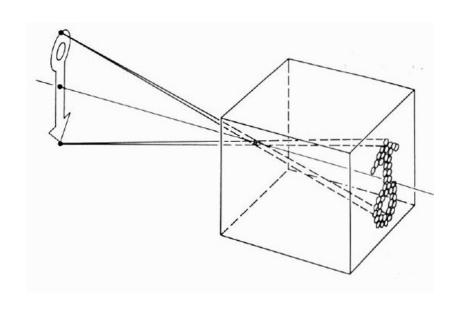
CS559: Computer Graphics

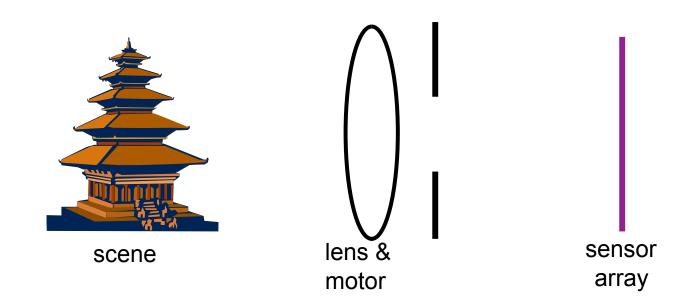
Lecture 3: Image Sampling and Filtering
Li Zhang
Spring 2010

Announcement

• Today's office hour moves to 4-5pm this Friday.



- The first camera
 - 5th B.C. Aristotle, Mozi (Chinese: 墨子)
 - How does the aperture size affect the image?

