CS559: Computer Graphics

Lecture 23: Shape Modeling
Li Zhang
Spring 2010

Shape model

* You have some experience with shape modeling
— Rails as curves
— Tree = cone + cylinder

 There are many ways to represent the shape
of an object

* choosing a representation depends on
application and requirement

Boundary vs. Solid Representations

* B-rep: boundary representation
— Sometimes we only care about the surface
— Rendering opaque objects

* Solid modeling

— Some representations are best thought of defining
the space filled, rather than the surface around the
space

— Medical data with information attached to the space
— Transparent objects with internal structure

— Taking cuts out of an object; “What will | see if |
break this object?”

Shape Representation

Parametric models
mplicit models

Procedural models

Parametric Model

e generates all the points on a surface (volume) by
“plugging in a parameter”
— Eg (sin¢c038,sin¢sin6,cos¢)
0<0<2rt, O=s¢p=n

— Easy to render, how?
— Easy to texture map

Implicit Models

* Implicit models use an equation that is O if the
point is on the surface

— Essentially a function to test the status of a point
—Eg x+y’+z°-1=0
— Easy to test inside/outside/on

— Hard to?

— Render
— Texture map

Parametric Model

e generates all the points on a surface (volume) by
“plugging in a parameter”
— Eg (sin¢c038,sin¢sin6,cos¢)
0<0<2rt, O=s¢p=n

— Easy to render, how?

— Easy to texture map

— Hard to
* Test inside/outside/on

Procedural Modeling

e aprocedure is used to describe how the shape is
formed

Parameterization

 Parameterization is the process of associating a set of parameters with
every point on an object
— Forinstance, a line is easily parameterized by a single value
— Triangles in 2D can be parameterized by their barycentric coordinates
— Triangles in 3D can be parameterized by 3 vertices and the barycentric
coordinates (need both to locate a point in 3D space)
» Several properties of a parameterization are important:
— The smoothness of the mapping from parameter space to 3D points
— The ease with which the parameter mapping can be inverted
 We care about parameterizations for several reasons

— Texture mapping is the most obvious one you have seen so far; require (s,t)
parameters for every point in a triangle

Polygon Meshes

A mesh is a set of polygons connected to form an
object

A mesh has several components, or geometric

entities: &
— Faces
— Edges

e the boundary between faces
— Vertices

* the boundaries between edges,
* or where three or more faces meet

— Normals, Texture coordinates, colors, shading
coefficients, etc

 What is the counterpart of a polygon mesh in
curve modeling?

Polygonal Data Structures

* Polygon mesh data structures are application
dependent

* Different applications require different operations
to be fast
— Find the neighbor of a given face
— Find the faces that surround a vertex

— Intersect two polygon meshes

* You typically choose:

— Which features to store explicitly (vertices, faces,
normals, etc)

— Which relationships you want to be explicit (vertices
belonging to faces, neighbors, faces at a vertex, etc)

Polygon Soup

* Many polygon models are just lists of polygons

struct Vertex {
float coords|[3];

}

struct Triangle {
struct Vertex verts[3];

}

struct Triangle mesh[n];

glBegin (GL_TRIANGLES)
for (1 =0 ; i< n ; i++)
{
glVertex3fv (mesh[i] .verts[0]) ;
glVertex3fv (mesh[i] .verts[1l]);
glVertex3fv (mesh[i] .verts[2]) ;

S/vs

GL_TRIANGLES

}
glEnd() ;

vi
vo

Important Point: OpenGL,
and almost everything else,
assumes a constant vertex
ordering: clockwise or
counter-clockwise. Default,
and slightly more standard, is
counter-clockwise

v v2 v4 vi 2
v3
vy
v3
v6 v4
GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

Cube Soup

struct Triangle Cube[1l2] =
{{{1,1,1},{1,0,0},{1,1,0}},
{{1,1,1},{1,0,1},{1,0,0}},
{{0,1,1},¢{1,1,1},{0,1,0}},
{{1,1,1},{1,1,0},{0,1,0}},
}; (0,0.1) (0,1,1)
(1,0,1

1,1)

(;0,0) (0,1,0)

(1,0,0) (1,1,0)

Polygon Soup Evaluation

 What are the advantages?
 What are the disadvantages?

