CS559: Computer Graphics

Lecture 4: Image Filtering and Resampling
Li Zhang
Spring 2010



Announcement

* Feb 3 (this Wed) office hour moves to
4.30-5.30pm due to CS Department Faculty
meeting 3.30-4.30.



Last time: Image Sampling and
Filtering

Continuous Function
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Discrete Samples

Sampling Period T =32

The denser the better, but at the expense of storage and processing power

Sampling Period T =16

Sampling Period T =8

Sampling Period T=4




Under-sampling

 Sampling a sine wave
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Preventing aliasing

Introducing lowpass filters:
remove high frequency leaving only safe low frequencies
choose lowest frequency in reconstruction (disambiguate)

~ lowpass filter
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Discrete convolution

+ Convolution: same idea but with weighted average

(axb)[i] = alj]bli — j]

J

each sample gets its own weight (normally zero far away)

» This is all convolution is: it is a moving weighted average

Cornell C54620 Fall 2008
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Filters

-« Sequence of weights alj] is called a filter

* Filter is nonzero over its region of support
usually centered on zero: support radius r

« Filter is normalized so that it sums to 1.0

this makes for a weighted average, not just any
old weighted sum

« Most filters are symmetric about 0

since for images we usually want to treat
left and right the same

Cornell C54620 Fall 2008
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Discrete convolution

- Notation: b = e *x a

« Convolution is a multiplication-like operation
commutative & * b = b*x ¢

associative « * (b * C) — (a. * b) x C
distributes over addition @ % (b -+ (‘) —axb+axc
scalars factorout xt * b = a x ab = (1-:((1- * b)

identity: unitimpulsee=/[...,0,0,1,0,0,...]
axC =40

 Conceptually no distinction between filter and signal

Assuming zero padding outside the nonzero filter support
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- Same equation, one more index

(axb)[i,j] =Y ali',71bli =i, — '

now the filter is a rectangle you slide around over a grid of numbers
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Discrete filtering in 2D
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Discrete filtering in 2D

- Same equation, one more index
;2 LI F ./
((l-*b)['l,j] - Z a‘[?' y.J ]b[?’ —t,]—J ]
now the filter is a rectangle you slide around over a grid of numbers

- Commonly applied to images
blurring (using box, using gaussian, ...)

sharpening (impulse minus blur)

- Usefulness of associativity

often apply several filters one after another: (((a * b,) * b,) * b,)

this is equivalent to applying one filter:a * (b, * b, * b,)

Cornell C54620 Fall 2008 Lecture 13- 19




Sharpening by Filtering

before



Separable filtering

asli, j] = ai[i]a: [g]
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Separable filtering
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Separable filtering

as(i, 7] = a1 [f]a1[7]
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— first, convolve with this —

Z ai[i'] Z a1[j'lbli — 7', 5 — j']
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r example 3x5

e filter can have rectangular shape as well. \ /
second, convolve with this
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Separable filtering

az(t, §] = ai[F]ar[7]
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— first, convolve with thls —
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Separable filtering

az(t, §] = ai[F]ar[7]
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e filter can have rectangular shape as well.

r example 3x5.

,il

Cornell C54620 Fall 2008

second, convolve wuth this

— first, convolve with t.hls —

Z ay[i'] Z a1[j']bli —i',5 — 5]
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Today’s topics

e Continuous Convolution
e Continuous-discrete convolution
* Resampling



Continuous convolution: warm-up

- Can apply sliding-window average to a continuous function just as
well

output is continuous

integration replaces summation

original

smoothed
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Continuous convolution

- Sliding average expressed mathematically:

' I JoR S |
gslm,u)lh(_-‘l") — W f](f)df

£L—=rT

note difference in normalization (only for box)
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Continuous convolution

- Sliding average expressed mathematically:
I AT

gsllu_u)tll(-’-l') — ; g(f)df

£ZrZ—=—rTr

note difference in normalization (only for box)

« Convolution just adds weights
OO0
(f*g)(z) / f(t)g(x — t)dt
bl
weighting is now by a function
weighted integral is like weighted average
again bounds are set by support of f(x)
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Let’s do a concrete example



