CS559: Computer Graphics

Lecture 4: Image Filtering and Resampling
Li Zhang
Spring 2010

Announcement

• Feb 3rd (this Wed) office hour moves to 4.30-5.30pm due to CS Department Faculty meeting 3.30-4.30.

Last time: Image Sampling and Filtering

Continuous Function

Discrete Samples

The denser the better, but at the expense of storage and processing power

Under-sampling

Sampling a sine wave

Under-sampling

Sampling a sine wave

Some information loss

Ambiguous signal interpretation

Preventing aliasing

Introducing lowpass filters:

remove high frequency leaving only safe low frequencies choose lowest frequency in reconstruction (disambiguate)

Discrete convolution

Convolution: same idea but with weighted average

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

each sample gets its own weight (normally zero far away)

This is all convolution is: it is a moving weighted average

Filters

- Sequence of weights a[j] is called a filter
- Filter is nonzero over its region of support usually centered on zero: support radius r
- Filter is normalized so that it sums to 1.0
 this makes for a weighted average, not just any old weighted sum
- Most filters are symmetric about 0 since for images we usually want to treat left and right the same

Discrete convolution

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation

```
commutative a\star b=b\star a associative a\star (b\star c)=(a\star b)\star c distributes over addition a\star (b+c)=a\star b+a\star c scalars factor out \alpha a\star b=a\star \alpha b=\alpha (a\star b) identity: unit impulse \mathbf{e}=[...,0,0,1,0,0,...] a\star e=a
```

Conceptually no distinction between filter and signal

Assuming zero padding outside the nonzero filter support

Discrete filtering in 2D

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

а

0	0	0
0	0.5	0
0	0	0.5

g

0.5	0	0
0	0.5	0
0	0	0

	$\frac{\jmath}{}$	→						
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
\	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Discrete filtering in 2D

Same equation, one more index

$$(a \star b)[i,j] = \sum_{i',j'} a[i',j']b[i-i',j-j']$$

now the filter is a rectangle you slide around over a grid of numbers

Commonly applied to images

blurring (using box, using gaussian, ...) sharpening (impulse minus blur)

· Usefulness of associativity

often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

Sharpening by Filtering

before after

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

0	0	0	0	0
0	0	0	0	0
1	1	6	1	1
	4	0	4	1
0	0	0	0	0

0	0	1	0	0
0	0	4	0	0
0	0	6	0	0
0	0	4	0	0
0	0	1	0	0

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i-i',j-j'] \right)$$

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

0	0	0	0	0
0	0	0	0	0
1	4	6	4	1
0	0	0	0	0
0	0	0	0	0

0	0	1	0	0
0	0	4	0	0
0	0	6	0	0
0	0	4	0	0
0	0	1	0	0

The filter can have rectangular shape as well. For example 3x5.

— second, convolve with this

$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i-i',j-j'] \right)$$

$$a_2[i,j] = a_1[i]a_1[j]$$

1	4	6	4	1
4	16	24	16	4
6	24	36	24	6
4	16	24	16	4
1	4	6	4	1

0	0	0	0	0
0	0	0	0	0
1	4	6	4	1
0	0	0	0	0
0	0	0	0	0

The filter can have rectangular shape as well. For example 3x5.

second, convolve with this

$$\sum_{i'} a_1[i'] \left(\sum_{j'} a_1[j'] b[i-i',j-j'] \right)$$

Today's topics

- Continuous Convolution
- Continuous-discrete convolution
- Resampling

Can apply sliding-window average to a continuous function just as well

output is continuous

integration replaces summation

Can apply sliding-window average to a continuous function just as well

output is continuous

integration replaces summation

Can apply sliding-window average to a continuous function just as well

output is continuous

integration replaces summation

Can apply sliding-window average to a continuous function just as well

output is continuous

integration replaces summation

Can apply sliding-window average to a continuous function just as well

output is continuous

integration replaces summation

Continuous convolution

Sliding average expressed mathematically:

$$g_{\rm smooth}(x) = \frac{1}{2r} \int_{x-r}^{x+r} g(t) dt$$

note difference in normalization (only for box)

Continuous convolution

Sliding average expressed mathematically:

$$g_{\text{smooth}}(x) = \frac{1}{2r} \int_{x-r}^{x+r} g(t)dt$$

note difference in normalization (only for box)

Convolution just adds weights

$$(f \star g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

weighting is now by a function weighted integral is like weighted average again bounds are set by support of f(x)

