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Announcement

* Today’s office hour moves to 4-5pm this Friday.



Last time: Image Formation in Cameras

e The first camera
— 5t B.C. Aristotle, Mozi (Chinese: &)
— How does the aperture size affect the image?

http://en.wikipedia.org/wiki/Pinhole _camera



Last time: Image Formation in Cameras
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e A digital camera replaces film with a sensor array
e Each cell in the array is a light-sensitive diode that converts

photons to electrons

YungYu Chuang’s slide



Last time: Image Formation in Cameras

© The-Digital-Picture.com

Canon EF-S  Canon EF Canon EF
60mm /2.8 100mm /2.8 180mm /3.5



Last time: Image Formation in Cameras

5 . 500 mm 24mm

18° 135 mm

50mm

Frédo Durand’s slide



Last time: Image Formation in Cameras

Small aperture opening

Large aperture opening
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Changing the aperture size affects depth of field. A smaller aperture increases the
range in which the object is approximately in focus



Last time: Image Formation in Cameras

e Slower shutter speed => more light, but more motion blur
1/15 s 1/60 s 1/250 s 1/1000 s

]

» Faster shutter speed freezes motion

YungYu Chuang’s slide



Last time: Image Formation in Cameras

* Field of View, Motion blur, Depth of Field
e Can all be simulated in OpenGL



Last time: Image Formation in Cameras

Lecture 3-4: Image Re-sampling and Filtering
YungYu Chuang’s slide



Last time: Image Formation in Cameras

warmer automatic white balance
R 255/ R, 0 0 R’
G| = 0 255/G!, 0 G’
B 0 0  255/B, B

YungYu Chuang’s slide



Last time: Image Formation in Cameras

e Bayer Pattern => color image, white balance
* Are good exercises for project 1.



Lens related issues: Chromatic Abberation

Lens has different refractive indices
for different wavelengths.

http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration 01.htm

Special lens systems using two or more
pieces of glass with different refractive
indexes can reduce or eliminate this

problem.



Lens related issues: Distortion

il

No distortion Pin cushion Barrel

» Radial distortion of the image
— Caused by imperfect lenses

— Deviations are most noticeable for rays that pass
through the edge of the lens

Steve Seitz’s slide



Correcting radial distortion

Lecture 6: Image Warping  from

Steve Seitz’s slide



Digital camera review website




Image as a discreet function

Represented by a matrix:

Q1: How many discrete samples are needed to J
represent the original continuous function? A —

Q2: How to reconstruct the continuous

10 58 197 46 46 0 0 48

i ?
function from the samples: o T o e Tor & o o

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 3

166 63 127 17 1 0 99 30




Sampling in digital audio

* Recording: sound to analog to samples to disc

e Playback: disc to samples to analog to sound again

— How can we make sure we are filling in the gaps correctly?
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Sampled Representation in General

 How to store and compute with continuous
functions?

 Sampling: write down the function’s values at many
points



Sampled Representation in General

* Making samples back into a continuous function

— For output
— For analysis or processing

 Amounts to guessing what the function did in between



Advantage of sampled representation

e Simplifying the job of processing a function

* Simple example: smoothing by averaging

— Can be executed in continuous form (analog circuit design)

— But can also be executed using sampled representation

continuous smoothing filter
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History of sampling

Nyquist 1928; Shannon 1949

— Famous results in information theory

1940s: first practical uses in telecommunications
1960s: first digital audio systems

1970s: commercialization of digital audio

1982: introduction of the Compact Disc

— The first high-profile consumer application

This is why all terminology has ECE flavor instead of CS

Compressed Sensing 2004; sub-Nyquiest-Shannon
criterion



Continuous Function

Sampling a continuous function (1D)
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Discrete Samples

I\

32 64 96 128 160 192 224 256

The denser the better, but at the expense of storage and processing power
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 Sampling a sine wave




Under-sampling

 Sampling a sine wave

 What if we “missed” things between the samples?
— Unsurprising result: information is lost




 Sampling a sine wave

 What if we “missed” things between the samples?
— Unsurprising result: information is lost

— Surprising result: indistinguishable from lower frequency
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 Sampling a sine wave

