CS559: Computer Graphics

Lecture 15: B-Spline, Lighting, and Shading
Li Zhang
Spring 2010

Bezier Curve Subdivision

 Why is subdivision useful?

— Collision/intersection detection
e Recursive search

— Good for curve editing and approximation

Open Curve Approxmiation

Closed Curve Approximation

e
%

O0OC

Interpolate control | Has local control C2 continuity
points

Natural cubics
Hermite cubics Yes Yes No
Cardinal Cubics Yes Yes No

Bezier Cubics Yes Yes No

Interpolate control | Has local control C2 continuity
points

Natural cubics

Hermite cubics Yes Yes No
Cardinal Cubics Yes Yes No
Bezier Cubics Yes Yes No

Bspline Curves No Yes Yes

Bsplines

 Given pl,...pn, define a curve that approximates
the curve.

If b,(t) is very smooth, so will be f

If b,(t) has local support, f will

f(t) Zb (t)p. have local control

Uniform Linear B-splines

bi,z(t) = bo,z(t —1)

1 by(®) b,(t) bs() (
u ue[01)
0| : - L by,(U)=12-Uu Uu€ll2)
. 0 otherwise
P1

()= > b (0P,

How can we make the curve smooth?

e Convolution/filtering + Box({)

1 pP—

()= > b OP,

0

() ® Box(t) = (le b, (t)p. j ® Box(t) é
_ (Z (b, (t) ® Box(t))pij 0 b1'2(t)/ 3

AN

Uniform Quadratic B-splines

()= Y b OP,

Uniform Cubic Bspline

T T T
t=i+1 t=i+2 t=i+3 t=i+4

()= > b (0P,

Uniform B-splines

Why smoother?

— Linear = box filter ® box filter
— Quadric = linear ® box filter
— Cubic = quadric ® box filter

Sum = 1 property, translation invariant

SIS

1

0

0 1 2

3

4

5 6 7 8 9

10

Local control

C(k-2) continuity

f(1)=3 b, 0P

Interpolate control | Has local control C2 continuity
points

Natural cubics

Hermite cubics Yes Yes No
Cardinal Cubics Yes Yes No
Bezier Cubics Yes Yes No

Bspline Curves No Yes Yes

So far...

 We've talked exclusively about geometry.

— What is the shape of an object?
e g|Begin() ... glEnd()

— How do | place it in a virtual 3D space?
e g|MatrixMode() ...

— How to change viewpoints
e gluLookAt()

— How do | know which pixels it covers?
e Rasterization

— How do | know which of the pixels | should actually
draw?

e Z-buffer, BSP

So far

glColor(..) ;

.
I

Apply transforms ()

jects () ;

jec

Draw ob

R S IR
n-_mu_ e

VI
Ll -.“"L, g

SR

;,m“*Lm
ey i

£rTe
k}e\ .J- -— i

L
_r.n 1 i

Lit surface

Flat shaded

Next...

Once we know geometry, we have to ask one
more important question:

— To what value do | set each pixel?

Answering this question is the job of the shading
model.

Other names:

— Lighting model

— Light reflection model

— Local illumination model

— Reflectance model
— BRDF

An abundance of photons

* Properly determining the right color is really
hard.

Particle Scattering

An abundance of photons

* Properly determining the right color is really
hard.

Translucency

An abundance of photons

* Properly determining the right color is really
hard.

Refraction

An abundance of photons

* Properly determining the right color is really
hard.

Global Effect

Our problem

We’re going to build up to an approximation of
reality called the Phong illumination model.

It has the following characteristics:

— not physically based

— gives a “first-order” approximation to physical light
reflection

— very fast
— widely used

In addition, we will assume local illumination, i.e.,
light goes: light source -> surface -> viewer.

No interreflections, no shadows.

INJ] = fleff =iV = 1

* @Given:
— a point P on a surface visible through pixel p
— The normal N at P
— The lighting direction, L, and intensity, L ,at P
— The viewing direction, V, at P
— The shading coefficients at P

e Compute the color, I, of pixel p.

e Assume that the direction vectors are normalized:

“Iteration zero”

The simplest thing you can do is...
Assign each polygon a single color:

| = k

e
where
— | is the resulting intensity

— k. is the emissivity or intrinsic shade associated
with the object

This has some special-purpose uses, but not
really good for drawing a scene.