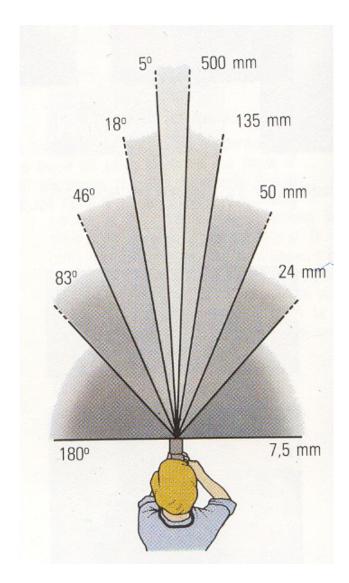


- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons

Canon EF-S 60mm f/2.8

Canon EF 100mm f/2.8

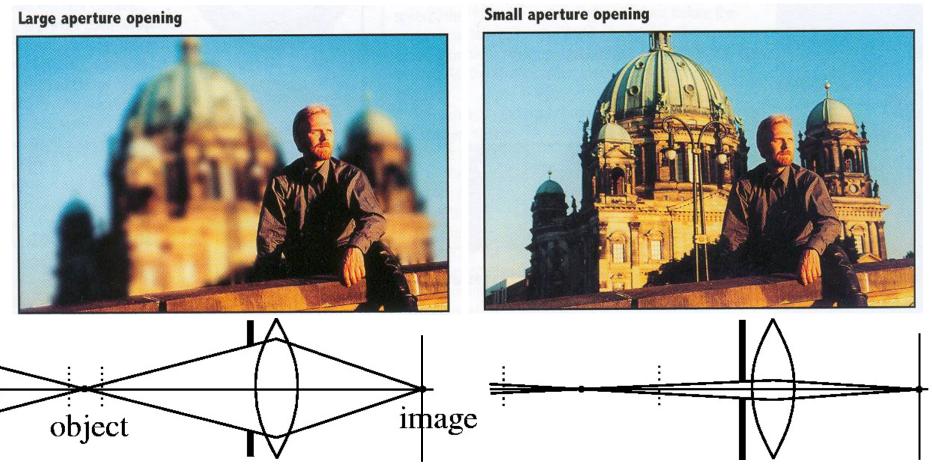
Canon EF 180mm f/3.5



24mm

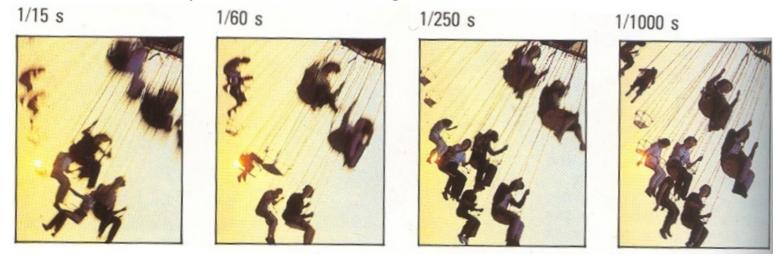
135mm

Frédo Durand's slide



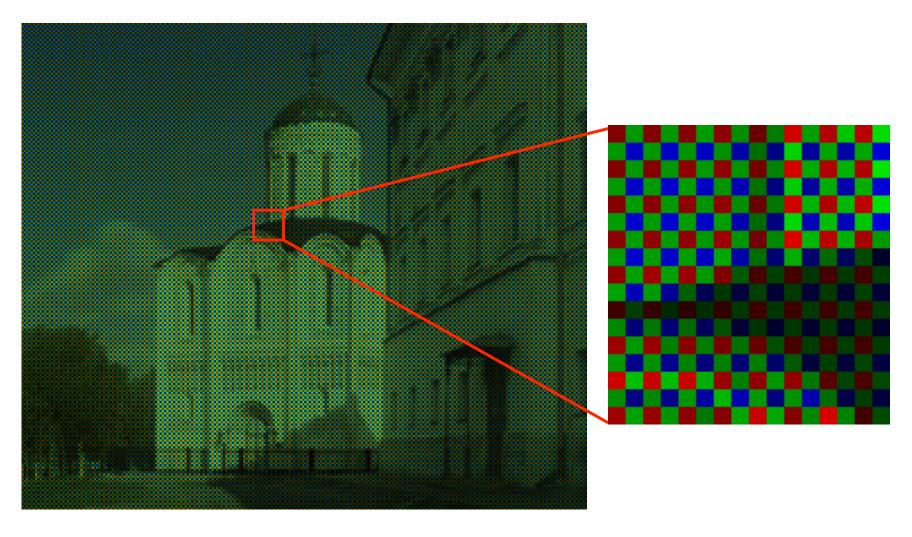
Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus

• Slower shutter speed => more light, but more motion blur

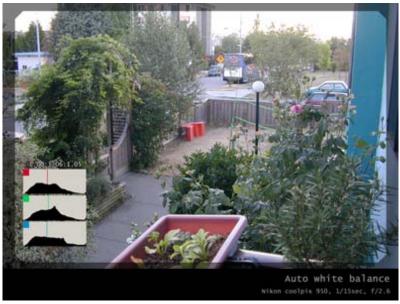


Faster shutter speed freezes motion

- Field of View, Motion blur, Depth of Field
- Can all be simulated in OpenGL



Lecture 3-4: Image Re-sampling and Filtering



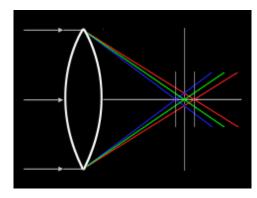
warmer

automatic white balance

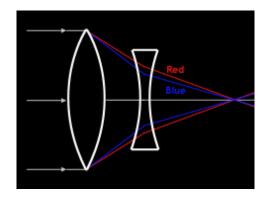
$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 255/R'_w & 0 & 0 \\ 0 & 255/G'_w & 0 \\ 0 & 0 & 255/B'_w \end{bmatrix} \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix}$$

- Bayer Pattern => color image, white balance
- Are good exercises for project 1.

