CS559: Computer Graphics

Lecture 24: Shape Modeling
Li Zhang
Spring 2010

Polygon Meshes

A mesh is a set of polygons connected to form an object

A mesh has several components, or geometric

entities:

- Faces
- Edges
 - the boundary between faces
- Vertices
 - the boundaries between edges,
 - or where three or more faces meet
- Normals, Texture coordinates, colors, shading coefficients, etc
- What is the counterpart of a polygon mesh in curve modeling?

OpenGL and Vertex Indirection

```
struct Vertex {
   float coords[3];
struct Triangle {
   GLuint verts[3];
struct Mesh {
   struct Vertex vertices[m];
   struct Triangle triangles[n];
glEnableClientState(GL VERTEX ARRAY)
glVertexPointer(3, GL FLOAT, sizeof(struct Vertex),
                  mesh.vertices);
glBegin(GL TRIANGLES)
   for (i = 0 ; i < n ; i++)
       glArrayElement(mesh.triangles[i].verts[0]);
       glArrayElement(mesh.triangles[i].verts[1]);
       glArrayElement(mesh.triangles[i].verts[2]);
glEnd();
```

Normal Vectors in Mesh

- Normal vectors give information about the true surface shape
- Per-Face normals:

One normal vector for each face, stored as part of

face (Flat shading)

```
struct Vertex {
    float coords[3];
}
struct Triangle {
    GLuint verts[3];
    float normal[3];
}
struct Mesh {
    struct Vertex vertices[m];
    struct Triangle triangles[n];
}
```

Normal Vectors in Mesh

- Normal vectors give information about the true surface shape
- Per-Vertex normals:

A normal specified for every vertex (smooth)

shading)

```
struct Vertex {
     float coords[3];
    float normal[3];
}
struct Triangle {
     GLuint verts[3];
}
struct Mesh {
     struct Vertex vertices[m];
     struct Triangle triangles[n];
}
```

Other Data in Mesh

- Normal vectors give information about the true surface shape
- Per-Vertex normals:
 - A normal specified for every vertex (smooth shading)
- Per-Vertex Texture Coord

```
struct Vertex {
    float coords[3];
    float normal[3];
    float texCoords[2];
}
struct Triangle {
    GLuint verts[3];
}
struct Mesh {
    Vertex vertices[m];
    Triangle triangles[n];
}
```

Other Data in Mesh

- Normal vectors give information about the true surface shape
- Per-Vertex normals:
 - A normal specified for every vertex (smooth shading)
- Per-Vertex Texture Coord, Shading Coefficients

```
struct Vertex {
    float coords[3];
    float normal[3];
    float texCoords[2], diffuse[3], shininess;
}
struct Triangle {
    GLuint verts[3];
}
struct Mesh {
    Vertex vertices[m];
    Triangle triangles[n];
}
```

Issues with Polygons

- They are inherently an approximation
 - Things like silhouettes can never be perfect without very large numbers of polygons, and corresponding expense
 - Normal vectors are not specified everywhere
- Interaction is a problem
 - Dragging points around is time consuming
 - Maintaining things like smoothness is difficult
- Low level representation
 - Eg: Hard to increase, or decrease, the resolution
 - Hard to extract information like curvature

In Project 3, we use Sweep Objects

- Define a polygon by its edges
- Sweep it along a path
- The path taken by the edges form a surface the sweep surface
- Special cases
 - Surface of revolution: Rotate edges about an axis

General Sweeps

The path maybe any curve

General Sweeps

- The path maybe any curve
- The polygon that is swept may be transformed as it is moved along the path
 - Scale, rotate with respect to path orientation, ...

Twisted Cube

General Sweeps

- The path maybe any curve
- The polygon that is swept may be transformed as it is moved along the path
 - Scale, rotate with respect to path orientation, ...
- One common way to specify is:
 - Give a poly-line (sequence of line segments) as the path
 - Give a poly-line as the shape to sweep
 - Give a transformation to apply at the vertex of each path segment
- Texture Coord?
- Difficult to avoid self-intersection

Klein Bottle

Klein Bottle

Mobious Strip

Non-orientable surfaces

Change Topology when Sweeping

Spatial Enumeration

- Basic idea: Describe something by the space it occupies
 - For example, break the volume of interest into lots of tiny cubes
 - Data is associated with each voxel (volume element), binary or grayscale.
 - Works well for things like medical data (MRI or CAT scans, enumerates the volume)

Spatial Enumeration

- Basic idea: Describe something by the space it occupies
 - For example, break the volume of interest into lots of tiny cubes
 - Data is associated with each voxel (volume element), binary or grayscale.
 - Works well for things like medical data (MRI or CAT scans, enumerates the volume)
- Problem to overcome:
 - For anything other than small volumes or low resolutions, the number of voxels explodes
 - Note that the number of voxels grows with the cube of linear dimension

