CS559: Computer Graphics

Lecture 5: Image Resampling and Painterly
Rendering

Li Zhang
Spring 2010

Announcement

* |n-class midterm is re-scheduled on March 22
(Monday)

Last time: Image Convolution and
Reconstruction

- Can apply sliding-window average to a continuous function just as
well

output is continuous

integration replaces summation

original

smoothed

Cornell C54620 Fall 2008 Lecture 13- 24

Continuous convolution

- Sliding average expressed mathematically:
I AT

gsllu_u)tll(-’-l') — ; g(f)df

£ZrZ—=—rTr

note difference in normalization (only for box)

« Convolution just adds weights
OO0
(f*g)(z) / f(t)g(x — t)dt
bl
weighting is now by a function
weighted integral is like weighted average
again bounds are set by support of f(x)

Cornell CS4620 Fall 2008 Lecture 13- 25

One more convolution

« Continuous—discrete convolution
(ax f)(x) =Y alilf(z 1)
i
(ax f)(z,y) =) ali,jlf(z—i,y —J)
1.7

used for reconstruction and resampling

Cornell C54620 Fall 2008 Lecture 13- 26

Continuous-discrete convolution

samples ’

reconstructed
signal /

1. putting the flipped reconstruction filter at the desired location
2. evaluating at the original sample positions
3. taking products with the sample values themselves
Cornell CS4620 Fall 2008) . Lecture 13. 27
4 summingitup

Another view on continuous-discrete
convolution

Reconstruction (discrete-continuous convolution) as a sum of
shifted copies of the filter

Same view also holds for discrete convolution

Resampling

Reconstruction creates a continuous function

forget its origins, go ahead and sample it

samples ’
. . .
L * .
. ’ .
reconstructed

signal / \
Jeat il N

Cornell CS4620 Fall 2008 Lecture 13- 29

Resampling

- Reconstruction creates a continuous function

forget its origins, go ahead and sample it

samples ’

Cornell CS4620 Fall 2008

Lecture 13. 29

Cont.-disc. convolutionin 2D

(ax f)(z,y) =) _ali,jlf(x — i,y —J)
)

An Example:

Cornell C54620 Fall 2008 Lecture 13. 32

Separable filters for resampling

- justas in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a
discrete one:

fa(x,y) = fi(z) fr(y)

Cornell CS4620 Fall 2008

Lecture 13. 33

[Philip Greenspun]

two-stage resampling using a
separable filter

Cornell C54620 Fall 2008

Lecture 13. 34

A gallery of filters

- Box filter
Simple and cheap

. Tent filter

Linear interpolation

- Gaussian filter

Very smooth antialiasing filter

« B-spline cubic
Very smooth

. Catmull-rom cubic

Interpolating

- Mitchell-Netravali cubic

Good for image upsampling

Cornell CS4620 Fall 2008

Lecture 13. 35

‘I‘b().\.!'[ij —

fhnx.r(‘”) —

Cornell C54620 Fall 2008

Box filter

1
2r+ 1
l/(2r+ 1) |il <P
0 otherwise. >~ , —e—
e : r
| -
N
/ 2r
LI2r) —r <<y,
() otherwise. &
e ' &
X
Discontinuous Reconstruction
Lecture 13+ 36

Today’s topics

* Finish Resampling
* Painterly Rendering
* Edges

Jient (4' '] — 0

frent,» ()

Cornell CS4620 Fall 2008

Tent filter

1 —|z| |z| <1,

otherwise:

- flcnl(

1

.17/‘1'7')

Lecture 13. 37

How to use tent filter

e Method 1

e Method 2

Reconstruction using 1D tent filter

1D example: A 1_‘x‘ ‘x‘ <1
gln+1] lD('x)

0 otherwise

— N

f(X)=g[n]'(1—AX)+g[n+1]'Ax

' gln]
|

L) |
n-1 n x nt1 n+2

Tent filter reconstruction: Zero-order continuity
Use only one multiplication?

Cornell C54620 Fall 2008

Gaussian filter

, | .y
_/,,(.I‘) =€ F e,

V 2m

Infinitely smooth, negligible beyond [-3,3]

Lecture 13. 38

B-Spline cubic

1
_L"/w

P

=3(1—|z)*+3(1—|z|)?+3(1—|z])+1 —-1<=z<1,

1
fo(x) =5 { @ |z])® 1< o <2,
0 otherwise.

C2 Smoothness
Can be obtained by convolving a box filter four times

What's the problem to use it as a reconstruction filter?

Cornell CS4620 Fall 2008 Lecture 13- 39

folz) = 5

Cornell C54620 Fall 2008

Catmull-Rom cubic

N\

-2 -1 1 2

X =

-3(1—|z)* +41 - |z)*+ (1 —|z]) -1<z <1,
2—|z[)® - (2 —|=|)? 1 <|z| <2,
0 otherwise.

C1 Smoothness
It interpolates samples: “connecting the dots”

Lecture 13+ 40

Michell-Netravali cubic

fur(@) = 3 f5(@) + 3 fe(2)

| (—21(1 — |z[)® +27(1 — |22 +9(1 — |z)) +1 —-1<z<1,
=151 72— [z)® - 6(2 — |z])? 1< |z| <2,
10 otherwise.

