CS559: Computer Graphics

Lecture 6: Edge Detection, Image Compositing, and
Warping
Li Zhang
Spring 2010

Last time: Image Resampling and Painterly Rendering

- Box filter
 Simple and cheap
- Tent filter
 Linear interpolation
- Gaussian filter
 Very smooth antialiasing filter
- B-spline cubic
 Very smooth
- Catmull-rom cubic Interpolating
- Mitchell-Netravali cubic Good for image upsampling

Last time: Image Resampling and Painterly Rendering

- For some filters, the reconstruction process winds up implementing a simple algorithm
- Box filter (radius 0.5): nearest neighbor sampling
 box always catches exactly one input point
 it is the input point nearest the output point
 so output[i, j] = input[round(x(i)), round(y(j))]
 x(i) computes the position of the output coordinate i on the input grid
- Tent filter (radius 1): linear interpolation
 tent catches exactly 2 input points
 weights are a and (1 a)
 result is straight-line interpolation from one point to the next

Properties of Kernels

- Filter, Impulse Response, or kernel function, same concept but different names
- Degrees of continuity
- Interpolating or no
- Ringing or overshooting

Interpolating filter for reconstruction

Ringing, overshoot, ripples

- Overshoot

 caused by
 negative filter
 values
- Ripples
 constant in,
 non-const. out
 ripple free when:

$$\sum_{i} f(x+i) = 1 \quad \text{for all } x.$$

Cornell CS4620 Fall 2008

Constructing 2D filters

Separable filters (most common approach)

Cornell CS4620 Fall 2008 Lecture 13 • 45

Reconstruction filter Examples in 2D

How to simplify the calculation?

Yucky details

What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

hilip Greenspun]

Cornell CS4620 Fall 2008 Lecture 13 • 46

Image Downsampling

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

Why does this look so crufty?

Minimum Sampling requirement is not satisfied – resulting in **Aliasing effect**

Subsampling with Gaussian pre-filtering

• Solution: filter the image, then subsample

Results in the paper

Original

Medium brush added

Biggest brush

Finest brush added

Changing Parameters

Changing Parameters

Impressionist, normal painting style

Colorist wash, semitransparent stroke with color jitter

Expressionist, elongated stroke

Densely-placed circles with random hue and saturation

Line Drawing

Line Drawing

Line Drawing

Line Drawing

Edge Detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene

Edge detection

- One of the most important uses of image processing is edge detection:
 - Really easy for humans
 - Not that easy for computers
 - Fundamental in computer vision
 - Important in many graphics applications

What is an edge?

• Q: How might you detect an edge in 1D?

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- how does the gradient relate to the direction of the edge?
- The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradients

 How can we approximate the gradient in a discrete image?

```
gx[i,j] = f[i+1,j] - f[i,j] and gy[i,j]=f[i,j+1]-f[i,j]
Can write as mask [-1 1] and [1 -1]'
```

Less than ideal edges

Results of Sobel edge detection

Original

Smoothed

Edge enhancement

 A popular gradient magnitude computation is the Sobel operator:

$$s_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$s_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

• We can then compute the magnitude of the vector (s_x, s_y) .

Results of Sobel edge detection

Original

Smoothed

Sx + 128

Sy + 128

Magnitude

Results of Sobel edge detection

Original

Smoothed

Sx + 128

Sy + 128

Magnitude

Threshold = 64

Threshold = 128

Non-maximum Suppression

- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

Steps in edge detection

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and non-edges
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges, which generally pass between pixels

original image (Lena)

magnitude of the gradient

After non-maximum suppression

Canny Edge Detector

: Gaussian filter parameter

- The choice of depends on desired behavior
 - large detects large scale edges
 - small detects fine features

Compositing

- Compositing combines components from two or more images to make a new image
 - Special effects are easier to control when done in isolation
 - Even many all live-action sequences are more safely shot in different layers

Compositing

- Compositing combines components from two or more images to make a new image
 - Special effects are easier to control when done in isolation
 - Even many all live-action sequences are more safely shot in different layers

Perfect Storm

Animated Example

over

Mattes

- A matte is an image that shows which parts of another image are foreground objects
- Term dates from film editing and cartoon production
- How would I use a matte to insert an object into a background?
- How are mattes usually generated for television?

