CS559: Computer Graphics

Lecture 26: Animation
Li Zhang
Spring 2010

Slides from Brian Curless at U of Washington

Animation

e Traditional Animation — without using a computer

Animation

e Computer Animation

Types of Animation

e Cartoon Animation

1928— Oswald shows de-
termination by lifting his
chest with one hand in front
and one in back. While the
gesture is casily recogniz-
able, it is little mare than a
diagram of the action.

ANIMATOR: Norm Ferguson
——Shanghaicd

1934— Peg Leg Pete does
the same gesture, only now
there is maore belly than
chestinvolved. This broad-
er aclion gave the impres-
ston of a round solid char-
acier with a combination of
life and spirit—and fat.

ANIMATOR: Jack Camphell
—The Riveter.

1940— The gesture has
been done so often by this
time that it is almost a gag
in itsclf. An action this
broad loses realism, but
gains a type of comedy.

Types of Animation

 Cartoon Animation
 Key Frame Animation

1=0s =045 1=(). 85 1=1.25

Types of Animation

 Cartoon Animation
 Key Frame Animation
e Physics based animation

Nquyen, D., Fedkiw, R. and
Jensen, H., "Physically Based
Modeling and Animation of Fire",
SIGGRAPH 2002

Fedkive_flammable, avi

http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-02.pdf

Types of Animation

 Cartoon Animation
e Key Frame Animation
e Physics based animation

Enright, D., Marschner, S. and Fedkiw, R.,
"Animation and Rendering of Complex
Water Surfaces", SIGGRAPH 2002

Fedkive_glass. avi

http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf

Types of Animation

Cartoon Animation
Key Frame Animation
Physics based animation

Data driven animation

Types of Animation

Cartoon Animation

Key Frame Animation
Physics based animation
Data driven animation

Types of Animation

Cartoon Animation

Key Frame Animation
Physics based animation
Data driven animation

gi1:00:45.29

- - -
S
o 4 B .

ND @8:36:18:11 Sl.
SC2EAR_-BA6 . TKAG

Types of Animation

Cartoon Animation
Key Frame Animation
Physics based animation

Data driven animation

Particle Systems

e What are particle systems?

— A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity, heat
convection, spring behaviors, ...).

e Particle systems can be used to simulate all sorts
of physical phenomena:

Balls in Sports

Fireworks

Fire and Explosion

http://en.wikipedia.org/wiki/Particle_system

Galaxy

http://en.wikipedia.org/wiki/Particle_system

Particle in a flow field

 We begin with a single particle with:

— Position, X = {X}

— Velocity, vExzd_X{dX"“} X

e Suppose the velocity is actually dictated by some
driving function g:

X = g(x,t)

Vector fields

e At any moment in time, the function g defines a
vector field over x:

— Wind
— River

* How does our particle move through the vector
field?

Diff eqs and integral curves

e The equation |
X = g(x,t)
e is actually a first order differential equation.

 We can solve for x through time by starting at an
initial point and stepping along the vector field:

Start Here

e This is called an initial value problem and the
solution is called an integral curve.

— Why do we need initial value?

Euler’s method

One simple approach is to choose a time step, At, and take linear
steps along the flow:

X(t+ At)= x(t)+ At -x(t)
~ X(t)+ At -g(x,t)
Writing as a time iteration:
X'""t=x"4+ At -v'

This approach is called Euler’s method and looks like:

Properties:
— Simplest numerical method
— Bigger steps, bigger errors. Error ~ O(At?).

Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”

Particle in a force field

Now consider a particle in a force field f.

In this case, the particle has:
—|V|aSS,m a X.:\./:dV:dZX
— Acceleration,

dt dt?

f=ma=m X

The particle obeys Newton’s law: x = 1&XX.0)

The force field f can in general depend on the
position and velocity of the particle as well as
time.

Thus, with some rearrangement, we end up with:

Second order equations

This equation:

f(x,v,t)
m

X =

Is a second order differential equation.

Our solution method, though, worked on first order differential
equations.

X =V
We can rewrite this as: {v _ f(X,V,t)]
m

where we have added a new variable v to get a pair
of coupled first order equations.

|

Phase space

 Concatenate x and v to make a
6-vector: position in phase
space.

e Taking the time derivative:
another 6-vector.

e Avanilla 1st-order differential
equation.

Differential equation solver

Starting with:
X B %
Mty

Applying Euler’s method:

X(t+ At)= x(t)+ At -x(t)
X(t+ At)= X(t)+ At X (t)

And making substitutions:

X(t+ At)= x(t)+ At -v(t)
f(x,x,t)
m

v(it+ At)= xX(t)+ At .

Writing this as an iteration, we have:

Again, performs poorly for large At.

Particle structure

How do we represent a particle?

