CS559: Computer Graphics

Lecture 9: 3D Transformation and Projection
Li Zhang
Spring 2010

Most slides borrowed from Yungyu Chuang

Last time: Image morphing

image #1 cross-dissolving image #2

Image morphing

create a morphing sequence: for each time t

1. Create an intermediate warping field (by
interpolation)

2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped

Ay 'Mages 40 33) A(l)

C@O) B(0.33) (C(0.33) B(l) C(l)

t=0.33 t=1

B(0)

I
S

t

Multi-source morphing

Cross-dissolve

More complex morph

* Triangular Mesh

Homogeneous Directions

Translation does not affect directions!

Homogeneous coordinates give us a very clean way
of handling this

The direction (x,y) becomes the homogeneous
direction (x,y,0)

-] B -

M can be any linear transformation: rotation, scaling,
etc

— Uniform scaling changes the length of the vector, but
not the direction

— How to represent this equivalence

Homogeneous Coordinates

* In general, homogeneous coordinates (x, y, w)

X
x/w
=1|Y
yiw

w

x]

X
] = [wy | forany w = 0, usually w =1
y

w

* How to interpret the case for w =07
* Point at infinity: directional vector

¢ (1,2,1) & (2,4,2)

e (2,3,0) < (6,9,0)

Transforming normal vectors

normal tangent normal’
tangent’
M
e
nTt = O t' - Mt
n' t'=0
I N

If M is a rotation,

(M—l)T =M (nTM_l)(Mt) = ()

n'= (nTM—l)T _ (M—I)Tn

3D Transformations

e Homogeneous coordinates: (x,y,z)=(wx,wy,wz,w)

wx

wy
y|= forany w = 0, usually w =1
wz

[x

z

w

[x/ W]

yiw| <=
z

z/w
- - W

* Transformations are now represented as 4x4
matrices T

!

!

tx
ty
ZLz

o = O O
|HN\<><|

==
o o = o

— N e

1

3D Affine Transform

1

1

0O 0 O

1

Translation

T

]
o O O =

Cornell C54620 Fall 2008 = Lecture 7

oo = O

o= O O

© 2008 Steve Marschner » 2

Translation

T

]
o O O =

Cornell CS4620 Fall 2008 » Lecture 7

oo = O

O = OO0

© 2008 Steve Marschner = 2

Translation

T

]
o O O =

Cornell C54620 Fall 2008 = Lecture 7

oo = O

o= O O

© 2008 Steve Marschner = 2

Translation

T

&
o O O =

Cornell CS4620 Fall 2008 » Lecture 7

oo = O

O = OO0

© 2008 Steve Marschner = 2

© 2008 Steve Marschner « 3

Cornell C54620 Fall 2008 = Lecture 7

© 2008 Steve Marschner = 3

Cornell CS4620 Fall 2008 » Lecture 7

© 2008 Steve Marschner = 3

Cornell C54620 Fall 2008 = Lecture 7

Scaling

<8

Ht\l

Cornell CS4620 Fall 2008 = Lecture 7

e
8

oo O

oS O

_—0 O O

_ N e 8

© 2008 Steve Marschner = 3

Rotation about z axis

4 cosf) —sinf 0
y'| |sinf cos@ O
4 0 0 |

1] Lo 0 0

Cornell C54620 Fall 2008 = Lecture 7

-—o O O

© 2008 Steve Marschner « 4

Rotation about z axis

4 cosf) —sinf 0
y'| |sinf cos@ O
4 0 0 |

1] Lo 0o o

Cornell CS4620 Fall 2008 » Lecture 7

-—o O O

© 2008 Steve Marschner = 4

Rotation about x axis

z! 10 0 0] [=

y'| |0 cos@® —sin@ 0] |y

21 [0 sin@ cos® 0O |z
] 1] _O 0 0 1_ _1_

Cornell C54620 Fall 2008 = Lecture 7 © 2008 Steve Marschner = 5

Rotation about x axis

z! 10 0 0] [=

y'| |0 cos@® —sin@ 0] |y

21 [0 sin@ cos® 0O |z
] 1] _O 0 0 1_ _1_

Cornell CS4620 Fall 2008 » Lecture 7 © 2008 Steve Marschner * 5

Rotation about y axis

z! Ccosf 0 sind 0] [z

y' | 0 1 0 0Of |y

2 | —sin@ 0 cos@ 0| |z
] 1] i 0 0 0 1_ _1_

Cornell C54620 Fall 2008 = Lecture 7 © 2008 Steve Marschner * 6

Rotation about y axis

S

ek

Cornell CS4620 Fall 2008 » Lecture 7

cos f
0
—sin 6
0

0
1
0
0

sin ¢
0

cos b
0

-—o O O

© 2008 Steve Marschner = 6

General rotations

* A rotation in 2D is around a point

* A rotation in 3D is around an axis
— so 3D rotation is w.r.t a line, not just a point

