CS559: Computer Graphics

Final Review
Li Zhang
Spring 2008

What's not in the final

- OpenGL and FLTK syntax
- Image based Lighting
- 3D photography

Eyes and Cameras

- Why can we see color?
 - Light spectrum
 - Photoreceptors
- Camera obscura
 - Pinhole, lens
 - Different ways of capturing color
- Optical effect
 - Motion blur
 - Depth of Field

Images

- Representation
 - Sampled, vector, functional
- Minimum Sample requirement
 - Sampling theorem
- Re-sampling
 - Up-sampling, down-sampling
 - Anti-aliasing
- Compositing
 - Alpha channel

Image Filtering

- Convolution
 - Continuous and discrete
- Linear filter
 - Blur, shift, sharpen, edge detection...
- Painter algorithm
 - Iteratively apply strokes

Image warping

- 2D transformation
 - Scale, Rotate, affine, translate, ...
 - Inverse transformation
- Properties of 2D transformations
 - Line to line, parallel to parallel, ...
- Homogeneous transformation
- Forward warping
 - Splatting
- Inverse warping
 - Reconstruction

Image morphing

- What do we need?
 - Avoid ghosting
- How to do it?
 - Warping + blending

Dynamic Range and Color space

- What is dynamic range?
- Why do we care?
- Human perception of brightness.
- What is gamma?
- What is Trichromacy?
- Color space
 - RGB, HSV, LAB

3D transform

- Homogenous Coordinate
 - Point vs direction
 - Transforming normals
- 3D rotation
 - property
 - Different representation
 - Geometric interpretation
- Concatenation of transforms
 - Hierarchical modeling

Projection

- Graphics pipeline
- Orthographic vs perspective projection
 - Matrix representation
 - Vanishing point
- View frustum
 - Clipping plane, Field of view
 - Convert to projection matrix
- Canonical view volume
 - From perspective view volume

Scan conversion and visibility

- Draw lines and triangles
 - Tricks to make it fast
 - Anti-aliasing
- BSP
 - How to construct and how to use
- Z buffer vs A buffer
 - Pros and cons

Shading

- Phong shading model
 - Emission, diffuse, specular
- Types of light sources
 - Point, spot, directional
- Shading interpolation
 - Flat, Gouraud, and Phong

Curves

- Implicit vs Parametric Curves
- Polynomial Curves
 - How to evaluate polynomial
 - How to compute the curve
 - Problem
- Piecewise cubic polynomial
 - Continuity: C0,C1,C2
 - Local control
 - interpolation

Curves

- Natural, Hermite, Catmull-Rom, Cardinal, Bezier,
 - Commonality and differences
- Bezier curves
 - Subdivision
 - De Casteljau
 - Generalization
 - **—** ...

Texture

- Calculate texture coord
 - Perspective correct interpolation
- Texture resampling
 - Antialiasing: Mipmap, Ripmap, SAT
 - How do they work,
 - What can they do, limitation
- Other usages:
 - Bump Map, Displacement Map, 3D Texture,
 Environment Map, Shadow map
 - Projector texture (no requirement)

Shape

- Boundary vs Solid modeling
- Parametric, Implicit, Procedural
 - Pros and cons
- Polygon meshes
 - Why popular
 - Pros and cons
 - Data structure

Shape

- Sweep objects
- Spatial enumeration
 - Oct tree
- Bezier Patch
 - Bilinear, biquadric, bicubic
 - De Casteljau

Subdivision Curves and Surfaces

- Approximating vs Interpolating
- Regular vs Irregular vertices
- Continuity
- Loop, sqrt(3), Catmull-Clark
 - Commanality and difference
 - Piecewise smoothness (no requirement)
- Fractal Modeling
 - Terrains, trees, ...

Animation

- Particle Systems
 - Euler method
 - Collision Detection and Response
- Principles of Cartoon

Raytracing

- Recursive procedure
 - Shadow, Transparency, Reflection, Refraction
 - Why inter-reflection is hard?
 - Anti-aliasing: jittered sampling, why
 - Soft shadow, glossy surface,
 - Depth of field, Motion blur
- Ray object intersection
 - Simple objects: triangle, polygons, ...
- Spatial data structure for Acceleration
 - BSP, octtree, grid

Image based Rendering

- Why do we want it?
- How does it work?
- Pros and cons