6,7,4},{1,2,8}.{1,3,03}; ,

Indirection Evaluation

 Advantages:

— Connectivity information is easier to evaluate
because vertex equality is obvious
— Saving in storage:

e Vertex index might be only 2 bytes, and a vertex is
probably 12 bytes

e Each vertex gets used at least 3 and generally 4-6 times,
but is only stored once

— Normals, texture coordinates, colors etc. can all be
stored the same way

 Disadvantages:
— Connectivity information is not explicit

OpenGL and Vertex Indirection

struct Vertex {
float coords[3];

}

struct Triangle {
GLuint verts[3];

+

struct Mesh {
struct Vertex vertices|[m];
struct Triangle triangles|n];

}

glEnableClientState(GL_VERTEX_ ARRAY)
glVertexPointer(3, GL_FLOAT, sizeof(struct Vertex),
mesh.vertices);
glBegin(GL_TRIANGLES)
for (1 =0 ; 1 <n ; 1++)

{
glArrayElement(mesh.triangles|[i].verts[0]);
glArrayElement(mesh.triangles|i].verts[1]);
glArrayElement(mesh.triangles|i].verts[2]);
¥

glEndQ);

OpenGL and Vertex Indirection (v2)

glEnableClientState(GL_VERTEX ARRAY)
glVertexPointer(3, GL_FLOAT, sizeof(struct Vertex),
mesh.vertices);

for (1 =0 ;; 1 < n ; 1++)
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED INT,
mesh.triangles[i1].verts);

Minimizes amount of data sent to the renderer
Fewer function calls

Faster!
Other tricks to accelerate using array, see Red book, Ch 2 on

vertex arrays

	CS559: Computer Graphics
	Today
	Shape model
	Boundary vs. Solid Representations
	Shape Representation
	Parametric Model
	Implicit Models
	Parametric Model
	Procedural Modeling
	Parameterization
	Popular Modeling Techniques
	Polygon Modeling
	Polygons Dominate because
	What’s Bad About Polygons?
	Polygons Aren’t Great
	Polygon Meshes
	Polygonal Data Structures
	Polygon Soup
	Cube Soup
	Polygon Soup Evaluation
	Polygon Soup Evaluation
	Vertex Indirection
	Cube with Indirection
	Indirection Evaluation
	OpenGL and Vertex Indirection
	OpenGL and Vertex Indirection (v2)

