CS559: Computer Graphics

Lecture 7: Image Warping and Morphing
Li Zhang
Spring 2010

Most slides borrowed from Yungyu Chuang

Last time: edge dection

Lat time: edge detection

* Edge detection algorithms typically proceed in
three or four steps:

— Filtering: cut down on noise

— Enhancement: amplify the difference between
edges and non-edges

— Detection: use a threshold operation

— Localization (optional): estimate geometry of
edges, which generally pass between pixels

The Canny Edge Detector

original image (Lena)

The Canny Edge Detector

magnitude of the gradient

The Canny Edge Detector

After non-maximum suppression

Lat time: edge detection

* Edge detection algorithms typically proceed in
three or four steps:

— Filtering: cut down on noise

— Enhancement: amplify the difference between
edges and non-edges

— Detection: use a threshold operation

— Localization (optional): estimate geometry of
edges, which generally pass between pixels

Last time: Mattes

A matte is an image that shows which
parts of another image are
foreground objects

Term dates from film editing and
cartoon production

How would | use a matte to insert an
object into a background?

How are mattes usually generated for
television?

Basic Compositing Operation

e At each pixel, combine the pixel data from f and
the pixel data from g with the equation:

=la,R,,a,G,,a.B,,a,]

Cy Upliy, VA

=[la,R,,a,G,,a,B,,a,]

g 8% 778 "8 8 8’

c,=lc,+(I-a,)c,

“Over” Operator

Last time: 2D Transformations
S h([Xa}I]):[Xay/z]

* Transformation T is a coordinate-changing
machine: p’ = T(p)

* What does it mean that T is global?

— can be described by just a few numbers
(parameters)

— the parameters are the same for any point p

p— '- p— L

e Represent T as a matrix: p’ = Mp X

'

Y Y

Scaling

* Non-uniform scaling: different scalars per
component:

X X 2, I‘@’_\I
y x 0.5

2-D Rotation
o (X,a y’)

(X, ¥)

X’ =X ¢c0s(0) - y sin(0)
y’=x sin(0) +y cos(0)

>

2X2 Matrices

* What types of transformations can be

represented with a 2x2 matrix?

y

1 (1,1)

v

0 1 X
2D Shear?
X'=x+sh *y x!'

y'=shy*x+y y'

2X2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
x'=—x X' _ -1 O01[x
y'=y) 0 1|y

2D Mirror over (0,0)?

x'=—x X' _ -1 0 1[x
y'=-y ' 0 -1

All 2D Linear Transformations

 Linear transformations are combinations of ...

— Scale, _ - _ -
| X a b

— Rotation, —

— Shear, and y' c d

— Mirror ST - il

* Any 2D transform can be decomposed into the
product of a rotation, scale, and a rotation

1 1
[O 1] = rotate(31.7") - scale(1.618,0.618) - rotate(-58.3")

All 2D Linear Transformations

 Linear transformations are combinations of ...

— Scale, _ - _ -
| X a b

— Rotation, —

— Shear, and y' c d

— Mirror - T - i

* A symmetric 2D transform can be decomposec
into the product of a rotation, scale, and the
Inverse rotation

2 1
[1 1] = rotate(31.7") - scale(2.618,0.382) - rotate(-31.7")

Today

 More on 2D transformation
* Use it for image warping and morphing

All 2D Linear Transformations

 Linear transformations are combinations of ...

— Scale, - - - —_—
| X a bl[x

— Rotation, —

— Shear, and y' c d %

— Mirror ST - -

* Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition

AB _A'B

= if A, B, Careon aline
BC B'C'

2X2 Matrices

 What types of transformations can not be
represented with a 2x2 matrix?

2D Translation?
X'=x+1,

y'=y+ty

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

Translation

 Example of translation _
Homogeneous Coordinates

- s 3
- L

to[x] [x+¢2]

LIYI=|Y+i,
11 1

S = O

I O o HI

Homogeneous coordinates

* Why do we need it?

— Can express all linear transformation as special
cases

Homogeneous coordinates

* Why do we need it?

— Can express all linear transformation as special
cases

— Easy to compute a composite transformation
that involve several translations and linear
transformation

Homogeneous coordinates

* Why do we need it?

— Can express all linear transformation as special
cases

— Easy to compute a composite transformation
that involve several translations and linear
transformation

— More to come

Affine Transformations

e Affine transformations are combinations of ...

— Linear transformations, and
— Translations
* Properties of affine transformations:
— Origin does not necessarily map to origin

— Lines map to lines "x'] ‘a b
— Parallel lines remain parallel :

. y'i=|d e
— Ratios are preserved
— Closed under composition | 0 O

— Models change of basis

lmage warping

* Given a coordinate transform x’ = T(x) and a
source image I(x), how do we compute a
transformed image I’(x’) = I(T(x))?