Lens related issues: Chromatic Abberation



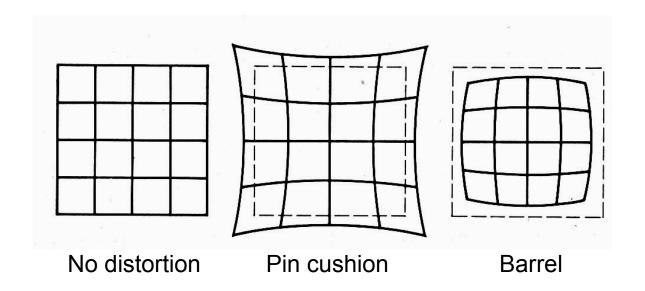
Lens has different refractive indices for different wavelengths.



http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_01.htm

Special lens systems using two or more pieces of glass with different refractive indexes can reduce or eliminate this problem.

Lens related issues: Distortion



- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

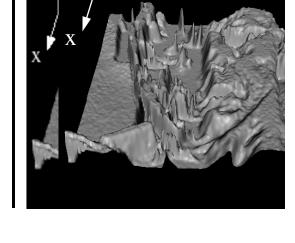
Lecture 6: Image Warping

from Helmut Dersch

Digital camera review website

- http://www.dpreview.com/
- http://www.imaging-resource.com/
- http://www.steves-digicams.com/

Image as a discreet function



Q1: How many discrete samples are needed to represent the original continuous function?

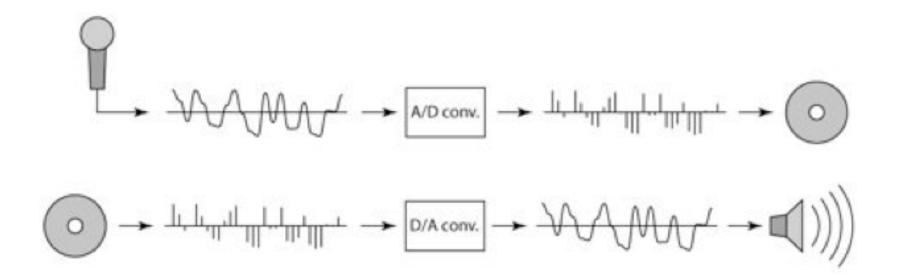
Q2: How to reconstruct the continuous function from the samples?

Represented by a matrix:

	\underline{j}	→						
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
4	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - How can we make sure we are filling in the gaps correctly?



Sampled Representation in General

- How to store and compute with continuous functions?
- Sampling: write down the function's values at many points

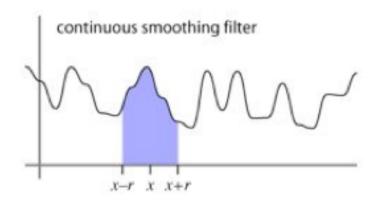
Sampled Representation in General

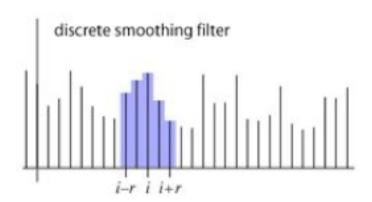
- Making samples back into a continuous function
 - For output
 - For analysis or processing
- Amounts to guessing what the function did in between



Advantage of sampled representation

- Simplifying the job of processing a function
- Simple example: smoothing by averaging
 - Can be executed in continuous form (analog circuit design)
 - But can also be executed using sampled representation



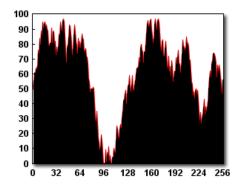


History of sampling

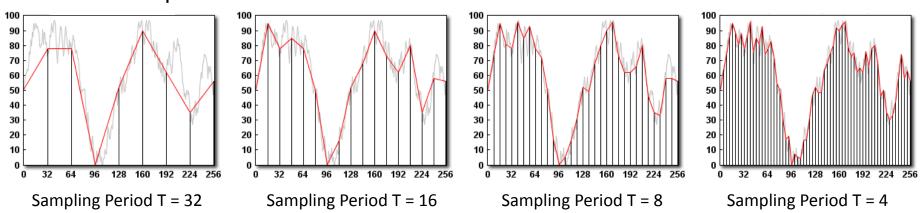
- Nyquist 1928; Shannon 1949
 - Famous results in information theory
- 1940s: first practical uses in telecommunications
- 1960s: first digital audio systems
- 1970s: commercialization of digital audio
- 1982: introduction of the Compact Disc
 - The first high-profile consumer application
- This is why all terminology has ECE flavor instead of CS
- Compressed Sensing 2004; sub-Nyquiest-Shannon criterion

