CS559: Computer Graphics

Lecture 33: Shape Modeling
Li Zhang
Spring 2008



Today
e Shape Modeling

e Reading
* Real-Time Rendering, 2e, 12.2.1 (except Rational
Bezier Patches)

e Linux: /p/course/cs559-lizhang/public/readings/rtr-12-
curves-surfaces.pdf

e Windows: P:\course\cs559-lizhang\public\readings\rtr-
12-curves-surfaces.pdf



OpenGL and Vertex Indirection

struct Vertex {
float coords[3];

}

struct Triangle {
GLuint verts[3];
+

struct Mesh {
struct Vertex vertices|[m];
struct Triangle triangles|n];

}

glEnableClientState(GL_VERTEX ARRAY)
glVertexPointer(3, GL_FLOAT, sizeof(struct Vertex), mesh.vertices);

glBegin(GL_TRIANGLES)
for (1 =0 ; 1 <n ; 1++)

{
glArrayElement(mesh._triangles[i1].verts[0]);
glArrayElement(mesh.triangles[i1].verts[1]);
glArrayElement(mnesh.triangles[i1].verts[2]);
}

glEnd();



OpenGL and Vertex Indirection

struct Vertex {
float coords[3];

}

struct Triangle {
GLuint verts|[3];

+
struct Mesh {

struct Vertex vertices|[m];
struct Triangle triangles|n];

}

glEnableClientState(GL_VERTEX ARRAY)
glVertexPointer(3, GL_FLOAT, sizeof(struct Vertex), mesh.vertices);

for (1 =0 ;1 <n; 1++)
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED INT,
mesh.triangles[i].verts);

 Minimizes amount of data sent to the renderer
 Fewer function calls, Faster!
« Other tricks to accelerate using array, see Red book, Ch 2 on

vertex arrays



Normal Vectors in Mesh

* Normal vectors give information about the true
surface shape

e Per-Face normals:

— One normal vector for each face, stored as part of
face (Flat shading)

struct Vertex {
float coords[3];
}

struct Triangle {
GLuint verts|[3];
float normal[3];

struct Mesh { LATNAS
struct Vertex vertices[m];
struct Triangle triangles|n];




Normal Vectors in Mesh

* Normal vectors give information about the true
surface shape

e Per-Vertex normals:

— A normal specified for every vertex (smooth
shading)

struct Vertex {
float coords[3];
float normal[3];
+
struct Triangle {
GLuint verts[3];
+

struct Mesh {
struct Vertex vertices|[m];
struct Triangle triangles|n];




Storing Other Information

e Colors, Texture coordinates and so on can all be
treated like vertices or normals

e Lighting/Shading coefficients may be per-face,
per-object, or per-vertex



Other Data in Mesh

 Normal vectors give information about the true
surface shape

 Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

e Per-Vertex Texture Coord

struct Vertex {
float coords[3];
float normal[3];
float texCoords[2];
¥
struct Triangle {
GLuint verts[3];
¥
struct Mesh {
Vertex vertices[m];
Triangle triangles[n];



Other Data in Mesh

 Normal vectors give information about the true
surface shape

 Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

e Per-Vertex Texture Coord, Shading Coefficients

struct Vertex {
float coords[3];
float normal[3];
float texCoords[2], diffuse[3], shininess;
+
struct Triangle {
GLuint verts[3];
+
struct Mesh {
Vertex vertices[m];
Triangle triangles|[n];



Other Data in Mesh

 Normal vectors give information about the true
surface shape

 Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

e Per-Vertex Texture Coord, Shading Coefficients

struct Vertex {
float coords[3];

}

struct Triangle {
GLuint verts[3];

}

struct Mesh {
Vertex vertices[m];
float normals[3*m];
float texCoords[2*m], diffuse[3*m], shininess[m];
Triangle triangles|[n];



Issues with Polygons

 They are inherently an approximation

— Things like silhouettes can never be perfect
without very large numbers of polygons, and
corresponding expense

— Normal vectors are not specified everywhere
* Interactionis a problem

— Dragging points around is time consuming
— Maintaining things like smoothness is difficult

 Low level representation

— Eg: Hard to increase, or decrease, the resolution

— Hard to extract information like curvature



In Project 3, we use Sweep Objects

Define a polygon by its edges
Sweep it along a path
The path taken by the edges form a surface - the sweep surface

Special cases
— Surface of revolution: Rotate edges about an axis
— Extrusion: Sweep along a straight line

/N







Rendering Sweeps

 Convert to polygons
— Break path into short segments
— Create a copy of the sweep polygon at each segment
— Join the corresponding vertices between the polygons

— May need things like end-caps on surfaces of revolution
and extrusions

e Normals?
— Normals come from sweep polygon and path orientation

e Texture Coord?

