CS559: Computer Graphics

Lecture 1 Introduction
Li Zhang
University of Wisconsin, Madison
Today

• Introduction to Computer Graphics
• Course Overview
What is Computer Graphics

• Using computers to generate and display images

• Core areas
 – Modeling
 • lighting, shape, reflectance …
 – Rendering
 • math models -> images

The Digital Michelangelo Project
Stanford University
What is Computer Graphics

• Using computers to generate and display images

• Core areas
 – Modeling
 • lighting, shape, reflectance ...
 – Rendering
 • math models -> images
 – Animation
 • how things change

Park and Hodgins, SIGGRAPH 2006
What is Computer Graphics

• Using computers to generate and display images
• Related areas
 – Image processing

Image Analogies, Hertzmann et al, SIGGRAPH 2001
What is Computer Graphics

• Using computers to generate and display images
• Related areas
 – Image processing

Motion Deblurring, Shan et al, SIGGRAPH 2008
What is Computer Graphics

• Using computers to generate and display images
• Related areas
 – Image processing

Image Analogies, Hertzmann et al, SIGGRAPH 2001
What is Computer Graphics

• Using computers to generate and display images

• Related areas
 – Image processing
 – 3D photography
What is Computer Graphics

• Using computers to generate and display images
• Related areas
 – Image processing
 – 3D photography

Motion Capture
What is Computer Graphics

• Using computers to generate and display images
• Related areas
 – Image processing
 – 3D photography
 – Visualization

PV-Wave, Visual Numerics
What is Computer Graphics

• Using computers to generate and display images

• Related areas
 – Image processing
 – 3D photography
 – Visualization
 – Virtual reality

[Image: U.S. Navy personnel using a VR parachute trainer
http://en.wikipedia.org/wiki/Virtual_reality]
What is Computer Graphics

• Using computers to generate and display images
• Related areas
 – Image processing
 – 3D photography
 – Visualization
 – Virtual reality
 – User interaction

Freeform from Sensible Technologies
J. Hodgins, Computer Graphics, Fall 2007
Why do we care?

- Applications are cool
 - Create Fantasy World

Graphique3d.republika.pl
Why do we care?

- Applications are cool
 - Create Fantasy World
 - Making Movies

Avatar
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies

Pirates of the Caribbean
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies

Finding Nemo
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies

Star War, Episode I, Lucas Film
Why do we care?

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies
 – Industry Design
 – Architecture

Jingyi Yu, Graphics, U Delaware
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies
 – Industry Design
 – Architecture
 – Games

America’s army, released by US Government

US Game Sales:
• $4.82 billion in December
• \sim18 billion for all of 2007
market research firm NPD, Jan 17

Wii Sales:
• $2.14 million in December 2008
• $3 million in Dec 2009
http://www.dailyfinance.com/
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies
 – Industry Design
 – Architecture
 – Games
 – Training

Image from Defense News, 31 Jan 07
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies
 – Industry Design
 – Architecture
 – Games
 – Training
 – Virtual World
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies
 – Industry Design
 – Architecture
 – Games
 – Training
 – Virtual World
 – Surgery

Jingyi Yu, Graphics, U Delaware
Why do we care?

• Applications are cool
 – Create Fantasy World
 – Making Movies
 – Industry Design
 – Architecture
 – Games
 – Training
 – Virtual World
 – Surgery
 – Visualization

Jingyi Yu, Graphics, U Delaware
Why do we care?

• Research is fun
 – Deformation Transfer
 • http://www.mit.edu/~ibaran/sdt/
Why do we care?

• Research is fun
 – Deformation Transfer
 – Fluid Simulation
 • http://graphics.cs.cmu.edu/projects/modular_bases/
Why do we care?

• Research is fun
 – Deformation Transfer
 – Fluid Simulation
 – Morphing
Why do we care?