Sampling a continuous function (1D)

Continuous Function



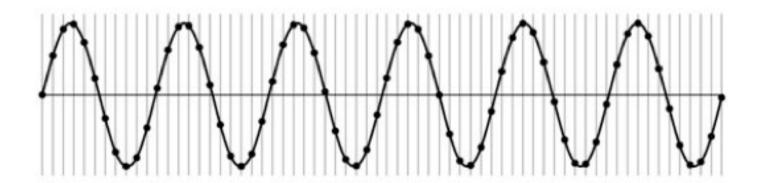
Discrete Samples



The denser the better, but at the expense of storage and processing power

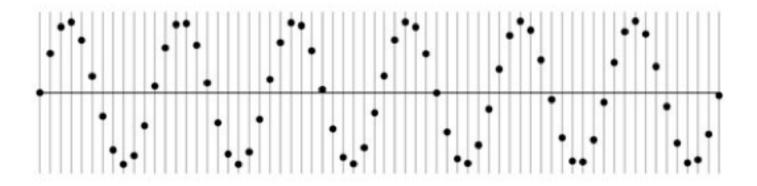
Under-sampling

• Sampling a sine wave



Under-sampling

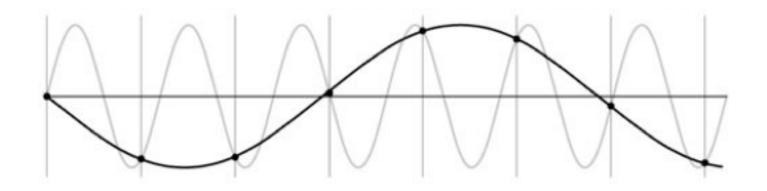
- Sampling a sine wave
- What if we "missed" things between the samples?
 - Unsurprising result: information is lost



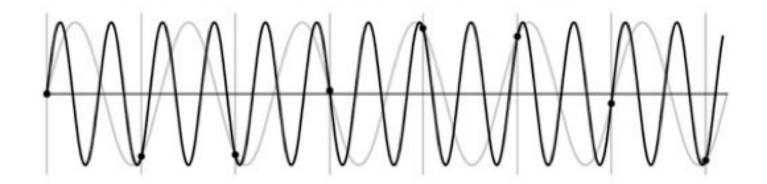
- Sampling a sine wave
- What if we "missed" things between the samples?
 - Unsurprising result: information is lost
 - Surprising result: indistinguishable from lower frequency



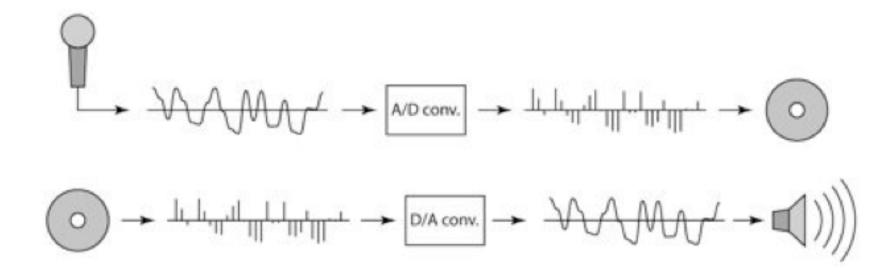
- Sampling a sine wave
- What if we "missed" things between the samples?
 - Unsurprising result: information is lost
 - Surprising result: indistinguishable from lower frequency



- Sampling a sine wave
- What if we "missed" things between the samples?
 - Unsurprising result: information is lost
 - Surprising result: indistinguishable from lower frequency
 - Also indistinguishable from high frequency
 - Aliasing: Insufficient samples to reconstruct original signal



