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Today

e Computer Animation, Particle Systems

e Reading
e (Optional) Shirley, ch 16, overview of animation

e Witkin, Particle System Dynamics, SIGGRAPH '01
course notes on Physically Based Modeling.

e Witkin and Baraff, Differential Equation Basics,
SIGGRAPH 01 course notes on Physically Based
Modeling.



Animation

e Traditional Animation — without using a computer




Animation

e Computer Animation




Types of Animation

e Cartoon Animation

1928— Oswald shows de-
termination by lifting his
chest with one hand in front
and one in back. While the
gesture is casily recogniz-
able, it is little mare than a
diagram of the action.

ANIMATOR: Norm Ferguson
——Shanghaicd

1934— Peg Leg Pete does
the same gesture, only now
there is maore belly than
chestinvolved. This broad-
er aclion gave the impres-
ston of a round solid char-
acier with a combination of
life and spirit—and fat.

ANIMATOR: Jack Camphell
—The Riveter.

1940— The gesture has
been done so often by this
time that it is almost a gag
in itsclf. An action this
broad loses realism, but
gains a type of comedy.




Types of Animation

 Cartoon Animation
 Key Frame Animation
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Types of Animation

 Cartoon Animation
 Key Frame Animation
e Physics based animation

Nquyen, D., Fedkiw, R. and
Jensen, H., "Physically Based
Modeling and Animation of Fire",
SIGGRAPH 2002

Fedkive_flammable, avi



http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf

Types of Animation

 Cartoon Animation
e Key Frame Animation
e Physics based animation

Enright, D., Marschner, S. and Fedkiw, R.,
"Animation and Rendering of Complex
Water Surfaces", SIGGRAPH 2002

Fedkive_glass. avi



http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf

Types of Animation
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Key Frame Animation
Physics based animation

Data driven animation
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Types of Animation

Cartoon Animation

Key Frame Animation
Physics based animation
Data driven animation
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Types of Animation

Cartoon Animation
Key Frame Animation
Physics based animation

Data driven animation




Particle Systems

e What are particle systems?

— A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity, heat
convection, spring behaviors, ...).

e Particle systems can be used to simulate all sorts
of physical phenomena:



Balls in Sports




Fireworks







Fire and Explosion

http://en.wikipedia.org/wiki/Particle_system



Galaxy

http://en.wikipedia.org/wiki/Particle_system



Particle in a flow field

 We begin with a single particle with:

— Position, X = {X}

— Velocity, vExzd_X{dX"“} X

e Suppose the velocity is actually dictated by some
driving function g:

X = g(x,t)



Vector fields

e At any moment in time, the function g defines a
vector field over x:

— Wind
— River

* How does our particle move through the vector
field?



Diff eqs and integral curves

e The equation |
X = g(x,t)
e is actually a first order differential equation.

 We can solve for x through time by starting at an
initial point and stepping along the vector field:

Start Here

e This is called an initial value problem and the
solution is called an integral curve.

— Why do we need initial value?



Euler’s method

One simple approach is to choose a time step, At, and take linear
steps along the flow:

X(t+ At)= x(t)+ At -x(t)
~ X(t)+ At -g(x,t)
Writing as a time iteration:
X'""t=x"4+ At -v'

This approach is called Euler’s method and looks like:

Properties:
— Simplest numerical method
— Bigger steps, bigger errors. Error ~ O(At?).

Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”



Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:
—|V|aSS,m a X.:\./:dV:dZX
— Acceleration,

dt dt?

f=ma=m X

The particle obeys Newton’s law:  x = 1&XX.0)

The force field f can in general depend on the
position and velocity of the particle as well as
time.

Thus, with some rearrangement, we end up with:



Second order equations

This equation:

f(x,v,t)
m

X =

Is a second order differential equation.

Our solution method, though, worked on first order differential
equations.

X =V
We can rewrite this as: {v _ f(X,V,t)]
m

where we have added a new variable v to get a pair
of coupled first order equations.



|

Phase space

 Concatenate x and v to make a
6-vector: position in phase
space.

e Taking the time derivative:
another 6-vector.

e Avanilla 1st-order differential
equation.



Differential equation solver

Starting with:
X B %
Mty

Applying Euler’s method:

X(t+ At)= x(t)+ At -x(t)
X(t+ At)= X(t)+ At X (t)

And making substitutions:

X(t+ At)= x(t)+ At -v(t)
f(x,x,t)
m

v(it+ At)= xX(t)+ At .