Polygon Soup Evaluation

 What are the advantages?
— It’s very simple to read, write, transmit, etc.
— A common output format from CAD modelers
— The format required for OpenGL

* BIG disadvantage: No higher order information
— No information about neighbors
— No open/closed information
— No guarantees on degeneracies

Vertex Indirection

vO

vertices vO | vl | v2

v3

v4

faces 0|2 |1 0|1 |4 1

v2

v3

There are reasons not to store the vertices explicitly at each polygon

— Wastes memory - each vertex repeated many times

— Very messy to find neighboring polygons

— Difficult to ensure that polygons meet correctly
Solution: Indirection

— Put all the vertices in a list

— Each face stores the indices of its vertices

Advantages? Disadvantages?

Cube with Indirection

struct Vertex CubeVerts|[8] =
{{o0,0,0},{1,0,0},{1,1,0},{0,1,0},
{0,0,1},{(1,0,1},4{1,1,1},4{0,1,1}};

struct Triangle CubeTriangles[1l2] =
{{6,1,2},{6,5,1},{6,2,3},{6,3,7},
{4,7,3},{(4,3,0},{4,0,1},1{4,1,5},
{6,4,5},{(6,7,4},{(1,2,3},{(1,3,0}}; 4

Indirection Evaluation

* Advantages:

— Connectivity information is easier to evaluate
because vertex equality is obvious

— Saving in storage:

* Vertex index might be only 2 bytes, and a vertex is
probably 12 bytes

* Each vertex gets used at least 3 and generally 4-6 times,
but is only stored once

— Normals, texture coordinates, colors etc. can all be
stored the same way

* Disadvantages:
— Connectivity information is not explicit

OpenGL and Vertex Indirection

struct Vertex {
float coords|[3];
}

struct Triangle ({
GLuint verts[3];

}
struct Mesh {

struct Vertex vertices[m];
struct Triangle triangles|[n];

glEnableClientState (GL_VERTEX ARRAY)
glVertexPointer (3, GL FLOAT, sizeof(struct Vertex),
mesh.vertices) ;
glBegin (GL _TRIANGLES)
for (1 =0 ; i< n ; i++)
{
glArrayElement (mesh. triangles[i] .verts[0]) ;
glArrayElement (mesh. triangles[i] .verts[1]) ;
glArrayElement (mesh. triangles[i] .verts[2]) ;

}
glEnd() ;

OpenGL and Vertex Indirection (v2)

glEnableClientState (GL_VERTEX ARRAY)
glVertexPointer (3, GL FLOAT, sizeof(struct Vertex),
mesh.vertices) ;
for (1 =0 ; i< n ; i++)
glDrawElements (GL_TRIANGLES, 3, GL UNSIGNED_ INT,
mesh. triangles[i] .verts) ;

Minimizes amount of data sent to the renderer

Fewer function calls

Faster!

Other tricks to accelerate using array, see Red book, Ch 2 on
vertex arrays

Polygon Modeling

* Polygons are the dominant force in modeling for real-
time graphics
e Why?

Polygons Dominate because

Everything can be turned into polygons (almost
everything)

— Normally an error associated with the conversion, but
with time and space it may be possible to reduce this
error

We know how to render polygons quickly
Texture mapping easily

Memory and disk space is cheap
Simplicity

What’s Bad About Polygons?

 What are some disadvantages of polygonal
representations?

