CS559: Computer Graphics

Lecture 1 Introduction

Li Zhang

University of Wisconsin, Madison

Today

- Introduction to Computer Graphics
- Course Overview

- Using computers to generate and display images
- Core areas
 - Modeling
 - lighting, shape, reflectance ...
 - Rendering
 - math models -> images

The Digital Michelangelo Project Stanford University

- Using computers to generate and display images
- Core areas
 - Modeling
 - lighting, shape, reflectance ...
 - Rendering
 - math models -> images
 - Animation
 - how things change

Park and Hodgins, SIGGRAPH 2006

- Using computers to generate and display images
- Related areas
 - Image processing

- Using computers to generate and display images
- Related areas
 - Image processing

Motion Deblurring, Shan et al, SIGGRAPH 2008

- Using computers to generate and display images
- Related areas
 - Image processing

Image Analogies, Hertzmann et al, SIGGRAPH 2001

- Using computers to generate and display images
- Related areas
 - Image processing
 - 3D photography

Cyberware

- Using computers to generate and display images
- Related areas
 - Image processing
 - 3D photography

- Using computers to generate and display images
- Related areas
 - Image processing
 - 3D photography
 - Visualization

- Using computers to generate and display images
- Related areas
 - Image processing
 - 3D photography
 - Visualization
 - Virtual reality

U.S. Navy personnel using a VR parachute trainer http://en.wikipedia.org/wiki/Virtual reality

- Using computers to generate and display images
- Related areas
 - Image processing
 - 3D photography
 - Visualization
 - Virtual reality
 - User interaction

Freeform from Sensible Technologies
J. Hodgins, Computer Graphics, Fall 2007

- Applications are cool
 - Create Fantasy World

Graphique3d.republika.pl

- Applications are cool
 - Create Fantasy World
 - Making Movies

Avatar

- Applications are cool
 - Create Fantasy World
 - Making Movies

Pirates of the Caribbean

- Applications are cool
 - Create Fantasy World
 - Making Movies

- Applications are cool
 - Create Fantasy World
 - Making Movies

Star War, Episode I, Lucas Film

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design

Icadsolutions.com

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design
 - Architecture

Jingyi Yu, Graphics, U Delaware

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design
 - Architecture
 - Games

America's army, released by US Goverment

US Game Sales:

- •\$4.82 billion in December
- •\$~18 billion for all of 2007 market research firm NPD, Jan 17

Wii Sales:

- •\$2.14 million in December 2008
- •\$3 million in Dec 2009 http://www.dailyfinance.com/

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design
 - Architecture
 - Games
 - Training

Image from Defense News, 31 Jan 07

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design
 - Architecture
 - Games
 - Training
 - Virtual World

Second Life

- Applications are cool
 - Create Fantasy World
 - Making Movies
 - Industry Design
 - Architecture
 - Games
 - Training
 - Virtual World
 - Surgery

Jingyi Yu, Graphics, U Delaware

- Applications are cool
 - Create Fantasy Wor
 - Making Movies
 - Industry Design
 - Architecture
 - Games
 - Training
 - Virtual World
 - Surgery
 - Visualization

Jingyi Yu, Graphics, U Delaware

- Research is fun
 - Deformation Transfer
 - http://www.mit.edu/~ibaran/sdt/

- Research is fun
 - Deformation Transfer
 - Fluid Simulation
 - http://graphics.cs.cmu.edu/projects/modular_bases/

- Research is fun
 - Deformation Transfer
 - Fluid Simulation
 - Morphing
 - http://grail.cs.washington.edu/projects/animalmorphology/s2009/

- Research is fun
 - Deformation Transfer
 - Fluid Simulation
 - Morphing
 - 3D Video Conference
 - http://gl.ict.usc.edu/Research/3DTeleconferencing/

A broader view

- Computer Graphics is
 - The technology for communicating and interacting with information in a visual way

- Visual information is
 - Intuitive
 - Parallel
 - Correlated

Not!