Delta Function

* The counterpart of |o (1 |0 | for continuous
convolution 0 |0 |0




Delta Function

O (O
* The counterpart of |o (1 |0 | for continuous
convolution 0 |0 |0

o (&6%f)(x)=f(x)



One more convolution

« Continuous—discrete convolution
(ax f)(x) =Y alilf(z 1)
i
(ax f)(z,y) =) ali,jlf(z—i,y —J)
1.7

used for reconstruction and resampling
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Continuous-discrete convolution

samples ’

reconstructed
signal

1. putting the flipped reconstruction filter at the desired location
2. evaluating at the original sample positions
3. taking products with the sample values themselves
Cornell CS4620 Fall 2008 ) . Lecture 13. 27
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Continuous-discrete convolution

samples ’

reconstructed
signal /

1. putting the flipped reconstruction filter at the desired location
2. evaluating at the original sample positions
3. taking products with the sample values themselves
Cornell CS4620 Fall 2008 ) . Lecture 13. 27
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Another view on continuous-discrete
convolution

Reconstruction (discrete-continuous convolution) as a sum of
shifted copies of the filter

Same view also holds for discrete convolution



Resampling

« Changing the sample rate

in images, this is enlarging and reducing

Cornell C54620 Fall 2008
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Resampling

« Changing the sample rate

in images, this is enlarging and reducing

« Creating more samples:
increasing the sample rate
“upsampling”

“enlarging”
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Resampling

« Changing the sample rate

in images, this is enlarging and reducing

« Creating more samples:
increasing the sample rate
“upsampling”

“enlarging”

- Ending up with fewer samples:
decreasing the sample rate
“downsampling”

“reducing”
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Resampling

Reconstruction creates a continuous function

forget its origins, go ahead and sample it

samples ’
. . .
L * .
. ’ .
reconstructed

signal / \
Jeat il N
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Resampling

- Reconstruction creates a continuous function

forget its origins, go ahead and sample it

samples ’
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Resampling

. Reconstruction creates a continuous function

forget its origins, go ahead and sample it

samples 1
. . »
L . L
. .
resampled .
signal B,
. » L L
X ° s . Z - AL
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Lecture 13. 29




Resampling

- Reconstruction creates a continuous function

forget its origins, go ahead and sample it

samples ’

_,a/ u ‘\‘_
resampled 4
signal ol ¢

Cornell CS4620 Fall 2008

Lecture 13. 29




And in pseudocode...

function reconstruct(sequence a, filter [, real )

S )

r = f.radius

for x ritolx+rido
S S 4 alh f T !

return s

Cornell C54620 Fall 2008
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Cont.-disc. convolution in 2D

- same convolution—just two variables now

(ax f)(z,y) = > ali,jlf @ — i,y — j)
i.]

loop over nearby pixels,
average using filter weight

Cornell CS4620 Fall 2008
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Cont.-disc. convolution in 2D

- same convolution—just two variables now

((1 * f)(~’1?-.’£/) — ZG[?]]f(I =il Bf— .])

i.]

loop over nearby pixels,
average using filter weight

looks like discrete filter,
but offsets are not integers

and filter is continuous

Cornell CS4620 Fall 2008

Lecture 13. 31




Cont.-disc. convolution in 2D

- same convolution—just two variables now

(ax f)(x,y) =) _ali,jlf(z —i,y —J)
i.]

loop over nearby pixels,
average using filter weight

looks like discrete filter,
but offsets are not integers

and filter is continuous

remember placement of filter

relative to grid is variable

Cornell CS4620 Fall 2008
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Cont.-disc. convolutionin 2D

(ax f)(z,y) =) _ali,jlf(x — i,y —J)
)

An Example:

Cornell C54620 Fall 2008 Lecture 13. 32




An Example:
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Cont.-disc. convolutionin 2D

(a* )@, y) =Y ali,jlf(z—i,y—j)
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Separable filters for resampling

- justas in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a
discrete one:

fa(x,y) = fi(z) fr(y)