— there are many more 3D rotations than 2D
* a 3D space around a given point, not just 1D

Q

2D 3D

Cornell CS4620 Fall 2008 = Lecture 7 © 2008 Steve Marschner = 7

3D Rotation

* Rotation in 3D is about an axis in 3D space
passing through the origin

3D Rotation

* Rotation in 3D is about an axis in 3D space

passing through the origin

* Using a matrix representation, any matrix with an

orthonormal top-left 3x3 sub-matrix is a rotation

— Rows/columns are mutually orthogonal (0 dot
product)

thenr,*r, =0,r,*r, =0,r,°r, =0,r;°r, =Lr,°r, =Lr; °r, = 1.

S — S —

O_NH_
— o o 9

3D Rotation

* Rotation in 3D is about an axis in 3D space
passing through the origin

* Using a matrix representation, any matrix with an
orthonormal top-left 3x3 sub-matrix is a rotation

1

|
r
|
0

— Rows/columns are mutually orthogonal (0 dot
product)

— Determinantis 1

— Implies columns are also orthogonal, and that the
transpose is equal to the inverse

L, L

]
0 0

0

0
0
1

thenr,*r, =0,r,*r, =0,r,°r, =0,r;°r, =Lr,°r, =Lr; °r, = 1.

Specifying a rotation matrix

* Euler angles: Specify how much to rotate about X,
then how much about Y, then how much about Z

— Hard to think about, and hard to compose

cosy sinvy 0Of (1 0 0 cosa sina ()
[R| = |—=siny cosy 0|0 cosf sinf| [—sina cosa 0

0 0 1[|0 —sinf cosf 0 0 1

Alternative Representations

e Specify the axis and the angle (OpenGL method)
— Hard to compose multiple rotations
— Axis w, angle 0

Alternative Representations

e Specify the axis and the angle (OpenGL method)
— Hard to compose multiple rotations

A rotation by an angle # € R around axis specified by the unit vector @ = (wx, wy, w;) € R
is givenby |+ & sinf +&° (1 - cos6)

0 —61)2 {J.J}.
{I) — 0)2 0 _wx '

http://mathworld.wolfram.com/RodriguesRotationFormula.html

Non-Commutativity

Not Commutative (unlike in 2D)!!
Rotate by x, then y is not same as y then x
Order of applying rotations does matter

Follows from matrix multiplication not
commutative

— R1 * R2 is not the same as R2 * R1

Other Rotation Issues

e Rotation is about an axis at the origin

— For rotation about an arbitrary axis, use the same
trick as in 2D: Translate the axis to the origin, rotate,
and translate back again

Transformation Leftovers

e Shear etc extend naturally from 2D to 3D
e Rotation and Translation are the rigid-body
transformations:

— Do not change lengths or angles, so a body does not
deform when transformed

Building transforms from points

* Recall2D affine transformation has 6 degrees of freedom
(DOFs)

— this is the number of “knobs’” we have to set to define one

* Therefore 6 constraints suffice to define the transformation
— handy kind of constraint: point p maps to point q (2 constraints at once)

— three point constraints add up to constrain all 6 DOFs
(i.e. can map any triangle to any other triangle)

Cornell CS4620 Fall 2008 = Lecture 7 © 2008 Steve Marschner = 14

Building transforms from points

* Recall2D affine transformation has 6 degrees of freedom
(DOFs)

— this is the number of “knobs’” we have to set to define one

* Therefore 6 constraints suffice to define the transformation
— handy kind of constraint: point p maps to point q (2 constraints at once)

— three point constraints add up to constrain all 6 DOFs
(i.e. can map any triangle to any other triangle)

» 3D affine transformation has |2 degrees of freedom
— count them by looking at the matrix entries we're allowed to change

* Therefore |2 constraints suffice to define the transformation

— in 3D, this is 4 point constraints
(i.e. can map any tetrahedron to any other tetrahedron)

Cornell CS4620 Fall 2008 = Lecture 7 © 2008 Steve Marschner = 14

Coordinate Frames

e All of discussion in terms of operating on points
e But can also change coordinate system

 Example, motion means either point moves
backward, or coordinate system moves forward

P=(2,1) P =(1,1) P=(11)