 What if we “missed” things between the samples?
— Unsurprising result: information is lost

— Surprising result: indistinguishable from lower frequency




 Sampling a sine wave

 What if we “missed” things between the samples?
— Unsurprising result: information is lost

— Surprising result: indistinguishable from lower frequency
— Also indistinguishable from high frequency

— Aliasing: Insufficient samples to reconstruct original signal
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Preventing aliasing




Preventing aliasing

Introducing lowpass filters:
remove high frequency leaving only safe low frequencies
choose lowest frequency in reconstruction (disambiguate)

~ lowpass filter
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Linear filtering: a key idea

Transformation on signals; e.g.:

* bass/treble controls on stereo

* blurring/sharpening operations in image editing
« smoothing/noise reduction in tracking

Can be mathematically by convolution



Convolution warm-up

- basic idea: define a new function by averaging over a sliding window

. asimple example to start off: smoothing

. . L

! original

smoothed
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Convolution warm-up

- basic idea: define a new function by averaging over a sliding window

- asimple example to start off: smoothing
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Convolution warm-up

- basic idea: define a new function by averaging over a sliding window

- asimple example to start off: smoothing
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Convolution warm-up

- basic idea: define a new function by averaging over a sliding window

- asimple example to start off: smoothing
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Convolution warm-up

- basic idea: define a new function by averaging over a sliding window

- asimple example to start off: smoothing
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Convolution warm-up

- Same moving average operation, expressed mathematically:

i+7r

. | b oy
bsmoot,h [7] == o + 1 Z b[.)]

1=t—r

Cornell C54620 Fall 2008 Lecture 13- 11




Discrete convolution

 Simple averaging:
i+r

bsmoot,h[i] 2 +1 Z b[]]

I=i—r
every sample gets the same weight

+ Convolution: same idea but with weighted average
(axb)[i] = ) aljlbli - J

J
each sample gets its own weight (normally zero far away)

» This is all convolution is: it is a moving weighted average

Cornell C54620 Fall 2008

Lecture 13- 12




Filters

-« Sequence of weights alj] is called a filter

* Filter is nonzero over its region of support
usually centered on zero: support radius r

« Filter is normalized so that it sums to 1.0

this makes for a weighted average, not just any
old weighted sum

« Most filters are symmetric about 0

since for images we usually want to treat
left and right the same

Cornell C54620 Fall 2008
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Convolution and filtering

- Can express sliding average as convolution with a box filter
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Example: box and step
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Example: box and step
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Example: box and step
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Example: box and step
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Example: box and step
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Convolution and filtering

« Convolution applies with any sequence of weights

- Example: bell curve (gaussian-like) [..., 1,4,6,4,1,...]/16

Cornell C54620 Fall 2008
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Convolution and filtering

« Convolution applies with any sequence of weights

- Example: bell curve (gaussian-like) ..., 1,4,6,4,1,...]1/16

z

Cornell C54620 Fall 2008
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And in pseudocode...

function convolve(sequence a, sequence b, int 7, inti )

=10
forj = —r tor

s = s + a[j)bli — j]
return s

Cornell C54620 Fall 2008 Lecture 13- 17




Discrete convolution

- Notation: b = e *x a

« Convolution is a multiplication-like operation
commutative & * b = b*x ¢

associative  * (b * C) = (a. * b) x C
distributes over addition & % (b —+ f‘) =qa%xb + axcC
scalars factorout xat * b = a x abh = a—:(a. * b)

identity: unitimpulsee=/[...,0,0,1,0,0,...]
a*xC =1

 Conceptually no distinction between filter and signal

Cornell C54620 Fall 2008
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Let’s take a break



- Same equation, one more index

(axb)[i,j] =Y ali',71bli =i, — '

now the filter is a rectangle you slide around over a grid of numbers

0 0 0
0 05 |0
0 0 0.5
05 (O 0
0 05 (0
0 0 0

Discrete filtering in 2D
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- Same equation, one more index
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- Same equation, one more index

