CS559: Computer Graphics

Lecture 6: Edge Detection, Image Compositing, and
Warping
Li Zhang
Spring 2010

Last time: Image Resampling and
Painterly Rendering

Box filter

Simple and cheap

Tent filter

Linear interpolation

Gaussian filter

Very smooth antialiasing filter

B-spline cubic
Very smooth

Catmull-rom cubic

Interpolating

Mitchell-Netravali cubic

Good for image upsampling

Last time: Image Resampling and
Painterly Rendering

For some filters, the reconstruction process winds up implementing a
simple algorithm

Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point

it is the input point nearest the output point
so output[i, j] = input[round(x(i)), round(y(j))]
x(i) computes the position of the output coordinate i on the input grid

Tent filter (radius 1): linear interpolation
tent catches exactly 2 input points

weights are aand (1 - a)

result is straight-line interpolation from one point to the next

Properties of Kernels

Filter, Impulse Response, or kernel function, same
concept but different names

Degrees of continuity
Interpolating or no
Ringing or overshooting

samples

v reconstructed
signal
/\ ——— filter

| g™ -}

0 0 1 0 0 = weights

Interpolating filter for reconstruction

Ringing, overshoot, ripples

« Overshoot

caused by
negative filter
values

overshoot

\

overshoot

« Ripples

constant in,
non-const. out ripple-free =1
*

ripple free when:

Z f(r+1i)=1 forallz. QQQQ

Cornell C54620 Fall 2008 Lecture 13- 44

Constructing 2D filters

-« Separable filters (most common approach)

N =

o

N =

Cornell CS4620 Fall 2008 Lecture 13- 45

Reconstruction filter Examples in 2D

2D example: 1 1-|xpa-[y) x| <L]y <1
k , V) =
/ xzD(x) { 0 otherwise
e Ax=x-nAy=y-m
y _
g[n,m] g[n+1,m] J(x,y)=gln,m]-(1-Ax)-(1-Ay)
) +g[n+1,m]-Ax-(1-Ay)
X,y]
+gln,m+1]-(1-Ax) Ay
gln,m+1] gin+1,m+1] +g[n+1,m+1]-Ax-Ay

How to simplify the calculation?

Yucky details

- What about near the edge?

the filter window falls off the edge of the image
need to extrapolate

methods:

Cornell C54620 Fall 2008

[Philip Greenspun]

Lecture 13+ 46

‘Image Downsampling

-~

Throw away every other row and
column to create a 1/2 size image
- called image sub-sampling

-
4 _

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Minimum Sampling requirement is not satisfied — resulting in Aliasing effect

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

« Solution: filter the image, then subsample

Results in the paper

Medium brush added Finest brush added

Changing Parameters

Changing Parameters

' 478

Expressionist, elongated stroke

Colorist wash, semitransparent stroke with color jitter Densely-placed circles with random hue and saturation

Another type of painterly rendering

* Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html

Another type of painterly rendering

* Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html

Another type of painterly rendering

* Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html

Another type of painterly rendering

* Line Drawing

http://www.cs.rutgers.edu/~decarlo/abstract.html

Edge Detection

 Convert a 2D image into a set of curves
— Extracts salient features of the scene

Edge detection

* One of the most important uses of image
processing is edge detection:

— Really easy for humans
— Not that easy for computers

— Fundamental in computer vision
— Important in many graphics applications

What is an edge?

Step

Ramp

IL.ine

Roof

 Q: How might you detect an edge in 1D?

Image gradient

* The gradient of an image:
_ [of Of
V= [8:6 8y]

« The gradient points in the direction of most rapid change in intensity

vi=[50

Vf = —
The gradient direction is given by:
— tan—1 (%2 /91)
6 = tan (3y I
— how does the gradient relate to the direction of the edge?

The edge strength is given by the gradient magnitude

VAl = (D% + (33

Gradients

* How can we approximate the gradient in a
discrete image?

gx[i,j] = fli+1,j] — f[i,j] and gyli,jl=f[i,j+1]-f[i,j]
Can write as mask [-1 1] and [1 1]

Less than ideal edges

Pixels plotted

50

250

200

150

100

300

250 -

200 |-

150 H

100

o

Results of Sobel edge detection

Smoothed

Edge enhancement

* A popular gradient magnitude computation is
the Sobel operator:

—1 O 1
—2 0 2
O 1

 We can then compute the magnitude of the
vector (s, S,)-

Results of Sobel edge detection

Results of Sobel edge detection

Non-maximum Suppression

® ® ® o o
P
® ® ®
. q
Gradient /
® ® O o ®
r
® @ ® ®

* Check if pixel is local maximum along gradient direction
— requires checking interpolated pixels pand r