Writing this as an iteration, we have:

Again, performs poorly for large At.



Particle structure

How do we represent a particle?

—

position

B S D 7 I Yo Y

f force accumulator
M | «<— mass

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;




Single particle solver interface

T getDim — [6 ]
Y
X
f —= getState . { }
m — setState v
Y
derivEval g { }
f/ m
typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;




Particle systems

In general, we have a particle system consisting of n particles to

be managed over time:

parices [0 Jlume

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

typedef struct{

Particle *p; /* array of pointers to particles */
int n; /* number of particles */

float t; /* simulation clock */

} *ParticleSystem




Particle system solver interface

For n particles, the solver interface now looks like:

getDim
6 n
Xl Vl X2 V2 Xn
f f
Vo, L Vo, 2 Vo
ml m2

int ParticleDims(ParticleSystem p){
return(6 * p->n);

I




Particle system solver interface

For n particles, the solver interface now looks like:

get/setState getDim
6 n
1 \4 1 X 2 \ 2 X n vV n
\ 1 fl \ 2 f2 \ n
m 1 m 2

int ParticleGetState(ParticleSystem p, float *dst){

for(int i=0; i < p->n; i++){

*(dst++) = p->p[i]->x[0]; *(dst++) = p->p[i]->x[1]; *(dst++) = p->p[i]->x[2];
*(dst++) = p->p[i]->Vv[0]; *(dst++) = p->p[i]->Vv[1]; *(dst++) = p->p[i]->Vv[2];
}
}




Particle system solver interface

For n particles, the solver interface now looks like:

get/setState getDim

derivEval 6 n




Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+ 1 ] i i
1 1 V1
i+ 1 i i
1 1 fl / m1
: = + At :
i+ 1 i i
n n Vn
i+ 1 i [
L n | L n _j _fn / m n _j

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */




Forces

e Each particle can experience a force which sends
It on its merry way.

* Where do these forces come from? Some
examples:

— Constant (gravity)
— Position/time dependent (force fields)

— Velocity-dependent (drag)
— N-ary (springs)

e How do we compute the net force on a particle?



Particle systems with forces

* Force objects are black boxes that point to the particles they
influence and add in their contributions.

 We can now visualize the particle system with force objects:




Gravity and viscous drag

The force due to gravity is simply:

f =m G

grav

Often, we want to slow things down with viscous drag:

f = —k

drag vV

drag



Damped spring
A spring is a simple examples of an “N-ary” force.

Recall the equation for the force due to a spring:
f = _kspring(x - r)

We can augment this with damping:
f = —[k (X = 1)+ KgamoV]

spring

r = rest len M 0. = { X 1}

pz_{v}

Note: stiff spring systems can be very unstable under Euler
Integration. Simple solutions include heavy damping (may not look
good), tiny time steps (slow), or better integration (Runge-Kutta is

straightforward).



derivEval

1. Clear forces

 Loop over particles, zero force accumulators

2. Calculate forces
e Sum all forces into accumulators

3. Return derivatives

* Loop over particles, return v and f/m

i X 1 11 2 | i n ]
v 1 2 n
f.=0][f,=0 f. =0 ||
L m 1 JL m 2 _ L m n .
Apply forces
to particles
v 1 v 2 v n
MRS
m 1 m 2 m n

Clear force

accumulators

Fo | F IF3
X, [ x, ]
Vl V2
f1 f2
m, || m

2

Return derivatives

to solver

nf




Particle system solver interface

int ParticleDerivative(ParticleSystem p, float *dst){

Clear_Forces(p); /* zero the force accumulators */
Compute_Forces(p); /* magic force function */
for(int i=0; i < p->n; i++){

*(dst++) = p->p[i]->v[0]; /* xdot =v */

*(dst++) = p->p[i]->v[1];

*(dst++) = p->p[i]->Vv[2];

*(dst++) = p->p[i]->f[0]/m; /* vdot = f/m */

*(dst++) = p->p[i]->f[1]/m;

*(dst++) = p->pl[i]->f[2]/m;




Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+ 1 ] i i
1 1 V1
i+ 1 i i
1 1 fl / m1
: = + At :
i+ 1 i i
n n Vn
i+ 1 i i
L n | L n _j _fn / m n _j

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */
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