- Paint and Imaging packages (Photoshop)
- CAD packages (AutoCAD)
- Rendering packages (Maya)
- Modeling packages (3D Max)
- Graphics Modeling and Languages (RenderMan)

- We will cover...
 - Graphics programming languages (OpenGL)
 - Graphics algorithms
 - Graphics data structures
 - Graphical User Interface (GLUT)
 - Applied geometry and modeling
 - Shape and motion capture

- Image related topics
 - Image formation in eye, and cameras,
 - Digital images, sampling and re-sampling
 - Filtering, Warping, Morphing, Compositing

Jingyi Yu, Graphics, U Delaware

- Project 1: A picture processing system
 - Implement basic image processing operations like filtering, re-sampling, warping,
 - Image compositing, impressionist painting

Image Analogies, Hertzmann et al, SIGGRAPH 2001

- Geometric Modeling
 - coordinate systems, transformation
 - 2D/3D primitives, projection,
 - OpenGL, graphics pipeline, 3D UI issues
 - Shape concepts, parametric forms, splines
 - Meshes, subdivision surfaces

Jingyi Yu, Graphics, U Delaware

Eck and Hoppe, SIGGRAPH 96

What is this class about?

Project 2: Roller coaster train

What is this class about?

Project 2: Roller coaster train

Rob Iverson's A+ assignment from 1999

- Basic Rendering techniques
 - Visibility, scan-conversion,
 - Lighting, Texture mapping,
 - Ray tracing, global illumination,

Jingyi Yu, Graphics, U Delaware

Brandon Smith

Jacob Felder

Daniel Geil

Marc Lenz

Xiang Ji and Yuxiang Yang

Staff

- Instructor: Li Zhang
 - lizhang@cs.wisc.edu
 - Office hours: Monday Wednesday 3.50-4.50pm
 - Office location: 6387 Comp S&ST
- TA: Sajika Gallege
 - sgallege@cs.wisc.edu
 - Office hours: Thursday Friday 1-2pm
 - Office location: 1306 Comp S&ST

Course info

- Mailing list: compsci559-1-s10@lists.wisc.edu
- Course web: www.cs.wisc.edu/~cs559-1
- Computers: Windows XP 32 bit
 - -1358:8
 - -1366:30
 - -1368:29
- Language: C++
- Compiler: MS Visual Studio 2008
 - Your code must be able to compile and run on department windows PC.

Books (required)

 Peter Shirley. Fundamentals of Computer Graphics, 3ed

Books (required)

- <u>The OpenGL Programmer's Guide.</u> ("red book")
 7th edition
 - An older edition (available online) would be OK. It's an important reference.

Books (recommended)

- *Real -time rendering*. 3th edition
 - Tomas Akenine-Möller, Eric Haines, Naty Hoffman A.K. Peters (2008)

Prerequisites

- CS367 (Data Structures)
- Math 320, 340 or CS416 (some familiarity with linear algebra)
- I will skip
 - Chapter 2 Miscellaneous Math
 - Chapter 5 Linear Algebra
- C/C++
 - You can learn it as you do project, but you need to work very hard.

Exams

- Midterm
 - Monday, March 17th, in class
- Final
 - In the final week

Grading

- Projects: 20%, 25%, 25%
- Midterm: 10%
- Final: 20%
- Late policy
 - 80% 1st day, 60% 2nd day, ... 0% 5th day,
 - Prorated hourly
 - Can be late ONCE without penalty in the semester,
 - But can't be later than demo date
 - Penalty Recovery

Group

- For each project
 - Two students form a group to do the project
 - Doing it individually is fine, if you are brave.
 - Three students in a group is subject to my approval
 - For example, we have odd number of students in the class
 - Each group member will receive the same grade for each project (except the written assignment).
 - Group partners should be different for each project
 - Doing it alone doesn't mean double your credit.

Previous comments

- "assignments and exams are too difficult especially the assingments"
- "the projects were very large scale and time intensive, fairly difficult"
- "the projects involved too much hours of coding, can be made a little less in magnitude"
- "the projects are very time consuming"
- •

Questions?