The Canny Edge Detector

Steps in edge detection

* Edge detection algorithms typically proceed in
three or four steps:

— Filtering: cut down on noise

— Enhancement: amplify the difference between
edges and non-edges

— Detection: use a threshold operation

— Localization (optional): estimate geometry of
edges, which generally pass between pixels

The Canny Edge Detector

original image (Lena)

The Canny Edge Detector

magnitude of the gradient

The Canny Edge Detector

After non-maximum suppression

Canny Edge Detector

oiginal Canny with o = 1 Canny with

. Gaussian filter parameter

 The choice of depends on desired behavior

— large detects large scale edges
— small detects fine features

Compositing

 Compositing combines components from two or
more images to make a new image

— Special effects are easier to control when done in
isolation

— Even many all live-action sequences are more safely
shot in diffe

Compositing

 Compositing combines components from two or
more images to make a new image

— Special effects are easier to control when done in
isolation

— Even many all live-action sequences are more safely

shot in different layers

S8 e
b
) & o p \
2 ‘nV -
|-
» - A - L)
+} -
. 5 - -
A
» d
3, -

Perfect Storm

Animated Example

over —

Mattes

A matte is an image that shows which
parts of another image are
foreground objects

Term dates from film editing and
cartoon production

How would | use a matte to insert an
object into a background?

How are mattes usually generated for
television?

Working with Mattes

 Toinsert an object into a background
— Call the image of the object the source
— Put the background into the destination

— For all the source pixels, if the matte is white, copy the
pixel, otherwise leave it unchanged

Working with Mattes

 Toinsert an object into a background
— Call the image of the object the source
— Put the background into the destination

— For all the source pixels, if the matte is white, copy the
pixel, otherwise leave it unchanged

* To generate mattes:
— Use smart selection tools in Photoshop or similar

* They outline the object and convert the outline to a
matte

— Blue Screen: Photograph/film the object in front of a blue
background, then consider all the blue pixels in the image
to be the background

Compositing

 Compositing is the term for combining images, one over the other

— Used to put special effects into live action
e Or live action into special effects

Alpha

Basic idea: Encode opacity information in the image
Add an extra channel, the alpha channel, to each image
— For each pixel, store R, G, B and Alpha
— alpha =1 implies full opacity at a pixel
— alpha =0 implies completely clear pixels

Images are now in RGBA format, and typically 32 bits per pixel
(8 bits for alpha)

All images in the project are in this format

Pre-Multiplied Alpha

* Instead of storing (R,G,B,a), store (a.R,aG,0B,0.)

* The compositing operations in the next several
slides are easier with pre-multiplied alpha

* To display and do color conversions, must
extract RGB by dividing out o

— o=0 is always black

— Some loss of precision as o gets small, but generally
not a big problem

Why do we need pre-multiplied alpha?

Rg 'Rf-
G Gf
c =| ¢ c, = c =
f 0
g Bg Bf
1 _af_

c,=lc,+(l-a,)c,

“Over” Operator

Why do we need pre-multiplied alpha?

R, (R, a,R, +(1-a,)R,’
. G, ¢, - G, . a,G,+(1-a,)G,
° | B, B, a B, +(1-a,)B,

1 a;

c,=lc,+(l-a,)c,

“Over” Operator

Why do we need pre-multiplied alpha?

R, (R, a,R, +(1-a,)R,’
. G, c, - G, . a,G,+(1-a,)G,
° | B, B, a B, +(1-a,)B,

1 o, 1

c,=lc,+(l-a,)c,

“Over” Operator

Why do we need pre-multiplied alpha?

=
=

a,R,+(1-a,)R, |

0Q
~

. G, . G, . _|@ G +(-a))G,
¢ |B, ¢ |B, a,B,+(1-a,)B,
| a | 1

c,=lc,+(l-a,)c,

“Over” Operator

Why do we need pre-multiplied alpha?

=
=

a,R,+(1-a,)a,R, |

0Q
~

. G, . G, . _|@G +(-a)aG,
° | B, °* |B, a,B,+(1-a,)a,B,
-ag- -af-

c,=lc,+(l-a,)c,

“Over” Operator

Why do we need pre-multiplied alpha?