Cornell CS4620 Fall 2008

Lecture 13. 33




Separable filters for resampling

- justas in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a
discrete one:

falz,y) = f[i(z) fi1(y)

- resample in two passes, one resampling each row and one

resampling each column

Cornell CS4620 Fall 2008
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Separable filters for resampling

- justas in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a
discrete one:

falz,y) = f[i(z) fi1(y)

- resample in two passes, one resampling each row and one
resampling each column

- intermediate storage required: product of one dimension of src. and
the other dimension of dest.
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[Philip Greenspun]

two-stage resampling using a
separable filter

Cornell C54620 Fall 2008
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A gallery of filters

- Box filter
Simple and cheap

. Tent filter

Linear interpolation

- Gaussian filter

Very smooth antialiasing filter

« B-spline cubic
Very smooth

. Catmull-rom cubic

Interpolating

- Mitchell-Netravali cubic

Good for image upsampling

Cornell CS4620 Fall 2008
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Let’s take a break



‘I‘b().\.!'[ij —
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Box filter

1
2r+ 1
l/(2r+ 1) |il <P
0 otherwise. >~ , —e—
e : r
| -
N
/ 2r
LI2r) —r <<y,
() otherwise. &
e ' &
X
Discontinuous Reconstruction
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How to use box filter

e Method 1

e Method 2



Jient (4' ' ] — 0

frent,» ()
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Tent filter

1 —|z| |z| <1,

otherwise:

- flcnl(

1

.17/‘1'7')
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How to use tent filter

e Method 1

e Method 2



Reconstruction using 1D tent filter

1D example: A 1_‘x‘ ‘x‘ <1
gln+1] lD('x)

0 otherwise

— N

f(X)=g[n]'(1—AX)+g[n+1]'Ax

' gln]
|

L) |
n-1 n x nt1 n+2

Tent filter reconstruction: Zero-order continuity
Use only one multiplication?
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Gaussian filter

, | .y
_/,,(.I‘) =€ F e,

V 2m

Infinitely smooth, negligible beyond [-3,3]
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B-Spline cubic

1
_L"/w

P

=3(1—|z)*+3(1—|z|)?+3(1—|z])+1 —-1<=z<1,

1
fo(x) =5 { @ |z])® 1< o <2,
0 otherwise.

C2 Smoothness
Can be obtained by convolving a box filter four times

What's the problem to use it as a reconstruction filter?
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folz) = 5

Cornell C54620 Fall 2008

Catmull-Rom cubic

N\

-2 -1 1 2

X =

-3(1—|z)* +41 - |z)*+ (1 —|z]) -1<z <1,
2—|z[)® - (2 —|=|)? 1 <|z| <2,
0 otherwise.

C1 Smoothness
It interpolates samples: “connecting the dots”

Lecture 13+ 40




Michell-Netravali cubic

fur(@) = 3 f5(@) + 3 fe(2)

| (—21(1 — |z[)® +27(1 — |22 +9(1 — |z)) +1 —-1<z<1,
=151 72— [z)® - 6(2 — |z])? 1< |z| <2,
10 otherwise.

All-around best choice [Mitchell & Netravali 1988]
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Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a
simple algorithm

- Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point

it is the input point nearest the output point

so output[i, jl = input[round(x(i)), round(y(j))]
x(i) computes the position of the output coordinate i on the input grid

Cornell C54620 Fall 2008 Lecture 13- 42




Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a
simple algorithm

- Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point

it is the input point nearest the output point

so output[i, jl = input[round(x(i)), round(y(j))]
x(i) computes the position of the output coordinate i on the input grid

« Tent filter (radius 1): linear interpolation
tent catches exactly 2 input points

weights are aand (1 - a)

result is straight-line interpolation from one point to the next
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Properties of Kernels

Filter, Impulse Response, or kernel function, same
concept but different names

Degrees of continuity
Interpolating or no
Ringing or overshooting

samples

v reconstructed
signal
/\ ——— filter

| g™ -}

0 0 1 0 0 = weights

Interpolating filter for reconstruction



« Overshoot

caused by

negative filter

values

Cornell C54620 Fall 2008

Ringing, overshoot, ripples

overshoot

\

overshoot
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Ringing, overshoot, ripples