Let's do a concrete example

Delta Function

• The counterpart of convolution

0	0	0
0	1	0
0	0	0

for continuous

Delta Function

• The counterpart of convolution

0	0	0
0	1	0
0	0	0

for continuous

• $(\delta \star f)(x)=f(x)$

One more convolution

Continuous–discrete convolution

$$(a \star f)(x) = \sum_{i} a[i]f(x-i)$$
$$(a \star f)(x,y) = \sum_{i,j} a[i,j]f(x-i,y-j)$$

used for reconstruction and resampling

Continuous-discrete convolution

- 1. putting the flipped reconstruction filter at the desired location
- 2. evaluating at the original sample positions
- 3. taking products with the sample values themselves

Cornell CS4620 Fall 2008

Lecture 13 • 27

4. summing it up

Continuous-discrete convolution

- 1. putting the flipped reconstruction filter at the desired location
- 2. evaluating at the original sample positions
- 3. taking products with the sample values themselves

Cornell CS4620 Fall 2008

Lecture 13 · 27

4. summing it up

Another view on continuous-discrete convolution

Reconstruction (discrete-continuous convolution) as a sum of shifted copies of the filter

Same view also holds for discrete convolution

 Changing the sample rate in images, this is enlarging and reducing

- Changing the sample rate in images, this is enlarging and reducing
- Creating more samples: increasing the sample rate "upsampling" "enlarging"

- Changing the sample rate in images, this is enlarging and reducing
- Creating more samples: increasing the sample rate "upsampling" "enlarging"
- Ending up with fewer samples: decreasing the sample rate "downsampling"
 "reducing"

 Reconstruction creates a continuous function forget its origins, go ahead and sample it

Resampling

 Reconstruction creates a continuous function forget its origins, go ahead and sample it

Resampling

 Reconstruction creates a continuous function forget its origins, go ahead and sample it

Resampling

 Reconstruction creates a continuous function forget its origins, go ahead and sample it

And in pseudocode...

function reconstruct(sequence a, filter f, real x) s = 0 r = f.radiusfor $i = \lceil x - r \rceil$ to $\lfloor x + r \rfloor$ do s = s + a[i]f(x - i)return s

same convolution—just two variables now

$$(a \star f)(x,y) = \sum_{i,j} a[i,j] f(x-i,y-j)$$

loop over nearby pixels, average using filter weight

Cornell CS4620 Fall 2008

same convolution—just two variables now

$$(a \star f)(x,y) = \sum_{i,j} a[i,j] f(x-i,y-j)$$

loop over nearby pixels, average using filter weight

looks like discrete filter, but offsets are not integers and filter is continuous

same convolution—just two variables now

$$(a \star f)(x,y) = \sum_{i,j} a[i,j] f(x-i,y-j)$$

loop over nearby pixels, average using filter weight

looks like discrete filter, but offsets are not integers and filter is continuous

remember placement of filter relative to grid is variable

$$(a \star f)(x,y) = \sum_{i,j} a[i,j] f(x-i,y-j)$$

An Example:

$$(a \star f)(x,y) = \sum_{i,j} a[i,j] f(x-i,y-j)$$

An Example:

Cornell CS4620 Fall 2008

Separable filters for resampling

 just as in filtering, separable filters are useful separability in this context is a statement about a continuous filter, rather than a discrete one:

$$f_2(x,y) = f_1(x)f_1(y)$$

Separable filters for resampling

 just as in filtering, separable filters are useful separability in this context is a statement about a continuous filter, rather than a discrete one:

$$f_2(x,y) = f_1(x)f_1(y)$$

resample in two passes, one resampling each row and one resampling each column

Separable filters for resampling

just as in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a discrete one:

$$f_2(x,y) = f_1(x)f_1(y)$$

- resample in two passes, one resampling each row and one resampling each column
- intermediate storage required: product of one dimension of src. and the other dimension of dest.

A gallery of filters

- Box filter
 Simple and cheap
- Tent filter
 Linear interpolation
- Gaussian filter
 Very smooth antialiasing filter
- B-spline cubic
 Very smooth
- Catmull-rom cubic Interpolating
- Mitchell-Netravali cubic Good for image upsampling

Let's take a break

Box filter

$$a_{\text{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$

Discontinuous Reconstruction

How to use box filter

• Method 1

• Method 2

Tent filter

$$\begin{split} f_{\text{tent}}(x) &= \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases} \\ f_{\text{tent},r}(x) &= \frac{f_{\text{tent}}(x/r)}{r}. \end{split}$$

How to use tent filter

• Method 1

• Method 2

Reconstruction using 1D tent filter

Tent filter reconstruction: Zero-order continuity Use only one multiplication?