“Iteration one”

* Let’s make the color at least dependent on the
overall quantity of light available in the scene:

| = k., + k_L,

e

— k, is the ambient reflection coefficient.
 really the reflectance of ambient light
e “ambient” light is assumed to be equal in all directions

— L is the ambient light intensity.

e Physically, what is “ambient” light?

Ambient Term

 Hack to simulate multiple bounces, scattering of
light

e Assume light equally from all directions

tel
e

Slide from Ravi Ramamoorthi

Wavelength dependence

Really, k., k,, and L, are functions over all wavelengths A.

Ideally, we would do the calculation on these functions. For
the ambient shading equation, we would start with:

1(A)= K, (4)L, (1)

then we would find good RGB values to represent the
spectrum /(A).

Traditionally, though, k, and I, are represented as RGB triples,
and the computation is performed on each color channel
separately:

R (a,R — a ,R
G (a,G - a .G
B (a,B — a ,B

Diffuse reflection

| = k, + kL,

e So far, objects are uniformly lit.
— not the way things really appear

— in reality, light sources are localized in position or
direction

e Diffuse, or Lambertian reflection will allow

reflected intensity to vary with the direction of
the light.

Diffuse reflectors
e Diffuse reflection occurs from dull, matte
surfaces, like latex paint, or chalk.

 These diffuse or Lambertian reflectors
reradiate light equally in all directions.

Diffuse reflectors

e Diffuse reflection occurs from dull, matte
surfaces, like latex paint, or chalk.

 These diffuse or Lambertian reflectors
reradiate light equally in all directions.

e Picture a rough surface with lots of tiny
microfacets.

n{i}\\ l‘»

<] : ~,]

Diffuse reflectors

e ...Or picture a surface with little pigment particles

embedded beneath the surface (neglect reflection at the
surface for the moment):

NN

T 4 W

N

 The microfacets and pigments distribute light rays in all
directions.

e Embedded pigments are responsible for the coloration of
diffusely reflected light in plastics and paints.

 Note: the figures above are intuitive, but not strictly
(physically) correct.

Diffuse reflectors, cont.

 The reflected intensity from a diffuse surface
does not depend on the direction of the
viewer. The incoming light, though, does
depend on the direction of the light source:

T

“Iteration two”

* The incoming energy is proportional to _cos
giving the diffuse reflection equations:

| =k, +k.L

k,L-(L-N)

=k, +k, L, +k,L-max(0,L-N)

e where:

— k, is the diffuse reflection coefficient

— L, is the intensity of the light source

— N is the normal to the surface (unit vector)

— L is the direction to the light source (unit vector)

Gouraud interpolation artifacts

 Gouraud interpolation has significant limitations.

— |If the polygonal approximation is too coarse, we can
miss specular highlights.

Phong interpolation

 To get an even smoother result with fewer
artifacts, we can perform Phong interpolation.
 Here’s how it works:
1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.

N,
N, 2 :\1
N.

'

Interpolate

v

- iN
\
Shade
}

Gouraud vs. Phong interpolation

How to compute vertex normals

A weighted average of normals of neighboring triangles

Z areatrianglentriangle

__ triangle

vertex
Z areatriangle

triangle

How to compute vertex normals

A weighted average of normals of neighboring triangles

Z ar.ea'trianglentriangle

__triangle

Z area‘triangleﬂtriangle

triangle

	CS559: Computer Graphics
	Bezier Curve Subdivision
	Open Curve Approxmiation
	Closed Curve Approximation
	Slide Number 5
	Slide Number 6
	Bsplines
	Uniform Linear B-splines
	How can we make the curve smooth?
	Uniform Quadratic B-splines
	Uniform Cubic Bspline
	Uniform B-splines
	Slide Number 13
	So far…
	So far
	Next…
	An abundance of photons
	An abundance of photons
	An abundance of photons
	An abundance of photons
	Our problem
	Setup…
	“Iteration zero”
	“Iteration one”
	Ambient Term
	Wavelength dependence
	Diffuse reflection
	Diffuse reflectors
	Diffuse reflectors
	Diffuse reflectors
	Diffuse reflectors, cont.
	“Iteration two”
	Gouraud interpolation artifacts
	Phong interpolation
	Gouraud vs. Phong interpolation
	How to compute vertex normals
	How to compute vertex normals