— Sweep polygon defines one texture parameter, sweep
path defines the other



General Sweeps

 The path maybe any curve

ELIPSOID
LOFTED
T0O
SINGLE




General Sweeps

 The path maybe any curve

 The polygon that is swept may be transformed as
it is moved along the path

— Scale, rotate with respect to path orientation, ...

Cube Twisted Cube



General Sweeps

 The path maybe any curve

 The polygon that is swept may be transformed as
it is moved along the path

— Scale, rotate with respect to path orientation, ...




General Sweeps

The path maybe any curve

The polygon that is swept may be transformed as it is
moved along the path

— Scale, rotate with respect to path orientation, ...
One common way to specify is:

— Give a poly-line (sequence of line segments) as the path
— Give a poly-line as the shape to sweep

— Give a transformation to apply at the vertex of each
path segment

Texture Coord?
Difficult to avoid self-intersection



Klein Bottle

Torus

Klein Bottle



Mobious Strip

Non-orientable surfaces



Change Topology when Sweeping




Spatial Enumeration

e Basicidea: Describe something by the space it
occupies

— For example, break the volume of interest into lots
of tiny cubes

e Data is associated with each voxel (volume element),
binary or grayscale.

e Works well for things like medical data (MRI or CAT
scans, enumerates the volume)




Spatial Enumeration

e Basicidea: Describe something by the space it
occupies
— For example, break the volume of interest into lots
of tiny cubes

e Data is associated with each voxel (volume element),
binary or grayscale.

e Works well for things like medical data (MRI or CAT
scans, enumerates the volume)

* Problem to overcome:

— For anything other than small volumes or low
resolutions, the number of voxels explodes

— Note that the number of voxels grows with the cube
of linear dimension



Octrees (and Quadtrees)

e Build a tree for adaptive voxel resolution
— Large voxel for smooth regions
— Small voxel for fine structures

e Quadtree is for 2D (four children for each node)
* Octree is for 3D (eight children for each node)



mple

adtree exa

O] 2

1N




Rendering Octrees

* Volume rendering renders octrees and associated data
directly

— A special area of graphics, visualization, not covered in this
class

e (Can convert to polygons:
— Find iso-surfaces within the volume and render those

— Typically do some interpolation (smoothing) to get rid of
the artifacts from the voxelization




Rendering Octrees

e Typically render with colors that indicate
something about the data

One MRI slice Surface rendering with
color coded brain activity



Parametric surface

e Line Segments (1D) -> polygon meshes (2D)
e Cubic curves (1D) -> BiCubic Surfaces (2D)

— Bezier curve -> Bezier surface




Bilinear Bezier Patch

* Define a surface that passes through a, b, c, d?

/ Looks familiar?

(1-u)(l-v)atu(l-v)b+ (1~ u)vc + uvd.

H
o
e



	CS559: Computer Graphics
	Today
	OpenGL and Vertex Indirection
	OpenGL and Vertex Indirection
	Normal Vectors in Mesh
	Normal Vectors in Mesh
	Storing Other Information
	Other Data in Mesh
	Other Data in Mesh
	Other Data in Mesh
	Issues with Polygons
	In Project 3, we use Sweep Objects
	Slide Number 13
	Rendering Sweeps
	General Sweeps
	General Sweeps
	General Sweeps
	General Sweeps
	Klein Bottle
	Mobious Strip
	Change Topology when Sweeping
	Spatial Enumeration
	Spatial Enumeration
	Octrees (and Quadtrees)
	Quadtree example
	Rendering Octrees
	Rendering Octrees
	Parametric surface
	Bilinear Bezier Patch

