CS559: Computer Graphics

Lecture 24: Shape Modeling
Li Zhang
Spring 2010

Polygon Meshes

A mesh is a set of polygons connected to form an
object

A mesh has several components, or geometric

entities: &
— Faces
— Edges

e the boundary between faces
— Vertices

* the boundaries between edges,
* or where three or more faces meet

— Normals, Texture coordinates, colors, shading
coefficients, etc

 What is the counterpart of a polygon mesh in
curve modeling?

OpenGL and Vertex Indirection

struct Vertex {
float coords|[3];
}

struct Triangle ({
GLuint verts[3];

}
struct Mesh {

struct Vertex vertices[m];
struct Triangle triangles|[n];

glEnableClientState (GL_VERTEX ARRAY)
glVertexPointer (3, GL FLOAT, sizeof(struct Vertex),
mesh.vertices) ;
glBegin (GL _TRIANGLES)
for (1 =0 ; i< n ; i++)
{
glArrayElement (mesh. triangles[i] .verts[0]) ;
glArrayElement (mesh. triangles[i] .verts[1]) ;
glArrayElement (mesh. triangles[i] .verts[2]) ;

}
glEnd() ;

Normal Vectors in Mesh

* Normal vectors give information about the true
surface shape

* Per-Face normals:

— One normal vector for each face, stored as part of
face (Flat shading)

struct Vertex {
float coords|[3];

}

struct Triangle ({
GLuint verts([3];
float normal[3];

}
struct Mesh {

struct Vertex vertices[m];
struct Triangle triangles|[n];

Normal Vectors in Mesh

* Normal vectors give information about the true
surface shape

e Per-Vertex normals:

— A normal specified for every vertex (smooth
shading)

struct Vertex {
float coords|[3];
float normal[3];
}
struct Triangle ({
GLuint verts[3];
}
struct Mesh {
struct Vertex vertices[m];
struct Triangle triangles|[n];

Other Data in Mesh

* Normal vectors give information about the true
surface shape

* Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

e Per-Vertex Texture Coord

struct Vertex {
float coords|[3];
float normal[3];
float texCoords[2];
}
struct Triangle {
GLuint verts[3];
}
struct Mesh {
Vertex vertices[m];
Triangle triangles|[n];

Other Data in Mesh

* Normal vectors give information about the true
surface shape

* Per-Vertex normals:
— A normal specified for every vertex (smooth shading)

* Per-Vertex Texture Coord, Shading Coefficients

struct Vertex {
float coords|[3];
float normal[3];
float texCoords[2], diffuse[3], shininess;
}
struct Triangle ({
GLuint verts[3];
}
struct Mesh {
Vertex vertices[m];
Triangle triangles|[n];

Issues with Polygons

* They are inherently an approximation

— Things like silhouettes can never be perfect

without very large numbers of polygons, and
corresponding expense

— Normal vectors are not specified everywhere
* Interaction is a problem

— Dragging points around is time consuming

— Maintaining things like smoothness is difficult
* Low level representation

— Eg: Hard to increase, or decrease, the resolution
— Hard to extract information like curvature

In Project 3, we use Sweep Objects

Define a polygon by its edges

Sweep it along a path
The path taken by the edges form a surface - the sweep surface

Special cases
— Surface of revolution: Rotate edges about an axis

— Extrusion: Sweep along a straight line

A

General Sweeps

 The path maybe any curve

ELIPSOID
EOETED
TO
SINGLE
RAIL

General Sweeps

 The path maybe any curve

* The polygon that is swept may be transformed as
it is moved along the path

— Scale, rotate with respect to path orientation, ...

Cube Twisted Cube

General Sweeps

The path maybe any curve

The polygon that is swept may be transformed as it is
moved along the path

— Scale, rotate with respect to path orientation, ...

One common way to specify is:

— Give a poly-line (sequence of line segments) as the path
— Give a poly-line as the shape to sweep

— Give a transformation to apply at the vertex of each path
segment

Texture Coord?
Difficult to avoid self-intersection

Klein Bottle

Klein Bottle

Mobious Strip

Non-orientable surfaces

Change Topology when Sweeping

Spatial Enumeration

* Basic idea: Describe something by the space it
occupies
— For example, break the volume of interest into lots
of tiny cubes

e Data is associated with each voxel (volume element),
binary or grayscale.