Working with Mattes

- To insert an object into a background
 - Call the image of the object the source
 - Put the background into the destination
 - For all the source pixels, if the matte is white, copy the pixel, otherwise leave it unchanged

Working with Mattes

- To insert an object into a background
 - Call the image of the object the source
 - Put the background into the destination
 - For all the source pixels, if the matte is white, copy the pixel, otherwise leave it unchanged
- To generate mattes:
 - Use smart selection tools in Photoshop or similar
 - They outline the object and convert the outline to a matte
 - Blue Screen: Photograph/film the object in front of a blue background, then consider all the blue pixels in the image to be the background

Compositing

- Compositing is the term for combining images, one over the other
 - Used to put special effects into live action
 - Or live action into special effects

Alpha

- Basic idea: Encode opacity information in the image
- Add an extra channel, the alpha channel, to each image
 - For each pixel, store R, G, B and Alpha
 - alpha = 1 implies full opacity at a pixel
 - alpha = 0 implies completely clear pixels
- Images are now in RGBA format, and typically 32 bits per pixel (8 bits for alpha)
- All images in the project are in this format

Pre-Multiplied Alpha

- Instead of storing (R,G,B, α), store (α R, α G, α B, α)
- The compositing operations in the next several slides are easier with pre-multiplied alpha
- To display and do color conversions, must extract RGB by dividing out $\boldsymbol{\alpha}$
 - $-\alpha$ =0 is always black
 - Some loss of precision as α gets small, but generally not a big problem

$$c_g = \begin{bmatrix} R_g \\ G_g \\ B_g \\ 1 \end{bmatrix} \qquad c_f = \begin{bmatrix} R_f \\ G_f \\ B_f \\ \alpha_f \end{bmatrix} \qquad c_o = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

$$c_g = \begin{bmatrix} R_g \\ G_g \\ B_g \\ 1 \end{bmatrix} \qquad c_f = \begin{bmatrix} R_f \\ G_f \\ B_f \\ \alpha_f \end{bmatrix} \qquad c_o = \begin{bmatrix} \alpha_f R_f + (1 - \alpha_f) R_g \\ \alpha_f G_f + (1 - \alpha_f) G_g \\ \alpha_f B_f + (1 - \alpha_f) B_g \end{bmatrix}$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

$$c_{g} = \begin{bmatrix} R_{g} \\ G_{g} \\ B_{g} \\ 1 \end{bmatrix} \qquad c_{f} = \begin{bmatrix} R_{f} \\ G_{f} \\ B_{f} \\ \alpha_{f} \end{bmatrix} \qquad c_{o} = \begin{bmatrix} \alpha_{f}R_{f} + (1-\alpha_{f})R_{g} \\ \alpha_{f}G_{f} + (1-\alpha_{f})G_{g} \\ \alpha_{f}B_{f} + (1-\alpha_{f})B_{g} \\ 1 \end{bmatrix}$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

$$c_{g} = \begin{bmatrix} R_{g} \\ G_{g} \\ B_{g} \\ \alpha_{g} \end{bmatrix} \qquad c_{g} = \begin{bmatrix} R_{f} \\ G_{f} \\ B_{f} \\ \alpha_{f} \end{bmatrix} \qquad c_{o} = \begin{bmatrix} \alpha_{f}R_{f} + (1-\alpha_{f})R_{g} \\ \alpha_{f}G_{f} + (1-\alpha_{f})G_{g} \\ \alpha_{f}B_{f} + (1-\alpha_{f})B_{g} \\ 1 \end{bmatrix}$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