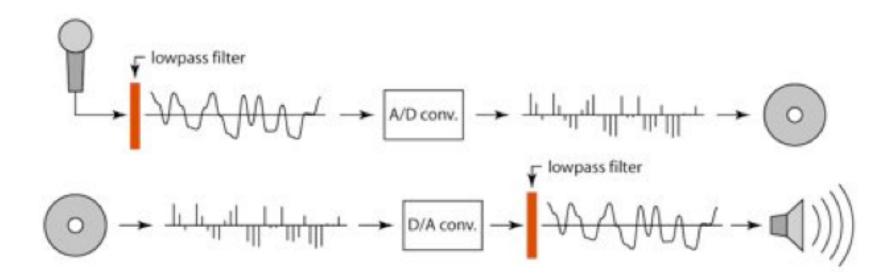
Preventing aliasing



Preventing aliasing

Introducing lowpass filters:

remove high frequency leaving only safe low frequencies choose lowest frequency in reconstruction (disambiguate)



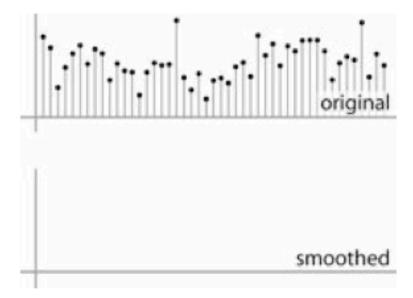
Linear filtering: a key idea

Transformation on signals; e.g.:

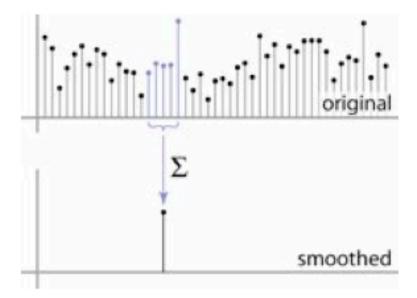
- bass/treble controls on stereo
- blurring/sharpening operations in image editing
- smoothing/noise reduction in tracking

Can be mathematically by *convolution*

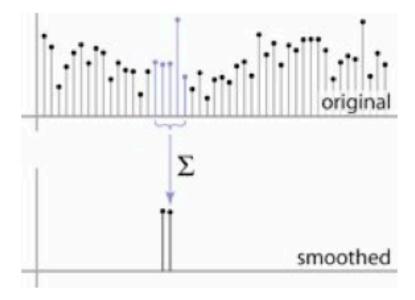
- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



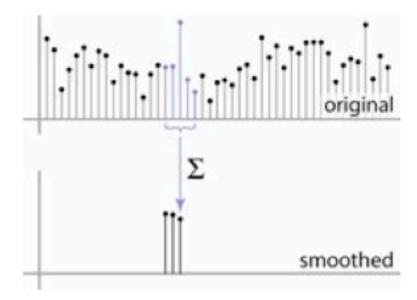
- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



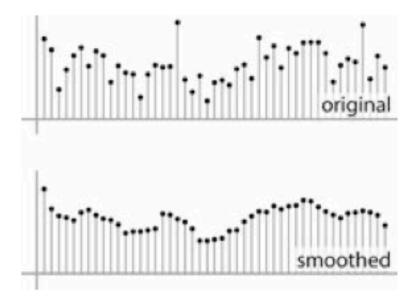
- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



Convolution warm-up

Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Discrete convolution

Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

every sample gets the same weight

Convolution: same idea but with weighted average

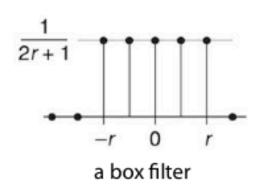
$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

each sample gets its own weight (normally zero far away)

This is all convolution is: it is a moving weighted average

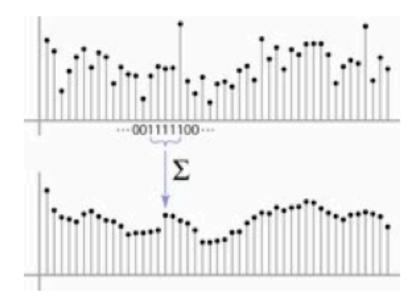
Filters

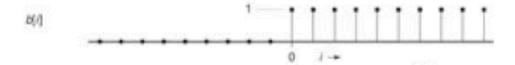
- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
 this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0 since for images we usually want to treat left and right the same

