CS559: Computer Graphics

Lecture 38: Animation
Li Zhang
Spring 2008

Slides from Brian Curless at U of Washington

Today

e Computer Animation, Particle Systems

e Reading
e (Optional) Shirley, ch 16, overview of animation

e Witkin, Particle System Dynamics, SIGGRAPH '01
course notes on Physically Based Modeling.

e Witkin and Baraff, Differential Equation Basics,
SIGGRAPH 01 course notes on Physically Based
Modeling.

Animation

e Traditional Animation — without using a computer

Animation

e Computer Animation

Types of Animation

e Cartoon Animation

1928— Oswald shows de-
termination by lifting his
chest with one hand in front
and one in back. While the
gesture is casily recogniz-
able, it is little mare than a
diagram of the action.

ANIMATOR: Norm Ferguson
——Shanghaicd

1934— Peg Leg Pete does
the same gesture, only now
there is maore belly than
chestinvolved. This broad-
er aclion gave the impres-
ston of a round solid char-
acier with a combination of
life and spirit—and fat.

ANIMATOR: Jack Camphell
—The Riveter.

1940— The gesture has
been done so often by this
time that it is almost a gag
in itsclf. An action this
broad loses realism, but
gains a type of comedy.

Types of Animation

 Cartoon Animation
 Key Frame Animation

1=0s =045 1=(). 85 1=1.25

Types of Animation

 Cartoon Animation
 Key Frame Animation
e Physics based animation

Nquyen, D., Fedkiw, R. and
Jensen, H., "Physically Based
Modeling and Animation of Fire",
SIGGRAPH 2002

Fedkive_flammable, avi

http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf

Types of Animation

 Cartoon Animation
e Key Frame Animation
e Physics based animation

Enright, D., Marschner, S. and Fedkiw, R.,
"Animation and Rendering of Complex
Water Surfaces", SIGGRAPH 2002

Fedkive_glass. avi

http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf

Types of Animation

Cartoon Animation
Key Frame Animation
Physics based animation

Data driven animation

Types of Animation

Cartoon Animation

Key Frame Animation
Physics based animation
Data driven animation

Types of Animation

Cartoon Animation

Key Frame Animation
Physics based animation
Data driven animation

gi1:00:45.29

- - -
S
o 4 B .

ND @8:36:18:11 Sl.
SC2EAR_-BA6 . TKAG

Types of Animation

Cartoon Animation
Key Frame Animation
Physics based animation

Data driven animation

Particle Systems

e What are particle systems?

— A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity, heat
convection, spring behaviors, ...).

e Particle systems can be used to simulate all sorts
of physical phenomena:

Balls in Sports

Fireworks

Fire and Explosion

http://en.wikipedia.org/wiki/Particle_system

Galaxy

http://en.wikipedia.org/wiki/Particle_system

Particle in a flow field

 We begin with a single particle with:

— Position, X = {X}

— Velocity, vExzd_X{dX"“} X

e Suppose the velocity is actually dictated by some
driving function g:

X = g(x,t)

Vector fields

e At any moment in time, the function g defines a
vector field over x:

— Wind
— River

* How does our particle move through the vector
field?

Diff eqs and integral curves

e The equation |
X = g(x,t)
e is actually a first order differential equation.

 We can solve for x through time by starting at an
initial point and stepping along the vector field:

Start Here

e This is called an initial value problem and the
solution is called an integral curve.

— Why do we need initial value?

Euler’s method

One simple approach is to choose a time step, At, and take linear
steps along the flow:

X(t+ At)= x(t)+ At -x(t)
~ X(t)+ At -g(x,t)
Writing as a time iteration:
X'""t=x"4+ At -v'

This approach is called Euler’s method and looks like:

Properties:
— Simplest numerical method
— Bigger steps, bigger errors. Error ~ O(At?).

Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”

Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:
—|V|aSS,m a X.:\./:dV:dZX
— Acceleration,

dt dt?

f=ma=m X

The particle obeys Newton’s law: x = 1&XX.0)

The force field f can in general depend on the
position and velocity of the particle as well as
time.

Thus, with some rearrangement, we end up with:

Second order equations

This equation:

f(x,v,t)
m

X =

Is a second order differential equation.

Our solution method, though, worked on first order differential
equations.

X =V
We can rewrite this as: {v _ f(X,V,t)]
m

where we have added a new variable v to get a pair
of coupled first order equations.

|

Phase space

 Concatenate x and v to make a
6-vector: position in phase
space.

e Taking the time derivative:
another 6-vector.

e Avanilla 1st-order differential
equation.

Differential equation solver

Starting with:
X B %
Mty

Applying Euler’s method:

X(t+ At)= x(t)+ At -x(t)
X(t+ At)= X(t)+ At X (t)

And making substitutions:

X(t+ At)= x(t)+ At -v(t)
f(x,x,t)
m

v(it+ At)= xX(t)+ At .