Gaussian filter

$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Infinitely smooth, negligible beyond [-3,3]

B-Spline cubic

$$f_B(x) = \frac{1}{6} \begin{cases} -3(1-|x|)^3 + 3(1-|x|)^2 + 3(1-|x|) + 1 & -1 \le x \le 1, \\ (2-|x|)^3 & 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

C2 Smoothness

Can be obtained by convolving a box filter four times What's the problem to use it as a reconstruction filter?

Cornell CS4620 Fall 2008

Catmull-Rom cubic

$$f_C(x) = \frac{1}{2} \begin{cases} -3(1-|x|)^3 + 4(1-|x|)^2 + (1-|x|) & -1 \le x \le 1, \\ (2-|x|)^3 - (2-|x|)^2 & 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

C1 Smoothness It interpolates samples: "connecting the dots"

Michell-Netravali cubic

$$f_M(x) = \frac{1}{3} f_B(x) + \frac{2}{3} f_C(x)$$

$$= \frac{1}{18} \begin{cases} -21(1-|x|)^3 + 27(1-|x|)^2 + 9(1-|x|) + 1 & -1 \le x \le 1, \\ 7(2-|x|)^3 - 6(2-|x|)^2 & 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

All-around best choice [Mitchell & Netravali 1988]

Cornell CS4620 Fall 2008

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a simple algorithm
- Box filter (radius 0.5): nearest neighbor sampling

box always catches exactly one input point

it is the input point nearest the output point

so output[i, j] = input[round(x(i)), round(y(j))]

x(i) computes the position of the output coordinate i on the input grid

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a simple algorithm
- Box filter (radius 0.5): nearest neighbor sampling
 box always catches exactly one input point
 it is the input point nearest the output point
 so output[i, j] = input[round(x(i)), round(y(j))]
 x(i) computes the position of the output coordinate i on the input grid
- Tent filter (radius 1): linear interpolation
 tent catches exactly 2 input points
 weights are a and (1 a)
 result is straight-line interpolation from one point to the next

Properties of Kernels

- Filter, Impulse Response, or kernel function, same concept but different names
- Degrees of continuity
- Interpolating or no
- Ringing or overshooting

Interpolating filter for reconstruction

Ringing, overshoot, ripples

Overshoot

 caused by
 negative filter
 values

Ringing, overshoot, ripples

- Overshoot

 caused by
 negative filter
 values
- Ripples
 constant in,
 non-const. out
 ripple free when:

$$\sum_{i} f(x+i) = 1 \quad \text{for all } x.$$

Cornell CS4620 Fall 2008

Constructing 2D filters

Separable filters (most common approach)

Reconstruction filter Examples in 2D

How to simplify the calculation?

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge
- · vary filter near edge

hilip Greenspun]

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun]

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

What about near the edge?
 the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

hilip Greenspun

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge
- · vary filter near edge

Philip Greenspun]

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun]

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun]

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- · reflect across edge
- · vary filter near edge

Philip Greenspun]

Reducing and enlarging

- Very common operation
 devices have differing resolutions
 applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

Practical upsampling

- This can also be viewed as:
 - 1. putting the reconstruction filter at the desired location
 - 2. evaluating at the original sample positions
 - 3. taking products with the sample values themselves
 - 4. summing it up

Image Downsampling

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

Why does this look so crufty?

Minimum Sampling requirement is not satisfied – resulting in **Aliasing effect**

Subsampling with Gaussian pre-filtering

• Solution: filter the image, then subsample

Practical downsampling

 Downsampling is similar, but filter has larger support and smaller amplitude.

Operationally:

- 1. Choose reconstruction filter in downsampled space.
- 2. Compute the downsampling rate, d, ratio of new sampling rate to old sampling rate
- 3. Stretch the filter by 1/d and scale it down by d
- 4. Follow upsampling procedure (previous slides) to compute new values (need normalization)

Filter Choice: speed vs quality

Box filter: very fast

Tent filter: moderate quality

Cubic filter: excellent quality, for example Mitchell filter.