• Research is fun
 – Deformation Transfer
 – Fluid Simulation
 – Morphing
 – 3D Video Conference
 • http://gl.ict.usc.edu/Research/3DTeleconferencing/
A broader view

• Computer Graphics is
 – The technology for communicating and interacting with information *in a visual way*

• Visual information is
 – Intuitive
 – Parallel
 – Correlated
What’s covered in this class

• Not!
 – Paint and Imaging packages (Photoshop)
 – CAD packages (AutoCAD)
 – Rendering packages (Maya)
 – Modeling packages (3D Max)
 – Graphics Modeling and Languages (RenderMan)

• We will cover...
 – Graphics programming languages (OpenGL)
 – Graphics algorithms
 – Graphics data structures
 – Graphical User Interface (GLUT)
 – Applied geometry and modeling
 – Shape and motion capture
What’s covered in this class

• Image related topics
 – Image formation in eye, and cameras,
 – Digital images, sampling and re-sampling
 – Filtering, Warping, Morphing, Compositing
What’s covered in this class

• Project 1: A picture processing system
 – Implement basic image processing operations like filtering, re-sampling, warping,
 – Image compositing, impressionist painting

Image Analogies, Hertzmann et al, SIGGRAPH 2001
What’s covered in this class

• Geometric Modeling
 – coordinate systems, transformation
 – 2D/3D primitives, projection,
 – OpenGL, graphics pipeline, 3D UI issues
 – Shape concepts, parametric forms, splines
 – Meshes, subdivision surfaces

Jingyi Yu, Graphics, U Delaware

Eck and Hoppe, SIGGRAPH 96
What is this class about?

• Project 2: Roller coaster train

Rob Iverson's A+ assignment from 1999
What is this class about?

- Project 2: Roller coaster train

Rob Iverson's A+ assignment from 1999
What’s covered in this class

• Basic Rendering techniques
 – Visibility, scan-conversion,
 – Lighting, Texture mapping,
 – Ray tracing, global illumination,
What’s covered in this class

• Project 3: A graphics town

Brandon Smith
What’s covered in this class

- Project 3: A graphics town
What’s covered in this class

• Project 3: A graphics town
What’s covered in this class

• Project 3: A graphics town

Marc Lenz
What’s covered in this class

• Project 3: A graphics town

Xiang Ji and Yuxiang Yang
Staff

• Instructor: Li Zhang
 – lizhang@cs.wisc.edu
 – Office hours: Monday Wednesday 3.50-4.50pm
 – Office location: 6387 Comp S&ST

• TA: Sajika Gallege
 – sgallege@cs.wisc.edu
 – Office hours: Thursday Friday 1-2pm
 – Office location: 1306 Comp S&ST
Course info

• Mailing list: compsci559-1-s10@lists.wisc.edu
• Course web: www.cs.wisc.edu/~cs559-1
• Computers: Windows XP 32 bit
 – 1358: 8
 – 1366: 30
 – 1368: 29
• Language: C++
• Compiler: MS Visual Studio 2008
 – Your code must be able to compile and run on department windows PC.
Books (required)

• Peter Shirley. *Fundamentals of Computer Graphics, 3ed*
Books (required)

 - An older edition (available online) would be OK. It’s an important reference.
Books (recommended)

• *Real–time rendering*. 3rd edition
Prerequisites

• CS367 (Data Structures)
• Math 320, 340 or CS416 (some familiarity with linear algebra)
• I will skip
 – Chapter 2 Miscellaneous Math
 – Chapter 5 Linear Algebra
• C/C++
 – You can learn it as you do project, but you need to work very hard.
Exams

• Midterm
 – Monday, March 17th, in class

• Final
 – In the final week
Grading

• Projects: 20%, 25%, 25%
• Midterm: 10%
• Final: 20%
• Late policy
 – 80% 1st day, 60% 2nd day, ... 0% 5th day,
 • Prorated hourly
 – Can be late ONCE without penalty in the semester,
 • But can’t be later than demo date
 – Penalty Recovery
Group

• For each project
 – Two students form a group to do the project
 – Doing it individually is fine, if you are brave.
 – Three students in a group is subject to my approval
 • For example, we have odd number of students in the class
 – Each group member will receive the same grade for each project (except the written assignment).
 – Group partners should be different for each project
 – Doing it alone doesn’t mean double your credit.
Previous comments

• “assignments and exams are too difficult especially the assingments”
• “the projects were very large scale and time intensive, fairly difficult”
• “the projects involved too much hours of coding, can be made a little less in magnitude”
• “the projects are very time consuming”
•
Questions?