All-around best choice [Mitchell & Netravali 1988]

Cornell CS4620 Fall 2008 Lecture 13- 4]

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a
simple algorithm

- Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point

it is the input point nearest the output point

so output[i, jl = input[round(x(i)), round(y(j))]
x(i) computes the position of the output coordinate i on the input grid

Cornell C54620 Fall 2008 Lecture 13- 42

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a
simple algorithm

- Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point

it is the input point nearest the output point

so output[i, jl = input[round(x(i)), round(y(j))]
x(i) computes the position of the output coordinate i on the input grid

« Tent filter (radius 1): linear interpolation
tent catches exactly 2 input points

weights are aand (1 - a)

result is straight-line interpolation from one point to the next

Cornell C54620 Fall 2008 Lecture 13- 42

Properties of Kernels

Filter, Impulse Response, or kernel function, same
concept but different names

Degrees of continuity
Interpolating or no
Ringing or overshooting

samples

v reconstructed
signal
/\ ——— filter

| g™ -}

0 0 1 0 0 = weights

Interpolating filter for reconstruction

« Overshoot

caused by

negative filter

values

Cornell C54620 Fall 2008

Ringing, overshoot, ripples

overshoot

\

overshoot

Lecture 13- 44

Ringing, overshoot, ripples

« Overshoot

caused by
negative filter
values

overshoot

\

overshoot

« Ripples

constant in,
non-const. out ripple-free =1
*

ripple free when:

Z f(r+1i)=1 forallz. QQQQ

Cornell C54620 Fall 2008 Lecture 13- 44

Constructing 2D filters

-« Separable filters (most common approach)

N =

o

N =

Cornell CS4620 Fall 2008 Lecture 13- 45

Reconstruction filter Examples in 2D

2D example: 1 1-|xpa-[y) x| <L]y <1
k , V) =
/ xzD(x) { 0 otherwise
e Ax=x-nAy=y-m
y _
g[n,m] g[n+1,m] J(x,y)=gln,m]-(1-Ax)-(1-Ay)
) +g[n+1,m]-Ax-(1-Ay)
X,y]
+gln,m+1]-(1-Ax) Ay
gln,m+1] gin+1,m+1] +g[n+1,m+1]-Ax-Ay

How to simplify the calculation?

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

methods:

Cornell C54620 Fall 2008

[Philip Greenspun]

Lecture 13+ 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate

methods:
- clip filter (black)

[Philip Greenspun]

Cornell CS4620 Fall 2008 Lecture 13- 46

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate
methods:

- clip filter (black)

[Philip Greenspun]

Cornell C54620 Fall 2008

Lecture 13+ 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate
methods:

- clip filter (black)

[Philip Greenspun]

Comell CS4620 Fall 2008 Lecture 13- 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods:

« clip filter (black)
« wrap around

Cornell C54620 Fall 2008

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

- clip filter (black) 1

- wrap around

[Philip Greenspun)

Cornell CS4620 Fall 2008

Lecture 13+ 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate
methods:

« clip filter (black)
« wrap around

T — I —

“V

Cornell C54620 Fall 2008

=

[Philip Greenspun]

Lecture 13+ 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate
methods:

- clip filter (black)
- wrap around
- copy edge

[Philip Greenspun]

Cornell CS4620 Fall 2008

Lecture 13- 46

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

~ e 3
« clip filter (black) J

« wrap around
- copy edge

[Philip Greenspun]

Cornell C54620 Fall 2008 Lecture 13- 46

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge

#

[Philip Greenspun]

Cormnell CS4620 Fall 2008 Lecture 13+ 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image
need to extrapolate
methods:

- clip filter (black)

« wrap around

- Ccopy edge

- reflect across edge

[Philip Greenspun]

Cornell C54620 Fall 2008 Lecture 13- 46

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate R

methods: ”, - ’
- clip filter (black) L

- wrap around
- copy edge
- reflect across edge

[Philip Greenspun]

Cornell CS4620 Fall 2008

Lecture 13- 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods: ” .
« clip filter (black) "
« wrap around
- copy edge

- reflect across edge

[Philip Greenspun]

Cornell C54620 Fall 2008 Lecture 13- 46

Yucky details

- What about near the edge?
the filter window falls off the edge of the image

need to extrapolate

methods:

« clip filter (black)

« wrap around

- Ccopy edge

- reflect across edge

- vary filter near edge

Cornell C54620 Fall 2008 Lecture 13+ 46

Image Filter Near Boundaries

0.25 | 0.5 0.25

Kernel Renormalization

Image Filter Near Boundaries

0 0.5 0.25 | /0.75

Kernel Renormalization

Reducing and enlarging

Very common operation

devices have differing resolutions

applications have different memory/quality tradeoffs

Cornell CS4620 Fall 2008

Also very commonly done poorly
Simple approach: drop/replicate pixels

Correct approach: use resampling

Lecture 13. 47

Practical upsampling

 This can also be viewed as:

1.

putting the reconstruction filter at the desired
location

evaluating at the original sample positions

3. taking products with the sample values themselves

. summing it up

‘Image Downsampling

-~

Throw away every other row and
column to create a 1/2 size image
- called image sub-sampling

-
4 _

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Minimum Sampling requirement is not satisfied — resulting in Aliasing effect

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

« Solution: filter the image, then subsample

Practical downsampling

 Downsampling is similar, but filter has larger
support and smaller amplitude.

e Operationally:

1.
2.