$$c_{g} = \begin{bmatrix} R_{g} \\ G_{g} \\ B_{g} \\ \alpha_{g} \end{bmatrix} \qquad c_{g} = \begin{bmatrix} R_{f} \\ G_{f} \\ B_{f} \\ \alpha_{f} \end{bmatrix} \qquad c_{o} = \begin{bmatrix} \alpha_{f}R_{f} + (1-\alpha_{f})\alpha_{g}R_{g} \\ \alpha_{f}G_{f} + (1-\alpha_{f})\alpha_{g}G_{g} \\ \alpha_{f}B_{f} + (1-\alpha_{f})\alpha_{g}B_{g} \end{bmatrix}$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

$$c_{g} = \begin{bmatrix} R_{g} \\ G_{g} \\ B_{g} \\ \alpha_{g} \end{bmatrix} \qquad c_{g} = \begin{bmatrix} R_{f} \\ G_{f} \\ B_{f} \\ \alpha_{f} \end{bmatrix} \qquad c_{o} = \begin{bmatrix} \alpha_{f}R_{f} + (1-\alpha_{f})\alpha_{g}R_{g} \\ \alpha_{f}G_{f} + (1-\alpha_{f})\alpha_{g}G_{g} \\ \alpha_{f}B_{f} + (1-\alpha_{f})\alpha_{g}B_{g} \\ \alpha_{f} + (1-\alpha_{f})\alpha_{g} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_{f}R_{f} \\ \alpha_{f}G_{f} \\ \alpha_{f}G_{f} \\ \alpha_{f}B_{f} \\ \alpha_{f} \end{bmatrix} + (1-\alpha_{f}) \begin{bmatrix} \alpha_{g}R_{g} \\ \alpha_{g}G_{g} \\ \alpha_{g}B_{g} \\ \alpha_{g} \end{bmatrix}$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

"Over" Operator

Basic Compositing Operation

 At each pixel, combine the pixel data from f and the pixel data from g with the equation:

$$c_f = [\alpha_f R_f, \alpha_f G_f, \alpha_f B_f, \alpha_f]$$

$$c_g = [\alpha_g R_g, \alpha_g G_g, \alpha_g B_g, \alpha_g]$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

"Over" Operator

Image Manipulation

Changing pixel values

Moving pixels around

Parametric (global) warping

Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Application of Image Warp

Mosaics: stitching images together

Creating virtual wide-angle camera

Application of Image Warp

Texture mapping

Creating realistic surface appearance

http://www.futuretech.blinkenlights.nl/tex.html

Application of Image Warp

Morphing

image #1

morphing

image #2

Parametric (global) warping

- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that T is global?
 - can be described by just a few numbers (parameters)
 - the parameters are the same for any point p
- Represent *T* as a matrix: p' = Mp $\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

What's inverse of S?

$$S^{-1} = \begin{bmatrix} 1/a & 0 \\ 0 & 1/b \end{bmatrix}$$

2-D Rotation

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' = x \cos(\theta) - y \sin(\theta) \\ y' = x \sin(\theta) + y \cos(\theta) \end{bmatrix}$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

- How can I remember this?
- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear to θ ,
 - -x' is a linear combination of x and y
 - y' is a linear combination of x and y
- What is the inverse transformation?
 - Rotation by – θ
 - For rotation matrices, det(R) = 1

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

 What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$

$$y' = s_y * y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \theta * x - \sin \theta * y$$
$$y' = \sin \theta * x + \cos \theta * y$$

$$x' = \cos \theta * x - \sin \theta * y$$

$$y' = \sin \theta * x + \cos \theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 Any 2D transform can be decomposed into the product of a rotation, scale, and a rotation

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = rotate(31.7^{\circ}) \cdot scale(1.618, 0.618) \cdot rotate(-58.3^{\circ})$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 A symmetric 2D transform can be decomposed into the product of a rotation, scale, and the inverse rotation

$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = rotate(31.7^{\circ}) \cdot scale(2.618, 0.382) \cdot rotate(-31.7^{\circ})$$