CS559: Computer Graphics

Li Zhang
Spring 2008

Many Slides are from Ravi Ramamoorthi at Columbia U, and Ronen Barzel at UCSD

Today

ray tracing, image based rendering

- Reading
 - Shirley Ch 10 on ray tracing, except for ch 10.10
 - Shirley Ch 25 on image based rendering
 - (Optional) Levoy and Hanrahan, Light Field Rendering, SIGGRAPH 1996, http://portal.acm.org/citation.cfm?id=237199

Shadow ray to light is bloodlockledbjetojteict straiblew 10.5 in textbook

Mirror Reflections/Refractions

Virtual Screen
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Objects

10.6 in textbool

Recursive Ray Tracing (Core Idea)

For each pixel

- Trace Primary Eye Ray, find intersection
- Trace Secondary Shadow Ray(s) to all light(s)
 - Color = Visible1 ? Illumination Model(light1) : 0 ;
 - Color += Visible2 ? Illumination Model(light2) : 0 ;
 - ...
- Trace Reflected Ray
 - Color += reflectivity * Color of reflected ray
- Trace Refracted Ray
 - Color += transparency * Color of refracted ray

Also see section 10.4 in text

Recursive function Calls

Problems with Recursion

Reflection rays may be traced forever

Generally, set maximum recursion depth

Turner Whitted 1980

Effects needed for Realism

- (Soft) Shadows
- Reflections (Mirrors and Glossy)
- Transparency (Water, Glass)
- Interreflections (Color Bleeding)
- Complex Illumination (Natural, Area Light)
- Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture

Not discussed so far but possible with distribution ray tracing

(10.11)

Hard (but not impossible) with ray tracing; radiosity methods

How to implement Ray tracing?

- Ray parameterization
- Ray-Surface Intersection

Ray/Object Intersections

- Heart of Ray Tracer
 - One of the main initial research areas
 - Optimized routines for wide variety of primitives
- Various types of info
 - Shadow rays: Intersection/No Intersection
 - Primary rays: Point of intersection, material, normals, Texture coordinates

Example

- Sphere
 - How to decide there is an intersection?
- Triangle
 - How to decide the intersection is inside?
- Polygon
 - How to decide the intersection is inside?

• How about an ellipsoid?

Ray-Tracing Transformed Objects

We have an optimized ray-sphere test

But we want to ray trace an ellipsoid...

Solution: Ellipsoid transforms sphere

Apply inverse transform to ray, use ray-sphere

Section 10.8 of text

Acceleration

Testing each object for each ray is slow

- Faster Intersections
 - Optimized Ray-Object Intersections
 - Fewer Intersections

Acceleration Structures

Bounding boxes (possibly hierarchical)

If no intersection bounding box, needn't check objects

Different Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Octree

K-d tree

Acceleration Structures: Grids

Anti-aliasing

- Aliasing when drawing a diagonal on a square grid:
 - stairstepping
 - AKA jaggies
- Especially noticeable:
 - high-contrast edges
 - near horizontal or near vertical
 - As line rotates (in 2D)
 - steps change length
 - corners of steps slide along the edge
 - known as crawlies

Supersampling

- A more popular method (although less elegant) is *supersampling:*Point sample the pixel at several locations

 - Combine the results into the final pixel color
- By sampling more times per pixel:
 - Raises the sampling rate
 - Raises the frequencies we can capture
- Commonly use 16 or more samples per pixel
 - Requires potentially 16 times as much work to generate image
 - 16 times Memory?
- A brute-force approach
 - But straightforward to implement
 - Very powerful

0	•	0	0
0	0	0	0
0	0	0	0
0	0	•	0

Moiré Artifact

Random Sampling

- Supersample at several randomly located points
- Breaks up repeating signals
 - Eliminates Moiré patterns
 - Instead of aliasing, frequencies greater than 1 pixel appear as *noise* in the image
- Noise tends to be less objectionable to the viewer than jaggies or Moiré patterns
 - The human eye is pretty good at filtering out noise
- But suffers from potential clustering and gaps
 - Result is not necessarily accurate
 - Too much noise.

Jittered Sampling

- AKA stratified sampling,
- Divide pixel into a grid of subpixels
 - Sample each subpixel at a random location
- Combines the advantages of both uniform and random sampling
 - filters high frequencies
 - frequencies greater than subpixel sampling rate turned into noise
- Commonly used