Writing this as an iteration, we have:

Again, performs poorly for large At.

Particle structure

How do we represent a particle?

—

position

B S D 7 I Yo Y

f force accumulator
M | «<— mass

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

Single particle solver interface

T getDim — [6]
Y
X
f —= getState . { }
m — setState v
Y
derivEval g { }
f/ m
typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

Particle systems

In general, we have a particle system consisting of n particles to

be managed over time:

parices [0 Jlume

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

typedef struct{

Particle *p; /* array of pointers to particles */
int n; /* number of particles */

float t; /* simulation clock */

} *ParticleSystem

Particle system solver interface

For n particles, the solver interface now looks like:

getDim
6 n
Xl Vl X2 V2 Xn
f f
Vo, L Vo, 2 Vo
ml m2

int ParticleDims(ParticleSystem p){
return(6 * p->n);

I

Particle system solver interface

For n particles, the solver interface now looks like:

get/setState getDim
6 n
1 \4 1 X 2 \ 2 X n vV n
\ 1 fl \ 2 f2 \ n
m 1 m 2

int ParticleGetState(ParticleSystem p, float *dst){

for(int i=0; i < p->n; i++){

*(dst++) = p->p[i]->x[0]; *(dst++) = p->p[i]->x[1]; *(dst++) = p->p[i]->x[2];
*(dst++) = p->p[i]->Vv[0]; *(dst++) = p->p[i]->Vv[1]; *(dst++) = p->p[i]->Vv[2];
}
}

Particle system solver interface

For n particles, the solver interface now looks like:

get/setState getDim

derivEval 6 n

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+ 1] i i
1 1 V1
i+ 1 i i
1 1 fl / m1
: = + At :
i+ 1 i i
n n Vn
i+ 1 i [
L n | L n _j _fn / m n _j

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */

Forces

e Each particle can experience a force which sends
It on its merry way.

* Where do these forces come from? Some
examples:

— Constant (gravity)
— Position/time dependent (force fields)

— Velocity-dependent (drag)
— N-ary (springs)

e How do we compute the net force on a particle?

Particle systems with forces

* Force objects are black boxes that point to the particles they
influence and add in their contributions.

 We can now visualize the particle system with force objects:

Gravity and viscous drag

The force due to gravity is simply:

f =m G

grav

Often, we want to slow things down with viscous drag:

f = —k

drag vV

drag

Damped spring
A spring is a simple examples of an “N-ary” force.

Recall the equation for the force due to a spring:
f = _kspring(x - r)

We can augment this with damping:
f = —[k (X = 1)+ KgamoV]

spring

r = rest len M 0. = { X 1}

pz_{v}

Note: stiff spring systems can be very unstable under Euler
Integration. Simple solutions include heavy damping (may not look
good), tiny time steps (slow), or better integration (Runge-Kutta is

straightforward).

derivEval

1. Clear forces

 Loop over particles, zero force accumulators

2. Calculate forces
e Sum all forces into accumulators

3. Return derivatives

* Loop over particles, return v and f/m

i X 1 11 2 | i n]
v 1 2 n
f.=0][f,=0 f. =0 ||
L m 1 JL m 2 _ L m n .
Apply forces
to particles
v 1 v 2 v n
MRS
m 1 m 2 m n

Clear force

accumulators

Fo | F IF3
X, [x,]
Vl V2
f1 f2
m, || m

2

Return derivatives

to solver

nf

Particle system solver interface

int ParticleDerivative(ParticleSystem p, float *dst){

Clear_Forces(p); /* zero the force accumulators */
Compute_Forces(p); /* magic force function */
for(int i=0; i < p->n; i++){

(dst++) = p->p[i]->v[0]; / xdot =v */

*(dst++) = p->p[i]->v[1];

*(dst++) = p->p[i]->Vv[2];

(dst++) = p->p[i]->f[0]/m; / vdot = f/m */

*(dst++) = p->p[i]->f[1]/m;

*(dst++) = p->pl[i]->f[2]/m;

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+ 1] i i
1 1 V1
i+ 1 i i
1 1 fl / m1
: = + At :
i+ 1 i i
n n Vn
i+ 1 i i
L n | L n _j _fn / m n _j

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */

	CS559: Computer Graphics
	Today
	Animation
	Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Particle Systems
	Balls in Sports
	Fireworks
	Water
	Fire and Explosion
	Galaxy
	Particle in a flow field
	Vector fields
	Diff eqs and integral curves
	Euler’s method
	Particle in a force field
	Second order equations
	Phase space
	Differential equation solver
	Particle structure
	Single particle solver interface
	Particle systems
	Particle system solver interface
	Particle system solver interface
	Particle system solver interface
	Particle system diff. eq. solver
	Forces
	Particle systems with forces
	Gravity and viscous drag
	Damped spring
	derivEval
	Particle system solver interface
	Particle system diff. eq. solver

