CS559: Computer Graphics

Lecture 35: Shape Modeling
Li Zhang
Spring 2008

Today

Shape Modeling

- Reading
 - Real-Time Rendering, 3e, 13.2.1 (except Rational Bezier Patches)
 - Linux: /p/course/cs559-lizhang/public/readings/ 13_surfs_gleicher.pdf
 - Windows: P:\course\cs559-lizhang\public\readings\13_surfs_gleicher.pdf

Parametric surface

- Line Segments (1D) -> polygon meshes (2D)
- Cubic curves (1D) -> BiCubic Surfaces (2D)
 - Bezier curve -> Bezier surface

Bilinear Bezier Patch

Define a surface that passes through a, b, c, d?

$$e = (1 - u)a + ub,$$

 $f = (1 - u)c + ud.$

Looks familiar?

$$p(u, v) = (1 - v)e + vf$$

= $(1 - u)(1 - v)a + u(1 - v)b + (1 - u)vc + uvd$.

Biquadratic Bezier Patch

Define a surface that passes a 3x3 control lattice.

$$p(u,v) = (1-v)^2 p(u,0) + 2(1-v)v p(u,1) + v^2 p(u,2)$$

Bicubic Bezier Patch

4x4 control points?

Demo:

http://www.nbb.cornell.edu/neurobio/land/OldS tudentProjects/cs490-96to97/anson/BezierPatchApplet/index.html

 Connecting Bezier Patches, demo on the same page.

De Casteljau algorithm in 2D

 $\mathbf{P}_{00}^{'}$ $\mathbf{P}_{01}^{'}$ $\mathbf{P}_{10}^{'}$

 $p_{00}^{1}(u,v) = Bilinear(p_{00}, p_{10}, p_{01}, p_{11}; u, v)$

 $p_{10}^1(u,v) = Bilinear(p_{10}, p_{20}, p_{11}, p_{21}; u, v)$

 $p_{01}^{1}(u,v) = Bilinear(p_{01}, p_{11}, p_{02}, p_{12}; u, v)$

 $p_{11}^1(u,v) = Bilinear(p_{11}, p_{21}, p_{12}, p_{22}; u, v)$

 $p_{00}^{1}(u,v) = Bilinear(p_{00}, p_{10}, p_{01}, p_{11}; u, v)$

Different degree in different directions

General Formula for Bezier Patch

If we have controll points p_{i,i} on a m by n lattice,

$$p(u, v) = \sum_{i=0}^{m} B_{i}^{m}(u) \sum_{j=0}^{n} B_{j}^{n}(v) p_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(u) B_{j}^{n}(v) p_{i,j}$$
$$= \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} {n \choose j} u^{i} (1-u)^{m-i} v^{j} (1-v)^{n-j} p_{i,j}$$

- Properties
 - Invariant to affine transform
 - Convex combination,
 - Used for intersection

$$\sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(u) B_{j}^{n}(v) = 1$$

General Formula for Bezier Patch

If we have controll points p_{i,i} on a m by n lattice,

$$p(u, v) = \sum_{i=0}^{m} B_{i}^{m}(u) \sum_{j=0}^{n} B_{j}^{n}(v) p_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(u) B_{j}^{n}(v) p_{i,j}$$
$$= \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} {n \choose j} u^{i} (1-u)^{m-i} v^{j} (1-v)^{n-j} p_{i,j}$$

Surface Normal

$$\mathbf{n}(u,v) = \frac{\partial \mathbf{p}(u,v)}{\partial u} \times \frac{\partial \mathbf{p}(u,v)}{\partial v}.$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = m \sum_{j=0}^{n} \sum_{i=0}^{m-1} B_i^{m-1}(u) B_j^n(v) [\mathbf{p}_{i+1,j} - \mathbf{p}_{i,j}]$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = n \sum_{i=0}^{m} \sum_{j=0}^{n-1} B_i^m(u) B_j^{n-1}(v) [\mathbf{p}_{i,j+1} - \mathbf{p}_{i,j}]$$

Issues with Bezier Patches

- With Bézier or B-spline patches, modeling complex surfaces amounts to trying to cover them with pieces of rectangular cloth.
- It's not easy, and often not possible if you don't make some of the patch edges degenerate (yielding triangular patches).

- Trying to animate that object can make continuity very difficult, and if you're not very careful, your model will show creases and artifacts near patch seams.
- Subdivision Surface is a promising solution.

Subdivision Surface

From a coarse control mesh to smooth mesh with infinite resolution

Example: Toy story 2

Subdivision Curve

We have seen this idea before

Shirley, Figure 15.15, The limiting curve is a quadratic Bezier Curve

RTR 3e, Figure 13.29, The limiting curve is a quadratic B-spline

Both are correct – why they say different things?