Choose reconstruction filter in downsampled space.

Compute the downsampling rate, d, ratio of new sampling rate to
old sampling rate

Stretch the filter by 1/d and scale it down by d

4. Follow upsampling procedure (previous slides) to compute new

values (need normalization)

Filter Choice: speed vs quality

Box filter: very fast
Tent filter: moderate quality

Cubic filter: excellent quality, for example Mitchell filter.

Today

* Painterly rendering

* Reading
— Hertzmann, Painterly Rendering with Curved Brush Strokes of Multiple Sizes,
SIGGRAPH 1998, section 2.1 (required), others (optional)

— Doug DeCarlo, Anthony Santella. Stylization and Abstraction of Photographs In
SIGGRAPH 2002, pp. 769-776. (optional)

— Edge Detection Tutorial (recommended but optional)

Painterly Filters

 Many methods have been
proposed to make a photo look
like a painting
— A.k.a. Non-photorealistic Rendering

* Today we look at one: Painterly-

Rendering with Brushes of Multiple
Sizes

* Basic ideas:

— Build painting one layer at a
time, from biggest to smallest
brushes

— At each layer, add detail missing
from previous layer

Input photo Blurred input

|
=

Brush shape [

| .

Canvas

Input photo Blurred input

Brush shape

Canvas

Input photo Blurred input

Brush shape

Canvas

Input photo Blurred input

Brush shape

Canvas

Input photo Blurred input

Brush shape

Input photo Blurred input

Canvas (15t iteration) Canvas (2" iteration)

Input photo Blurred input

Brush shape

Canvas (2" iteration)

Input photo Blurred input

Brush shape

Canvas (3" iteration)

X

Brush shape

Iteration 1

Iteration 2 Iteration 3

How to blur an image?

Continuous Gaussian Filter
|

207

e
\N2mo

Gauss(x;0) =

Discrete Gaussian Filter

Binomial Filter
— B;= [1, 1]/2
— B,= Bl*Bl=[1,2,1]/4
— B,=B,*B,=[1,3,3,1]/8
— B,= B3*Bl=[1,4,6,4,1]/16

- anBn-l*Bl

Gauss(x: o)

G, (i) = %Gauss(z’; o),
i€E[-N,N],

N
Z = Gauss(i;0)

n=10

AN

n=50

Image Patch Difference

Patch 1 Patch 2

J J

Di,j = \/(71 _7'2)2 +(g _g2)2 + (b, _bz)z

Algorithm (outer loop)

function paint(sourcelmage,R, ... R,) // take source and several brush

sizes

{

canvas := a new constant color image
// paint the canvas with decreasing sized brushes
for each brush radius R;, from largest to smallest do

{
// Apply Gaussian smoothing with a filter of size f R,
// Brush is intended to catch features at this scale
referencelmage = sourcelmage * G(f,R)
// Paint a layer
paintLayer(canvas, referencelmage, R))

}

return canvas

Algorithm (inner loop)

procedure paintLayer(canvas,referencelmage, R) // Add a layer of strokes

{

S := a new set of strokes, initially empty

D := difference(canvas,referencelmage) // euclidean distance at every pixel
for x=0 to imageWidth stepsize grid do // step in size f,R that depends on brush radius
for y=0 to imageHeight stepsize grid do {
// sum the error near (x,y)
M := the region (x-grid/2..x+grid/2, y-grid/2..y+grid/2)
areakError := sum(D;; for i,j in M) / grid?
if (areaError > T) then {
// find the largest error point
(x1,y1) := max Di,j in M
s :=makeStroke(R,x1,y1,referencelmage)
addsto S

}
}

paint all strokes in S on the canvas, in random order

fyandf,

* Gauss sigma =f_ - brush radius
— Or use binomial filter of length 2 - brush radius + 1

e Grid size = fg - brush radius
— Default fg =1

* Trying different parameters are optional

Results in the paper

Medium brush added Finest brush added

Changing Parameters

Changing Parameters

' 478

Expressionist, elongated stroke

Colorist wash, semitransparent stroke with color jitter Densely-placed circles with random hue and saturation

Changing Parameters

Changing Parameters

-

Colorist wash, semitransparent stroke with color jitter Densely-placed circles with random hue and

saturation

Changing Parameters

Changing Parameters

Changing Parameters

Changing Parameters

Colorist wash, semitransparent stroke with color jitter Densely-placed circles with random hue and saturation

Changing Parameters

Changing Parameters

Colorist wash, semitransparent stroke with color jitter Densely-placed circles with random hue and saturation

Style Interpolation

http://mrl.nyu.edu/
projects/npr/painterly/

Colorist wash, semitransparent stroke with color jitter Densely-placed circles with random hue and saturation