* Works well for things like medical data (MRI or CAT
scans, enumerates the volume)

Spatial Enumeration

* Basic idea: Describe something by the space it
occupies
— For example, break the volume of interest into lots
of tiny cubes

e Data is associated with each voxel (volume element),
binary or grayscale.

* Works well for things like medical data (MRI or CAT
scans, enumerates the volume)

e Problem to overcome:

— For anything other than small volumes or low
resolutions, the number of voxels explodes

— Note that the number of voxels grows with the cube
of linear dimension

O] @2

N

Octrees (and Quadtrees)

* Build a tree for adaptive voxel resolution
— Large voxel for smooth regions
— Small voxel for fine structures

 Quadtree is for 2D (four children for each node)
e Octree is for 3D (eight children for each node)

Rendering Octrees

* Volume rendering renders octrees and associated data
directly

— A special area of graphics, visualization, not covered in this
class

e (Can convert to polygons:
— Find iso-surfaces within the volume and render those

— Typically do some interpolation (smoothing) to get rid of
the artifacts from the voxelization

Rendering Octrees

* Typically render with colors that indicate
something about the data

One MRI slice Surface rendering with
color coded brain activity

Parametric surface

* Line Segments (1D) -> polygon meshes (2D)

* Cubic curves (1D) -> BiCubic Surfaces (2D)
— Bezier curve -> Bezier surface

Bilinear Bezier Patch

* Define a surface that passes through a, b, ¢, d?

_ Looks familiar?
p(u, *U) — (1 — ‘U)e + of / |
= (1—-u)(1—-v)a+u(l —v)b+ (1 —uve+uvd.

Biquadratic Bezier Patch

* Define a surface that passes a 3x3 control lattice.

P(u,0) = (1-u)? pgo + 2(1-U)uU p4o + U? Py

D
12 b(u,1) = (1-U)? pgy + 2(1-U)u pyq + U2 Py

>

P(u,2) = (1-u)? poa + 2(1-U)u Py, + U2 Py,

v P ;
pzﬂ | 2t pn

p(u,v) = (1-v)? p(u,0) + 2(1-v)v p(u,1) + v p(u,2)

Bicubic Bezier Patch

e 4x4 control points?

 Demo: http://www.nbb.cornell.edu/neurobio/
land/OldStudentProjects/cs490-96t097/anson/
BezierPatchApplet/index.html

* Connecting Bezier Patches, demo on the same
page.

De Casteljau algorithm in 2D

P ol paz

Fpll
’ pw
p pzi }
n 2,
P'oo(u,v) = Bilinear(pyg, P10 Po1s P11; U, V) p'o4(u,v) = Bilinear(pys, P11: Po2» P12; U, V)
P'40(u,v) = Bilinear(p,o, Pg; P115 P25 U V) p'41(u,v) = Bilinear(ps4, P21; P12s Pags U, V)

pToo(u,v) = Bilinear(pyg, P1g, Po1> P11; U, V)

Different degree in different directions

\'

-

General Formula for Bezier Patch

* If we have contronl points p;; on a m by n lattice,

() = 3 BP) S BF0)pes = Y 3 BR @B 0)ps

i=0 §==0 i=0 j=0
55 (7))o
1= j=0

* Properties

m 1
— Invariant to affine transform ZZB B

. . i=0 §=0
— Convex combination,

— Used for intersection

General Formula for Bezier Patch

* If we have contronl points p;; on a m by n lattice,

() = 3 BP) S BF0)pes = Y 3 BR @B 0)ps

i=0 =0 i=0 j=0
MZZ () () (1—w)™ (1~ v)" 7pi
i=0 j=0
e Surface Normal n m-1
xmz Z B‘:n_l pz+13 ptj}}
' Op(u,v) Op(u,v) 3=0 =0
. Il(’l&,?}) = au X ﬁv ' m n-1

W‘H‘ZZB:R anl pzﬂ-l ng}

i=0 3—0

Issues with Bezier Patches

With Bézier or B-spline patches, modeling
complex surfaces amounts to trying to
cover them with pieces of rectangular
cloth.

It’s not easy, and often not possible if you
don’t make some of the patch edges
degenerate (yielding triangular patches).