Quadtree Idea

Octrees (and Quadtrees)

- Build a tree for adaptive voxel resolution
 - Large voxel for smooth regions
 - Small voxel for fine structures
- Quadtree is for 2D (four children for each node)
- Octree is for 3D (eight children for each node)

Rendering Octrees

- Volume rendering renders octrees and associated data directly
 - A special area of graphics, visualization, not covered in this class
- Can convert to polygons:
 - Find iso-surfaces within the volume and render those
 - Typically do some interpolation (smoothing) to get rid of the artifacts from the voxelization

Rendering Octrees

 Typically render with colors that indicate something about the data

One MRI slice

Surface rendering with color coded brain activity

Parametric surface

- Line Segments (1D) -> polygon meshes (2D)
- Cubic curves (1D) -> BiCubic Surfaces (2D)
 - Bezier curve -> Bezier surface

Bilinear Bezier Patch

Define a surface that passes through a, b, c, d?

$$e = (1 - u)a + ub,$$

 $f = (1 - u)c + ud.$

Looks familiar?

$$p(u, v) = (1 - v)e + vf$$

$$= (1 - u)(1 - v)a + u(1 - v)b + (1 - u)vc + uvd.$$

Biquadratic Bezier Patch

Define a surface that passes a 3x3 control lattice.

 $p(u,v) = (1-v)^2 p(u,0) + 2(1-v)v p(u,1) + v^2 p(u,2)$

Bicubic Bezier Patch

4x4 control points?

 Demo: http://www.nbb.cornell.edu/neurobio/ land/OldStudentProjects/cs490-96to97/anson/ BezierPatchApplet/index.html

 Connecting Bezier Patches, demo on the same page.

De Casteljau algorithm in 2D

 $p_{00}^{1}(u,v) = Bilinear(p_{00}, p_{10}, p_{01}, p_{11}; u, v)$

 $p_{10}^1(u,v) = Bilinear(p_{10}, p_{20}, p_{11}, p_{21}; u, v)$

 $p_{01}^{1}(u,v) = Bilinear(p_{01}, p_{11}, p_{02}, p_{12}; u, v)$

 $p_{11}^{1}(u,v) = Bilinear(p_{11}, p_{21}, p_{12}, p_{22}; u, v)$

 $p_{00}^{1}(u,v) = Bilinear(p_{00}, p_{10}, p_{01}, p_{11}; u, v)$

Different degree in different directions

General Formula for Bezier Patch

If we have controll points p_{i,j} on a m by n lattice,

$$p(u, v) = \sum_{i=0}^{m} B_{i}^{m}(u) \sum_{j=0}^{n} B_{j}^{n}(v) p_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(u) B_{j}^{n}(v) p_{i,j}$$
$$= \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} {n \choose j} u^{i} (1-u)^{m-i} v^{j} (1-v)^{n-j} p_{i,j}$$

- Properties
 - Invariant to affine transform
 - Convex combination,
 - Used for intersection

$$\sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) B_j^n(v) = 1$$

General Formula for Bezier Patch

If we have controll points p_{i,j} on a m by n lattice,

$$p(u, v) = \sum_{i=0}^{m} B_{i}^{m}(u) \sum_{j=0}^{n} B_{j}^{n}(v) p_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{i}^{m}(u) B_{j}^{n}(v) p_{i,j}$$
$$= \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} {n \choose j} u^{i} (1-u)^{m-i} v^{j} (1-v)^{n-j} p_{i,j}$$

Surface Normal

$$\mathbf{n}(u,v) = \frac{\partial \mathbf{p}(u,v)}{\partial u} \times \frac{\partial \mathbf{p}(u,v)}{\partial v}.$$

$$\frac{\partial p(u, v)}{\partial u} = m \sum_{j=0}^{n} \sum_{i=0}^{m-1} B_i^{m-1}(u) B_j^n(v) [p_{i+1, j} - p_{i, j}]$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = n \sum_{i=0}^{m} \sum_{j=0}^{n-1} B_i^m(u) B_j^{n-1}(v) [\mathbf{p}_{i,j+1} - \mathbf{p}_{i,j}]$$

Issues with Bezier Patches

- With Bézier or B-spline patches, modeling complex surfaces amounts to trying to cover them with pieces of rectangular cloth.
- It's not easy, and often not possible if you don't make some of the patch edges degenerate (yielding triangular patches).

- Trying to animate that object can make continuity very difficult, and if you're not very careful, your model will show creases and artifacts near patch seams.
- Subdivision Surface is a promising solution.