=
=

o R, +(1-a,)a,R,]

0Q
~

. G, . G, . a,G,+(l-a,)a,G,
° | B, °* |B, a,B,+(1-a,)a,B,
a, a; a,+(1-a,)a,

o, R,] a R, |

a,G a,G

— f=r +(1_af) g 8

afo ang

Ay g |

c,=lc,+(l-a,)c,

“Over” Operator

Basic Compositing Operation

e At each pixel, combine the pixel data from f and
the pixel data from g with the equation:

=la,R,,a,G,,a.B,,a,]

Cy Upliy, VA

=[la,R,,a,G,,a,B,,a,]

g 8% 778 "8 8 8’

c,=lc,+(I-a,)c,

“Over” Operator

Image Manipulation

* Changing pixel values
SN |

h(xyD=[xy/2]

Parametric (global) warping

Examples of parametric warps:

]
affine pespective eylindrical

Application of Image Warp

Mosaics: stitching images together

Creating virtual wide-angle camera

Application of Image Warp

Texture mapping

Creating realistic surface appearance

http://www.futuretech.blinkenlights.nl/tex.html

Application of Image Warp

* Morphing
image #1 morphing image #2

J- * J 5
~ 2 .. 2
) e £ SR
R 4 o '_,..i R '_7. vﬁ: ¢ ~
o . 5 A : Y - -4
B .. £33 - X 0T
] y g . & A
7 - >
| ’ -
- po,
5 "2 o . >
- - »

Parametric (global) warping

p=(xYy)

 Transformation T is a coordinate—changlng
machine: p’ = T(p)

* What does it mean that T is global?

— can be described by just a few numbers
(parameters)

hdx,y]) [X,y/2]

— the parameters are the same for any point p

* Represent T as a matrix: p' = Mp

X

Y

'- p— L

'

Scaling

* Scaling a coordinate means multiplying each of
its components by a scalar

* Uniform scaling means this scalar is the same for

all components:

fooTx X'

X 2

Y-
2y

8

AN

Scaling

* Non-uniform scaling: different scalars per
component:

X X 2, I‘@’_\I
y x 0.5

Scaling

* Scaling operation: x'=ax
y'= by

* Or, in matrix form:

scaling matrix S

G- 1/a O
1o 1/b

What's inverse of S?

2-D Rotation
o (X,a y’)

(X, ¥)

X’ =X ¢c0s(0) - y sin(0)
y’=x sin(0) +y cos(0)

>

2-D Rotation
This is easy to capture in matrix form:
- - _ . ~ - o X =xc¢0s(0)-ysin(0)
X COS(H) —Sll’l(@) X y’ =xsin(0) +y cos(0)
' sin(@) cos(@) y
1L s AL

\

V

R
How can | remember this?

Even though sin(8) and cos(0) are nonlinear to 9,
— x’is a linear combination of x and y
— y’is a linear combination of x and y
What is the inverse transformation?

] R—l _ RT
— Rotation by —0
— For rotation matrices, det(R) =1

2X2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?

O

2D Scale around (0,0)?
X'=5, %x ‘Y1 s, 070X

y!=Sy>X<y -y'- -O q -y-

2X2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

x'=cos@*x—sin@*y x'7 [cos@ —sinf][x
y'=sinf *x+cosO*y [] [H}

!

sin@ cos6@

Y Y
2D Shear?
X'=x+sh_*y x'l [1 sh_|[x]
" % N
y'=sh,*x+y d Shy 1 {ly

2X2 Matrices

* What types of transformations can be

represented with a 2x2 matrix?

y

1 (1,1)

v

0 1 X
2D Shear?
X'=x+sh *y x!'

y'=shy*x+y y'

2X2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
x'=—x X' _ -1 O01[x
y'=y) 0 1|y

2D Mirror over (0,0)?

x'=—x X' _ -1 0 1[x
y'=-y ' 0 -1

All 2D Linear Transformations

 Linear transformations are combinations of ...

— Scale, _ - _ -
| X a b

— Rotation, —

— Shear, and y' c d

— Mirror ST - il

* Any 2D transform can be decomposed into the
product of a rotation, scale, and a rotation

1 1
[O 1] = rotate(31.7") - scale(1.618,0.618) - rotate(-58.3")

All 2D Linear Transformations

 Linear transformations are combinations of ...

— Scale, _ - _ -
| X a b

— Rotation, —

— Shear, and y' c d

— Mirror - T - i

* A symmetric 2D transform can be decomposec
into the product of a rotation, scale, and the
Inverse rotation

2 1
[1 1] = rotate(31.7") - scale(2.618,0.382) - rotate(-31.7")