(axb)[i,j] =Y ali',71bli =i, — '

now the filter is a rectangle you slide around over a grid of numbers

0 0 0
0 05 |0
0 0 0.5
05 (O 0
0 05 (0
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Discrete filtering in 2D
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Linear filtering (warm-up slide)

original



Linear filtering (warm-up slide)

original Filtered
(no change)



Linear filtering

O [0 |O
* |1 |0 |0
0 0

original



shift

O [0 |O
* 0
0 0

original shifted




Linear filtering

1/9 |1/9 |1/9
*x 11/9 |1/9 |1/9
1/9 |1/9 |1/9

original



Blurring

1/9 (1/9 |1/9
* 1/9 |1/9 |1/9
1/9 |1/9 |1/9
original Blurred (filter

applied in both
dimensions).



Linear filtering (warm-up slide)

o lo |o oo |o
* 0ol2 o ™o |1 |0
o lo |o o lo |o

original



Linear Filtering (no change)

o lo |o oo |o
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original

Linear Filtering

0 lo |o 1/9 |1/9 |1/9
m—1/9 |1/9 |1/9
0 |0 1/9 |1/9 |1/9

?



(remember blurring)

1/9 |1/9 |1/9
* 1/9 |1/9 |1/9
1/9 |1/9 |1/9

original Blurred (filter
applied in both
dimensions).



original

sharpening

0 lo 1/9 (1/9 | 1/9
mm 1/9 (1/9 |1/9
0 |0 1/9 |1/9 |1/9

Sharpened
original



Sharpening example

5/3
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o
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-3
-1/3 -1/3
original Sharpened

(differences are
accentuated; constant
areas are left untouched).



Sharpening

before



Discrete filtering in 2D

- Same equation, one more index
;2 LI F ./
((l-*b)['l,j] - Z a‘[?' y.J ]b[?’ —t,]—J ]
now the filter is a rectangle you slide around over a grid of numbers

- Commonly applied to images
blurring (using box, using gaussian, ...)

sharpening (impulse minus blur)

- Usefulness of associativity

often apply several filters one after another: (((a * b,) * b,) * b,)

this is equivalent to applying one filter:a * (b, * b, * b,)

Cornell C54620 Fall 2008 Lecture 13- 19




And in pseudocode...

function convolve2d(filter2d a. filter2d b, int ¢, int j)

s ()

r = a.radius

for /' = —rtordo
for ;' rtordo

S 8 - ll‘I'H_I'EI" e ),!.’ K .’.'j

return s

Cornell C54620 Fall 2008 Lecture 13- 20



Optimization: separable filters

- basicalg. is O(r2): large filters get expensive fast!

- definition: a,(xy) is separable if it can be written as:

(12[ J] = t‘11[ ]UI[J]

this is a useful property for filters because it allows factoring:

(a2 x b)[,j] = ZZGQ i, 5'1b[i — 4,5 — §']
_ZZ(U[I lai[51bfi — 7', 7 — 5]

=Y aili] | D anlilbli — .5 - 5

jl

Cornell C54620 Fall 2008
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Separable filtering

asli, j] = ai[i]a: [g]

16

24

16

24

36

24

16

24

16
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Separable filtering

114|641 ojolo0]oO]oO
4116/24|16| 4 0]0|0J0]O
6 (24|36|24| 6 1(4(6|4]1
4116(24(16( 4 010|0]|0]0O
114|614 |1 010|0]0]}]0O
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Separable filtering

as(i, 7] = a1 [f]a1[7]

114|641 ojolojo]o
4116/24|16| 4 0]0]0J0O]0O
6 (24|36|24| 6 1(4(6|4]1
4116(24(16( 4 01]0]0]0]0O
114|641 010101010

— first, convolve with this —

Z ai[i'] Z a1[j'lbli — 7', 5 — j']

Lecture 13- 23
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Separable filtering

az(t, §] = ai[F]ar[7]

114|641 olojo]o]o
4116|24|16| 4 0]0]0]|0]0O
6 |24|36(24| 6 114(6|4]|1
4116|24(16| 4 010]0]0]0O
114|641 010101010

: second, convolve with this

\

el B AR

/

— first, convolve with thls —

Zal[z

S @bl — 7,5 - 5]
jl
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