Subdivision Surface

From a coarse control mesh to smooth mesh with infinite resolution

Example: Toy story 2

Subdivision Curve

We have seen this idea before

Shirley, Figure 15.15, The limiting curve is a quadratic Bezier Curve

RTR 3e, Figure 13.29, The limiting curve is a quadratic B-spline

Subdivision Curves: Approximating

Initial (Control) Curve:
$$P_0 = \{\mathbf{p}_0^0, \dots, \mathbf{p}_{n-1}^0\},$$

For each iteration k+1, add two vertices between: p_i^k and p_{i+1}^k

$$\mathbf{p}_{2i}^{k+1} = \frac{3}{4}\mathbf{p}_{i}^{k} + \frac{1}{4}\mathbf{p}_{i+1}^{k},$$

$$\mathbf{p}_{2i+1}^{k+1} = \frac{1}{4}\mathbf{p}_i^k + \frac{3}{4}\mathbf{p}_{i+1}^k. \quad .$$

Approximating: Limit curve is very smooth (C2), but does not pass through control points

Subdivision Curves: Interpolating

Initial (Control) Curve:
$$P_0 = \{\mathbf{p}_0^0, \dots, \mathbf{p}_{n-1}^0\},$$

For each iteration k+1, add two vertices between: p_i^k and p_{i+1}^k

$$\begin{aligned} \mathbf{p}_{2i}^{k+1} &= \mathbf{p}_{i}^{k}, \\ \mathbf{p}_{2i+1}^{k+1} &= (\frac{1}{2} + w)(\mathbf{p}_{i}^{k} + \mathbf{p}_{i+1}^{k}) - w(\mathbf{p}_{i-1}^{k} + \mathbf{p}_{i+2}^{k}). \end{aligned}$$

Interpolating: for 0<w<1/8, limit curve is C1, and passes through control points

Subdivision Curves: Interpolating

Handling Boundary Cases

Figure 12.36. The creation of a reflection point, p_{-1} , for open polylines. The reflection point is computed as: $p_{-1} = p_0 - (p_1 - p_0) = 2p_0 - p_1$.

Subdivision Surfaces

Extend subdivision idea from curves to surfaces

Basic Steps

Figure 13.33: Subdivision as refinement and smoothing. The refinement phase creates new vertices and reconnects to create new triangles, and the smoothing phase computes new positions for the vertices.

Loop Subdivision

- Regular vertex: valence = 6
- Irregular vertex: valence != 6
- Irregular vertices can only be initial vertices.

Loop Subdivision

$$p^{k+1} = (1 - n\beta)p^k + \beta(p_0^k + \dots + p_{n-1}^k),$$

$$\mathbf{p}_{i}^{k+1} = \frac{3\mathbf{p}^{k} + 3\mathbf{p}_{i}^{k} + \mathbf{p}_{i-1}^{k} + \mathbf{p}_{i+1}^{k}}{8}, i = 0 \dots n-1.$$

$$\beta(n)=\frac{3}{n(n+2)}.$$

$$\beta(n) = \frac{1}{n} \left(\frac{5}{8} - \frac{(3 + 2\cos(2\pi/n))^2}{64} \right)$$

Loop Subdivision

Figure 13.37: A worm subdivided three times with Loop's subdivision scheme.

C2 for regular vertices C1 for irregular vertices

Limiting Surface

 Position and tangent of a vertex of the limiting surface can be computed directly

$$\mathbf{p}^{\infty} = (1 - n\beta)\mathbf{p}^k + \beta(\mathbf{p}_0^k + \dots + \mathbf{p}_{n-1}^k),$$
$$\gamma(n) = \frac{1}{n + \frac{3}{8\beta(n)}}.$$

$$t_u = \sum_{i=0}^{n-1} \cos(2\pi i/n) p_i^k, \quad t_v = \sum_{i=0}^{n-1} \sin(2\pi i/n) p_i^k.$$

Figure 13.44: Illustration of the $\sqrt{3}$ -subdivision scheme. A 1-to-3 split is performed instead of a 1-to-4 split as for Loop's and the modified butterfly schemes. First, a new vertex is generated at the center of each triangle. Then, this vertex is connected to the triangle's three vertices. Finally, the old edges are flipped. (Illustration after Kobbelt [505].)

$$p_m^{k+1} = (p_a^k + p_b^k + p_c^k)/3$$

$$p^{k+1} = (1 - n\beta)p^k + \beta \sum_{i=0}^{n-1} p_i^k$$

$$\beta(n) = \frac{4 - 2\cos(2\pi/n)}{9n}$$

C2 for regular vertices C1 for irregular vertices

Figure 13.46: A worm is subdivided three times with the $\sqrt{3}$ -subdivision scheme.

Sqrt(3) vs Loop

Figure 13.37: A worm subdivided three times with Loop's subdivision scheme.

Figure 13.46: A worm is subdivided three times with the $\sqrt{3}$ -subdivision scheme.

- + slower triangle growth rate
- + better for adaptive subdivision
- Edge flipping adds complexity
- Less intuitive at first few iterations