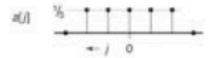


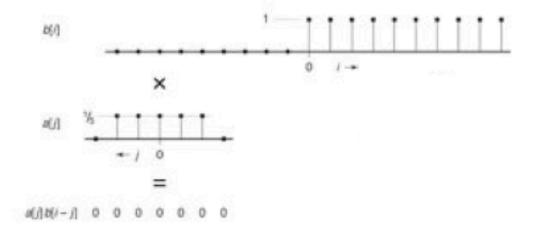
Convolution and filtering

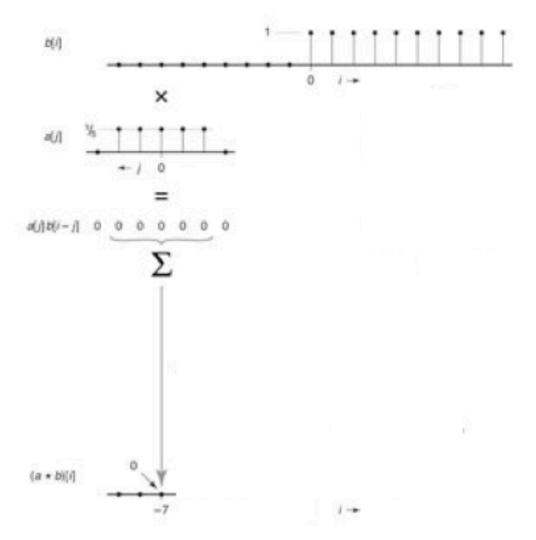
- · Can express sliding average as convolution with a box filter
- $a_{\text{box}} = [..., 0, 1, 1, 1, 1, 1, 0, ...]$