Coordinate Frames: Rotations

0
@

P'

'cos 6

sin @

—sin 6

cos 6

cosf

sin @

—sin @

cosf

|

X

Geometric Interpretation 3D Rotations

Rows of matrix are 3 unit vectors of new coord frame
Can construct rotation matrix from 3 orthonormal vectors
Effectively, projections of point into new coord frame

(x, Y, z,)
R =|x y z

uvw \%

\xw yw ZW/

(X, Y Z (%) (u*p)
\xw Y ZW/ \Zp) \W.p/

The 3D synthetic camera model

The synthetic camera model involves two components,
specified independently:

* objects (a.k.a. geometry)

* viewer (a.k.a. camera)

Imaging with the synthetic camera

The image is rendered onto an image plane or projection plane (usually

in front of the camera).

Rays emanate from the center of projection (COP) at the center of the lens (or
pinhole).

The image of an object point P is at the intersection of the ray

through P and the image plane.

Specifying a viewer
A

o~

o~
COP =/

N Ih
(| N

Camera specification requires four kinds of parameters:
[©)] Position: the COP.
()] Orientation: rotations about axes with origin at the COP.

() Focal length: determines the size of the image on the film plane, or the field of
view.

()] Film plane: its width and height.

3D Geometry Pipeline

3‘{1
Y2
Model Space
(Object Space) :
Rotation
Translation

Resizing

World Space

3D Geometry Pipeline

Z‘J\l
Y2
Model Space
(Object Space) l
Rotation
Translation

Resizing

World Space

Ye
| =
o4 Le
ze/

) Eye Space)

(View Space) o
Rotation Projective,

Translation Scale
Translation

3D Geometry Pipeline (cont’d)

A Ip
e=0 1 . o
=] é,,.-.-.-:::::::i'.'. = 5_ . @
g s A N I
LA P e > Ts
v

Image Space (pixels)

Normalized Projection :
Raster Space

Screen Space (2D))
Space

Project Scale
Translation

World -> eye transformation

* Let’s look at how we would compute the
world->eye transformation.

w
World spac Eye space

(Object spac) (View space)

X,=X,°p"?

World -> eye transformation

* Let’s look at how we would compute the
world->eye transformation.

W
World Space Eye space
(Object space) (View space)

x,=X,°(p-e) — x" - 0][l ©
. 0 1

ye=ye.(p_e) Mv= y,; g 0 0
—_— Z —_—

z,=2,°(p-e) 0 0 o 1l/o o

S = O O

How to specify eye coordinate?

1. Give eye location e
2. Give target position p
3. Give upward direction u

OpenGL has a helper command:

X
ye h Z — _p—
N\ |/ z, ¢
p-¢
uxz,
X =
© Juxg,
Z XX
e e
y =
© |z, xx,
axb

3)

bxa
=-axb

gluLookAt (eyex, eyey, eyez, px, py, pz, upx, upy, upz)

Projections

* Projections transform points in n-space to m-space,
where m<n.

* In 3-D, we map points from 3-space to the projection
plane (PP) (a.k.a., image plane) along rays emanating
from the center of projection (COP):

copP

Projections

* Projections transform points in n-space to m-space,
where m<n.

* In 3-D, we map points from 3-space to the projection
plane (PP) (a.k.a., image plane) along rays emanating
from the center of projection (COP):

% . / / PP

copP

 There are two basic types of projections:
— Perspective — distance from COP to PP finite
— Parallel — distance from COP to PP infinite

Parallel projections

* For parallel projections, we specify a direction of
projection (DOP) instead of a COP.

* We can write orthographic projection onto the z=0
plane with a simple matrix, such that x’=x, y’=y.

x"
y' | =
1

N X

Parallel projections

* For parallel projections, we specify a direction of
projection (DOP) instead of a COP.

* We can write orthographic projection onto the z=0
plane with a simple matrix, such that x’=x, y’=y.

Q= O
Q00
= Q O

x"
y' | =
1

00k

N X

 Normally, we do not drop the z value right away.
Why not?

Properties of parallel projection

* Properties of parallel projection:
— Are actually a kind of affine transformation
e Parallel lines remain parallel
e Ratios are preserved

* Angles not (in general) preserved
— Not realistic looking /\

— Good for exact measurements,

Most often used in
 CAD,
* architectural drawings,

* etc,

where taking exact measurement

is important

Perspective effect

Perspective lllusion

Perspective lllusion

’ ; » . ' Fa £y -.
I exxa 52 M im ca @199 7 Sheparxd

