What’s not in the final

• OpenGL and FLTK syntax
• Image based Lighting
• 3D photography
Eyes and Cameras

- Why can we see color?
 - Light spectrum
 - Photoreceptors
- Camera obscura
 - Pinhole, lens
 - Different ways of capturing color
- Optical effect
 - Motion blur
 - Depth of Field
Images

• Representation
 – Sampled, vector, functional

• Minimum Sample requirement
 – Sampling theorem

• Re-sampling
 – Up-sampling, down-sampling
 – Anti-aliasing

• Compositing
 – Alpha channel
Image Filtering

• Convolution
 – Continuous and discrete

• Linear filter
 – Blur, shift, sharpen, edge detection...

• Painter algorithm
 – Iteratively apply strokes
Image warping

• 2D transformation
 – Scale, Rotate, affine, translate, ...
 – Inverse transformation

• Properties of 2D transformations
 – Line to line, parallel to parallel, ...

• Homogeneous transformation

• Forward warping
 – Splatting

• Inverse warping
 – Reconstruction
Image morphing

- What do we need?
 - Avoid ghosting
- How to do it?
 - Warping + blending
Dynamic Range and Color space

• What is dynamic range?
• Why do we care?
• Human perception of brightness.
• What is gamma?
• What is Trichromacy?
• Color space
 – RGB, HSV, LAB
3D transform

• Homogenous Coordinate
 – Point vs direction
 – Transforming normals

• 3D rotation
 – property
 – Different representation
 – Geometric interpretation

• Concatenation of transforms
 – Hierarchical modeling
Projection

- Graphics pipeline
- Orthographic vs perspective projection
 - Matrix representation
 - Vanishing point
- View frustum
 - Clipping plane, Field of view
 - Convert to projection matrix
- Canonical view volume
 - From perspective view volume
Scan conversion and visibility

- Draw lines and triangles
 - Tricks to make it fast
 - Anti-aliasing
- BSP
 - How to construct and how to use
- Z buffer vs A buffer
 - Pros and cons
Shading

• Phong shading model
 – Emission, diffuse, specular

• Types of light sources
 – Point, spot, directional

• Shading interpolation
 – Flat, Gouraud, and Phong
Curves

• Implicit vs Parametric Curves
• Polynomial Curves
 – How to evaluate polynomial
 – How to compute the curve
 – Problem
• Piecewise cubic polynomial
 – Continuity: C0,C1,C2
 – Local control
 – interpolation
Curves

• Natural, Hermite, Catmull-Rom, Cardinal, Bezier,
 – Commonality and differences
• Bezier curves
 – Subdivision
 – De Casteljau
 – Generalization
 – ...

Texture

- Calculate texture coord
 - Perspective correct interpolation

- Texture resampling
 - Antialiasing: Mipmap, Ripmap, SAT
 - How do they work,
 - What can they do, limitation

- Other usages:
 - Bump Map, Displacement Map, 3D Texture, Environment Map, Shadow map
 - Projector texture (no requirement)
Shape

• Boundary vs Solid modeling
• Parametric, Implicit, Procedural
 – Pros and cons
• Polygon meshes
 – Why popular
 – Pros and cons
 – Data structure
Shape

• Sweep objects
• Spatial enumeration
 – Oct tree
• Bezier Patch
 – Bilinear, biquadric, bicubic
 – De Casteljau
Subdivision Curves and Surfaces

- Approximating vs Interpolating
- Regular vs Irregular vertices
- Continuity
- Loop, sqrt(3), Catmull-Clark
 - Commonality and difference
 - Piecewise smoothness (no requirement)
- Fractal Modeling
 - Terrains, trees, ...
Animation

• Particle Systems
 – Euler method
 – Collision Detection and Response

• Principles of Cartoon
Raytracing

• Recursive procedure
 – Shadow, Transparency, Reflection, Refraction
 – Why inter-reflection is hard?
 – Anti-aliasing: jittered sampling, why
 – Soft shadow, glossy surface,
 – Depth of field, Motion blur

• Ray object intersection
 – Simple objects: triangle, polygons, ...

• Spatial data structure for Acceleration
 – BSP, octtree, grid
Image based Rendering

• Why do we want it?
• How does it work?
• Pros and cons