« Overshoot

caused by
negative filter
values

overshoot

\

overshoot

« Ripples

constant in,
non-const. out ripple-free =1
*

ripple free when:

Z f(r+1i)=1 forallz. QQQQ
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Constructing 2D filters

-« Separable filters (most common approach)

N =

o

N =

Cornell CS4620 Fall 2008 Lecture 13- 45




Reconstruction filter Examples in 2D

2D example: 1 1-|xpa-[y) x| <L]y <1
k , V) =
/ xzD(x ) { 0 otherwise
e Ax=x-nAy=y-m
y _
g[n,m] g[n+1,m] J(x,y)=gln,m]-(1-Ax)-(1-Ay)
) +g[n+1,m]-Ax-(1-Ay)
X,y ]
+gln,m+1]-(1-Ax) Ay
gln,m+1] gin+1,m+1] +g[n+1,m+1]-Ax-Ay

How to simplify the calculation?



Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods:

« clip filter (black)

« wrap around

- Ccopy edge

- reflect across edge

- vary filter near edge

[Philip Greenspun]
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the filter window falls off the edge of the image
need to extrapolate

methods:

- clip filter (black)
- Wrap around

- copy edge|
- reflect across edge

- vary filter near edge

[Philip Greenspun]
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the filter window falls off the edge of the image
need to extrapolate
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- clip filter (black)

« wrap around

- Ccopy edge

- reflect across edge

- vary filter near edge

[Philip Greenspun]
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Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

- clip filter (black) 1

- wrap around

- copy edge

- reflect across edge
- vary filter near edge

[Philip Greenspun)
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Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate

T — I —

methods: |
w

« clip filter (black)

« wrap around

- copy edge

- reflect across edge

- vary filter near edge

=

[Philip Greenspun]
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Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate
methods:

- clip filter (black)

- wrap around

- copy edge

- reflect across edge

- vary filter near edge
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Comell CS4620 Fall 2008 Lecture 13- 46




Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate

~ e 3
« clip filter (black) J

« wrap around

- copy edge

- reflect across edge

- vary filter near edge

[Philip Greenspun]
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Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

methods:

- clip filter (black)

- wrap around

- copy edge

- reflect across edge|
- vary filter near edge

#

[Philip Greenspun]
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Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)

« wrap around

- Ccopy edge

- reflect across edge

- vary filter near edge
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Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate R

methods: ”, - ’
- clip filter (black) L

- wrap around

- copy edge

- reflect across edge
- vary filter near edge

[Philip Greenspun]
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Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods: ” .
« clip filter (black) "
« wrap around
- copy edge

- reflect across edge
- vary filter near edge

[Philip Greenspun]
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Reducing and enlarging

Very common operation

devices have differing resolutions

applications have different memory/quality tradeoffs

Cornell CS4620 Fall 2008

Also very commonly done poorly
Simple approach: drop/replicate pixels

Correct approach: use resampling
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Practical upsampling

 This can also be viewed as:

1.

putting the reconstruction filter at the desired
location

evaluating at the original sample positions

3. taking products with the sample values themselves

. summing it up




‘Image Downsampling

-~

Throw away every other row and
column to create a 1/2 size image
- called image sub-sampling



-
4 _

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Minimum Sampling requirement is not satisfied — resulting in Aliasing effect



Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

« Solution: filter the image, then subsample



Practical downsampling

 Downsampling is similar, but filter has larger
support and smaller amplitude.

e Operationally:

1.
2.

Choose reconstruction filter in downsampled space.

Compute the downsampling rate, d, ratio of new sampling rate to
old sampling rate

Stretch the filter by 1/d and scale it down by d

4. Follow upsampling procedure (previous slides) to compute new

values (need normalization)




Filter Choice: speed vs quality

Box filter: very fast
Tent filter: moderate quality

Cubic filter: excellent quality, for example Mitchell filter.