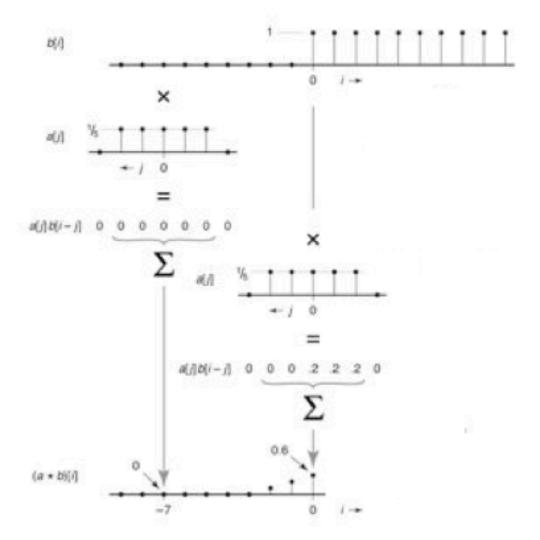


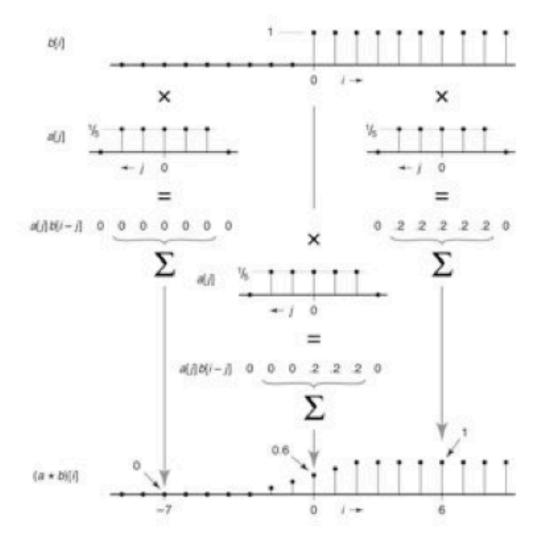






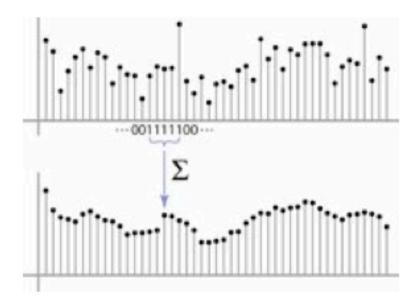






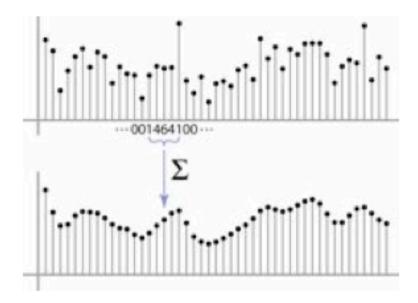
Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16



Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16



And in pseudocode...

```
function convolve(sequence a, sequence b, int r, int i)
s = 0
for j = -r to r
s = s + a[j]b[i - j]
return s
```

Discrete convolution

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation

```
commutative a\star b=b\star a associative a\star (b\star c)=(a\star b)\star c distributes over addition a\star (b+c)=a\star b+a\star c scalars factor out \alpha a\star b=a\star \alpha b=\alpha (a\star b) identity: unit impulse \mathbf{e}=[...,0,0,1,0,0,...] a\star e=a
```

Conceptually no distinction between filter and signal

Let's take a break

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

а

0	0	0
0	0.5	0
0	0	0.5

g

0.5	0	0
0	0.5	0
0	0	0

	$\frac{\jmath}{}$	→						
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
\	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

а

0	0	0
0	0.5	0
0	0	0.5

B

0.5	0	0
0	0.5	0
0	0	0

	$\frac{J}{}$	→						
$i \mid$	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
*	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

а

0	0	0
0	0.5	0
0	0	0.5

B

0.5	0	0
0	0.5	0
0	0	0

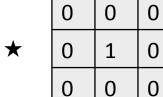
	$\frac{\jmath}{}$	→						
$i \mid$	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
•	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Linear filtering (warm-up slide)

★ 0 0 00 1 00 0 0

original

Linear filtering (warm-up slide)



original

Filtered (no change)

Linear filtering

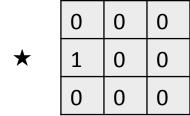
 0
 0
 0

 1
 0
 0

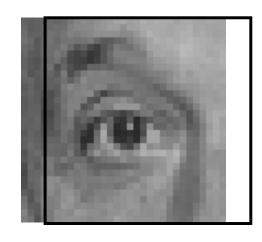
 0
 0
 0

original

shift



original



shifted

Linear filtering

*

1/	' 9	1/9	1/9
1,	/9	1/9	1/9
1/	/9	1/9	1/9

?

original

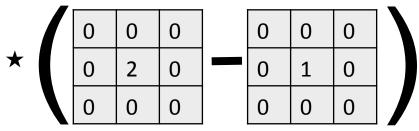
Blurring

original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

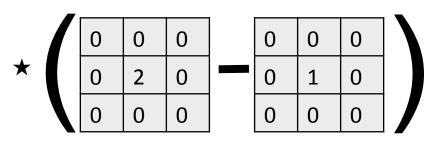
Blurred (filter applied in both dimensions).

Linear filtering (warm-up slide)



original

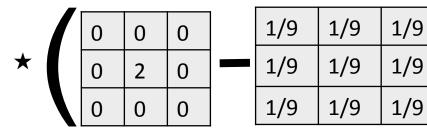
Linear Filtering (no change)



original

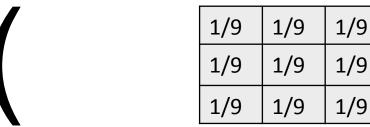
Filtered (no change)