Polygons Aren’t Great

They are always an approximation to curved surfaces

— Most real-world surfaces are curved, particularly natural
surfaces

— They throw away information
— Normal vectors are approximate

— But can be as good as you want, if you are willing to pay
in size

They can be very unstructured

They are hard to globally parameterize (complex
concept)

— How do we parameterize them for texture mapping?
It is difficult to perform many geometric operations
— Collision, intersection

Normal Vectors in Mesh

* Normal vectors give information about the true
surface shape

* Per-Face normals:

— One normal vector for each face, stored as part of
face (Flat shading)

struct Vertex {
float coords|[3];

}

struct Triangle ({
GLuint verts([3];
float normal[3];

}
struct Mesh {

struct Vertex vertices[m];
struct Triangle triangles|[n];

Normal Vectors in Mesh

* Normal vectors give information about the true
surface shape

e Per-Vertex normals:

— A normal specified for every vertex (smooth
shading)

struct Vertex {
float coords|[3];
float normal[3];
}
struct Triangle ({
GLuint verts[3];
}
struct Mesh {
struct Vertex vertices[m];
struct Triangle triangles|[n];

Storing Other Information

* Colors, Texture coordinates and so on can all be
treated like vertices or normals

 Lighting/Shading coefficients may be per-face,
per-object, or per-vertex

Other Data in Mesh

* Normal vectors give information about the true
surface shape

* Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

e Per-Vertex Texture Coord

struct Vertex {
float coords|[3];
float normal[3];
float texCoords[2];
}
struct Triangle {
GLuint verts[3];
}
struct Mesh {
Vertex vertices[m];
Triangle triangles|[n];

Other Data in Mesh

* Normal vectors give information about the true
surface shape

* Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

* Per-Vertex Texture Coord, Shading Coefficients

struct Vertex {
float coords|[3];
float normal[3];
float texCoords[2], diffuse[3], shininess;
}
struct Triangle ({
GLuint verts[3];
}
struct Mesh {
Vertex vertices[m];
Triangle triangles|[n];

Other Data in Mesh

* Normal vectors give information about the true
surface shape

* Per-Vertex normals:
— A normal specified for every vertex (smooth shading)
* Per-Vertex Texture Coord, Shading Coefficients

struct Vertex {
float coords|[3];
}

struct Triangle ({
GLuint verts[3];
}
struct Mesh {
Vertex vertices[m];
float normals[3*m];
float texCoords[2*m], diffuse[3*m], shininess[m];
Triangle triangles|[n];

Issues with Polygons

* They are inherently an approximation

— Things like silhouettes can never be perfect

without very large numbers of polygons, and
corresponding expense

— Normal vectors are not specified everywhere
* Interaction is a problem

— Dragging points around is time consuming

— Maintaining things like smoothness is difficult
* Low level representation

— Eg: Hard to increase, or decrease, the resolution
— Hard to extract information like curvature

In Project 3, we use Sweep Objects

Define a polygon by its edges

Sweep it along a path
The path taken by the edges form a surface - the sweep surface

Special cases
— Surface of revolution: Rotate edges about an axis

— Extrusion: Sweep along a straight line

A

Rendering Sweeps

* Convert to polygons
— Break path into short segments
— Create a copy of the sweep polygon at each segment
— Join the corresponding vertices between the polygons

— May need things like end-caps on surfaces of revolution
and extrusions

e Normals?

— Normals come from sweep polygon and path orientation

e Texture Coord?

— Sweep polygon defines one texture parameter, sweep
path defines the other

General Sweeps

 The path maybe any curve

ELIPSOID
EOETED
TO
SINGLE
RAIL

General Sweeps

 The path maybe any curve

* The polygon that is swept may be transformed as
it is moved along the path

— Scale, rotate with respect to path orientation, ...

Cube Twisted Cube

General Sweeps

 The path maybe any curve

* The polygon that is swept may be transformed as
it is moved along the path

— Scale, rotate with respect to path orientation, ...

General Sweeps

The path maybe any curve

The polygon that is swept may be transformed as it is
moved along the path

— Scale, rotate with respect to path orientation, ...

One common way to specify is:

— Give a poly-line (sequence of line segments) as the path
— Give a poly-line as the shape to sweep

— Give a transformation to apply at the vertex of each path
segment

Texture Coord?
Difficult to avoid self-intersection

Klein Bottle

Klein Bottle

Mobious Strip

Non-orientable surfaces

Change Topology when Sweeping