Forward warping

* Send each pixel I(x) to its corresponding location
x'=T(x)in I'(x’)

Forward warping

fwarp(I, I’', T)
{
for (y=0; y<I.height; y++)
for (x=0;, x<I.width; x++) {
(x",y")=T(x,y);
I (x",y")=I(x,y);

T
]
— -

Forward warping

e Send each pixel /(x) to its corresponding location
x'=T(x)in I'(x’)
« What if pixel lands “between” two pixels?

 Will be there holes?

* Answer: add “contribution” to several pixels,
normalize later (splatting)

— (x
N o

b

Y Ax) Y g

T

Forward warping

fwarp(I, I’', T)
{
for (y=0; y<I.height; y++)
for (x=0;, x<I.width; x++) {
(x" ,y")=T(x,y)’
Splatting (I’ ,x’,y’ ,I(x,y) , kernel);

T
]
— -

Splatting

 Computed weighted sum of contributed colors
using a kernel function, where weights are

normalized values of filter kernel k, such as Gauss

May get a blurry image! for all q

g.color = 0;
qg.weight = 0;

for all p from source image
for all q’'s dist < radigs
d = dist(p, q); _
w = kernel(d); =e *°
g.color += w*p;
g.weight += w;

for all q
Destination Image q.Color /= g.weight;

Inverse warping

* Get each pixel I'(x’) from its corresponding
location x = T4(x’) in I(x)

Inverse warping

iwarp(I, I’', T)
{
for (y=0; y<I’ .height; y++)
for (x=0; x<I’' .width; =x++) {
(x,y)=T(x",y");
I (x",y")=I(x,y);

Inverse warping

* Get each pixel I'(x’) from its corresponding
location x = T4(x’) in I(x)

 What if pixel comes from “between” two pixels?

* Answer: resample color value from
interpolated source image

T

b

Y fv g(x’)

Inverse warping

iwarp(I, I’', T)
{
for (y=0; y<I’' .height; y++)
for (x=0; x<I’ .width; =x++) {
(x,y)=T(x",y");
I’ (x",y’)=Reconstruct(I,x,y,kernel);

} 7 T-l)&
TR
NEI%

Reconstruction (interpolation)

e Possible reconstruction filters (kernels):
— nearest neighbor
— bilinear
— bicubic
— sinc

Bilinear interpolation (tent filter)

e Asimple method for resampling images
(4,5 + 1) (i+1,57+1)

(z,y)

(14 1,5)

fle,y) = (1 —a)(1=0b) [f[ij]
ta(l-b) fli+1,7]
+ab fli+1,5+1]
+(1 —a)p fli,5 4+ 1]

What might be the problem of bilinear interpolation?

Non-parametric image warping

Non-parametric image warping

e Specify a more detailed warp function

[X,y]

[X,y]

Non-parametric image warping

e Specify a more detailed warp function
* Tabulate pixel motion (lookup table)

Non-parametric image warping

* Mappings implied by correspondences
* |Inverse warping

Non-parametric image warping

Warping between two triangles

A A

=

B’

* |dea: find an affine that transforms ABC to A’'B’C’

Warping between two triangles

‘ -»{ P

* |dea: find an affine that transforms ABC to A’'B’C’
* 6 unknowns, 6 equations

a b el[x, X, a b el[x, X a b el[x, X
c d fllyi|=|Va c d fllys|=|vs c d fllye|=|Ye
0 0 1|1 1 0 0 11 1 0 0 1|1 1

Warping between two triangles

A A

=

5
* |dea: find an affine that transforms ABC to A'B’'C’

* 6 unknowns, 6 equations
A more direct way

Barycentric coordinates

A

f‘: 143

* |dea: represent P using A1,A2,A3
P-4 =p-(4,-A4)+y (4 -4)
P=(-p-y)A+p A4 +y 4
P=t-A+t,-4,+1t, 4,

L+t +t =1

Barycentric coordinates

A

* |dea: represent P using A1,A2,A3

o area(PA, A;)
P-4 =p(4,-4)+y (4 -4) ! _area(A1A2A3)
P=(1—/3—)/)'A1+[5'A2+)/'A3 t _area(PA,A)
area(A, 4, A4,)

XP xAl 'xA2 xA3
=1 ’ +1,- ’ +1 y ‘= area(P4 4,)
Vp 4 4 % " area(A4,A,4;)

Barycentric coordinates

A

* |dea: represent P using A1,A2,A3

P-A=p-(A4,-4)+y-(4,- A h =)
- A = 7 T 4 V (3 1) : area(AlAzAg)
P=(-B-y)A+B-A +y 4 t _ area(PA44,)
area(A, A, A,)

P=t-A+t,-4,+1t, 4, area(PAA,)

t —
L+t +1;=1 P area(A,A,4,)

Non-parametric image warping

P'=w, A4+w,B'+w.C"
P=w,A+w,B+w.C
Barycentric coordinate

Turns out to be equivalent to affine transform