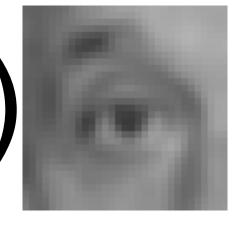
Linear Filtering



original

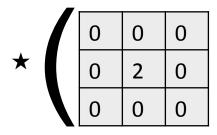
(remember blurring)





Blurred (filter applied in both dimensions).

sharpening



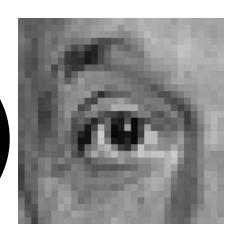
 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

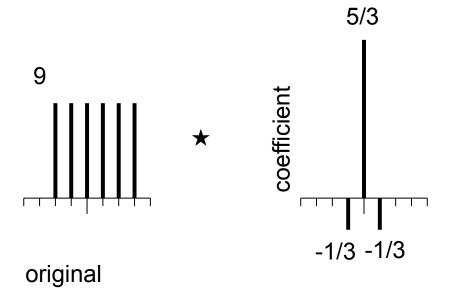
 1/9
 1/9

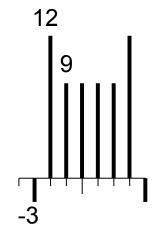


original

Sharpened original

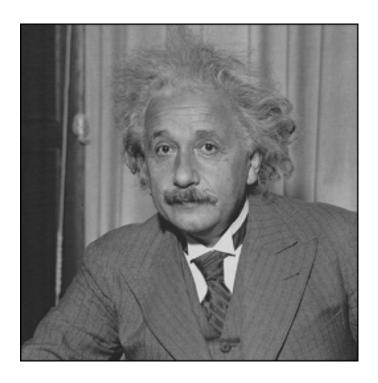
Sharpening example

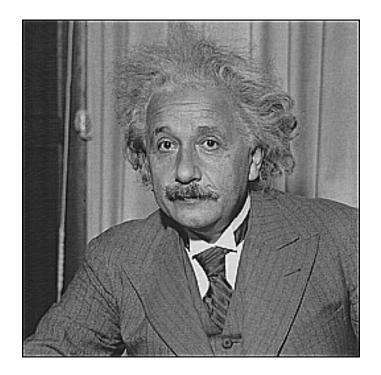




Sharpened (differences are accentuated; constant areas are left untouched).

Sharpening





before after

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

Commonly applied to images

blurring (using box, using gaussian, ...) sharpening (impulse minus blur)

· Usefulness of associativity

often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

And in pseudocode...

```
\begin{aligned} & \textbf{function} \text{ convolve2d(filter2d } a, \text{ filter2d } b, \text{ int } i, \text{ int } j) \\ & s = 0 \\ & r = a. \text{radius} \\ & \textbf{for } i' = -r \text{ to } r \textbf{ do} \\ & \textbf{for } j' = -r \text{ to } r \textbf{ do} \\ & s = s + a[i'][j']b[i-i'][j-j'] \\ & \textbf{return } s \end{aligned}
```

Optimization: separable filters

- basic alg. is O(r²): large filters get expensive fast!
- definition: a₂(x,y) is separable if it can be written as:

$$a_2[i,j] = a_1[i]a_1[j]$$

this is a useful property for filters because it allows factoring:

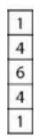
$$(a_2 \star b)[i,j] = \sum_{i'} \sum_{j'} a_2[i',j']b[i-i',j-j']$$

$$= \sum_{i'} \sum_{j'} a_1[i']a_1[j']b[i-i',j-j']$$

$$= \sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j']b[i-i',j-j']\right)$$

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1



$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

0	0	0	0	0
0	0	0	0	0
1	1	6	1	1
	4	0	4	1
0	0	0	0	0

0	0	1	0	0
0	0	4	0	0
0	0	6	0	0
0	0	4	0	0
0	0	1	0	0

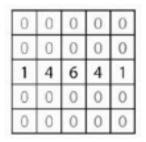
$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i-i',j-j'] \right)$$

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1



second, convolve with this -

$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i-i',j-j'] \right)$$