Trying to animate that object can make
continuity very difficult, and if you’re not
very careful, your model will show creases
and artifacts near patch seams.

Subdivision Surface is a promising solution.

Subdivision Surface

* From a coarse control mesh to smooth mesh with
infinite resolution

Example: Toy story 2

Subdivision Curve

We have seen this idea before

® © ®

¢ © L J

Shirley, Figure 15.15, The limiting curve is a quadratic Bezier Curve

RTR 3e, Figure 13.29, The limiting curve is a quadratic B-spline

Subdivision Curves: Approximating

Initial (Control) Curve: Pg = {pg, ve s ;Pg...l};

For each iteration k+1, add two vertices between: pif and pé"ﬂ

3 1., -
k41 9k k
Py~ = P + 1PitL

1 3
k+1 k k
pzzu = sz‘ + ZP-;H‘ -

Approximating: Limit curve is very smooth (C2), but does not pass through
control points

Subdivision Curves: Interpolating

1
p?,iol

Initial (Control) Curve: Fj = {Pg, _ pﬁ_ﬁd}
= - d k
or each iteration k+1, add two vertices between: pi an pi +1

1k
Py =DPiy

1
k
P2i§}1 = (5 + w)(Pf + Pﬁ-z) - F”(Pf—l + P§+2)-

Interpolating: for O<w<1/8, limit curve is C1, and passes through control
points

Subdivision Curves: Interpolating

 Handling Boundary Cases

Figure,12.35. The creation of a reflection point, p.-1, for open polylines. The reflection
point is computed as: p—1 = pp — (P1 — Po) = 2pp — p1-

TR
S22
SRR,
St
N

NS
RS

RTR, 3e, figure 13.32

Subdivision Surfaces

Extend subdivision idea from curves to surfaces

Basic Steps

refinement smoothing

Y ~ N\

Figure 13.33: Subdivision as refinement and smoothing. The refinement phase creates
new vertices and reconnects to create new triangles, and the smoothing phase computes
new positions for the vertices.

Loop Subdivision

subdmsmn subdivision

* Regular vertex: valence =6
* Irregular vertex: valence =6

* |rregular vertices can only be initial vertices.

Loop Subdivision

pk

(’Z‘ _ (3+zc06si2w/n))2)

. A= - ’ | z‘ ::-.
- [5\ —_— 5 new Vertex_)< 3;!'8\ ﬁ(n)
|] 1/8 | |
¢ + 1/8

edge mask

vertex mask

Loop Subdivision

Figure 13.37: A worm subdivided three times with Loop’s subdivision scheme.

C2 for regular vertices
C1 for irregular vertices

Limiting Surface

e Position and tangent of a vertex of the limiting
surface can be computed directly

p © =(1-nf)p* +B(pE+++ph_),

1:2{) i={

n-1 , n-—1
t, = Z cos(2mi/n)pf, t,= Z sin(2mi/n)p¥.

Sqrt(3) subdivision

YAVAVANRWAVAVANG,)\
AVAVAVAW-VAVAVAY N/ 74
AN NN AR
AVAVAYERRNAVAVA AL

Sqrt(3) subdivision

Figure 13.44: lllustration of the v/3-subdivision scheme. A 1-to-3 split is performed instead
of a 1-to-4 split as for Loop's and the modified butterfly schemes. First, a new vertex is
generated at the center of each triangle. Then, this vertex is connected to the triangle’s
three vertices. Finally, the old edges are flipped. (/llustration after Kobbelt [505].)

Sart(3) subdivision

new vertex —— -
- |

|
|
|
|
|

1/3

face mask

kL (pk 4 p; +p5)/3

Pm =
. | n-1
P =(1-nB)p*+8) pf
_ i=0
4 —2cos(2n/n)

B(n) On

C2 for regular vertices
C1 for irregular vertices

Sqrt(3) subdivision

Figure 13.46: A worm is subdivided three times with the \/3-subdivision scheme.

Sqrt(3) vs Loop

N N N R

. Figure 13.46: A worm is subdivided three times with the \/3-subdivision scheme.
Figure 13.37: A worm subdivided three times with Loop’s subdivision scheme.

+ slower triangle growth rate

+ better for adaptive subdivision

- Edge flipping adds complexity

- Less intuitive at first few iterations