. position |
SN D - I Y120

f force accumulator
M | «<— mass

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

Single particle solver interface

T getDim — [6]
Y
X
f —= getState . { }
m — setState v
Y
derivEval g { }
f/ m
typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

Particle systems

In general, we have a particle system consisting of n particles to

be managed over time:

parices [0 Jlume

typedef struct{

float m; /* mass */

float *x; /* position vector */
float *v; /* velocity vector */
float *f; /* force accumulator */
} *Particle;

typedef struct{

Particle *p; /* array of pointers to particles */
int n; /* number of particles */

float t; /* simulation clock */

} *ParticleSystem

Particle system solver interface

For n particles, the solver interface now looks like:

getDim
6 n
Xl Vl X2 V2 Xn
f f
Vo, L Vo, 2 Vo
ml m2

int ParticleDims(ParticleSystem p){
return(6 * p->n);

I

Particle system solver interface

For n particles, the solver interface now looks like:

get/setState getDim
6 n
1 \4 1 X 2 \ 2 X n vV n
\ 1 fl \ 2 f2 \ n
m 1 m 2

int ParticleGetState(ParticleSystem p, float *dst){

for(int i=0; i < p->n; i++){

*(dst++) = p->p[i]->x[0]; *(dst++) = p->p[i]->x[1]; *(dst++) = p->p[i]->x[2];
*(dst++) = p->p[i]->Vv[0]; *(dst++) = p->p[i]->Vv[1]; *(dst++) = p->p[i]->Vv[2];
}
}

Particle system solver interface

For n particles, the solver interface now looks like:

get/setState getDim

derivEval 6 n

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+ 1] i i
1 1 V1
i+ 1 i i
1 1 fl / m1
: = + At :
i+ 1 i i
n n Vn
i+ 1 i [
L n | L n _j _fn / m n _j

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */

Forces

e Each particle can experience a force which sends
It on its merry way.

* Where do these forces come from? Some
examples:

— Constant (gravity)
— Position/time dependent (force fields)

— Velocity-dependent (drag)
— N-ary (springs)

e How do we compute the net force on a particle?

Particle systems with forces

* Force objects are black boxes that point to the particles they
influence and add in their contributions.

 We can now visualize the particle system with force objects:

Gravity and viscous drag

The force due to gravity is simply:

f =m G

grav

Often, we want to slow things down with viscous drag:

f = —k

drag vV

drag

Damped spring
A spring is a simple examples of an “N-ary” force.

Recall the equation for the force due to a spring:
f = _kspring(x - r)

We can augment this with damping:
f = —[k (X = 1)+ KgamoV]

spring

r = rest len M 0. = { X 1}

pz_{v}

Note: stiff spring systems can be very unstable under Euler
Integration. Simple solutions include heavy damping (may not look
good), tiny time steps (slow), or better integration (Runge-Kutta is

straightforward).

derivEval

1. Clear forces
 Loop over particles, zero force accumulators

2. Calculate forces
e Sum all forces into accumulators

3. Return derivatives
* Loop over particles, return v and f/m

ol . Clear force
AR o accumulators
- om, || m, m, |
Fl FZ IF3
Apply forces . o
to particles vi Vz
i, || f,
MM, |
v, vV, Vo
Lo L) L . Return derivatives
REEER "o to solver

Particle system solver interface

int ParticleDerivative(ParticleSystem p, float *dst){

Clear_Forces(p); /* zero the force accumulators */
Compute_Forces(p); /* magic force function */
for(int i=0; i < p->n; i++){

(dst++) = p->p[i]->v[0]; / xdot =v */

*(dst++) = p->p[i]->v[1];

*(dst++) = p->p[i]->Vv[2];

(dst++) = p->p[i]->f[0]/m; / vdot = f/m */

*(dst++) = p->p[i]->f[1]/m;

*(dst++) = p->pl[i]->f[2]/m;

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+ 1] i i
1 1 V1
i+ 1 i i
1 1 fl / m1
: = + At :
i+ 1 i i
n n Vn
i+ 1 i i
L n | L n _j _fn / m n _j

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp2); /* get state */
AddVectors(temp1,temp2,temp2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

i+1] i i
Xl 1 Vl

i+1 i i |
vV, 1 f, [m

: = : + At :

i+1 i i

n n Vn

i+1 i i
v T vV, _fn/mn_

void EulerStep(ParticleSystem p, float DeltaT){
ParticleDeriv(p,temp1); /* get deriv */
ScaleVector(temp1,DeltaT) /* scale it */
ParticleGetState(p,temp?2); /* get state */
AddVectors(temp1,temp2,temp?2); /* add -> temp2 */
ParticleSetState(p,temp?2); /* update state */
p->t += DeltaT; /* update time */

Bouncing off the walls

 Handling collisions is a useful add-on for a particle simulator.
 For now, we’ll just consider simple point-plane collisions.

A plane is fully specified by any point P on the plane and its normal N.

Collision Detection

How do you decide when you’'ve made exact contact with the
plane?

Normal and tangential velocity

To compute the collision response, we need to consider the
normal and tangential components of a particle’s velocity.

(N -v)N

Collision Response

before after

The response to collision is then to immediately replace the
current velocity with a new velocity:

v' = v, —Kk V o\

restitution

The particle will then move according to this velocity in the next
timestep.

Collision without contact

* |n general, we don’t sample moments in time
when particles are in exact contact with the

surface.

 There are a variety of ways to deal with this
problem.

 Asimple alternative is to determine if a
collision must have occurred in the past, and
then pretend that you're currently in exact
contact.

Very simple collision response

e How do you decide when you’ve had a
collision?

A problem with this approach is that particles will disappear under the
surface.

Also, the response may not be enough to bring a particle to the other
side of a wall.

More complicated collision response

 Another solution is to modify the update
scheme to:

— detect the future time and point of collision

— reflect the particle within the time-step

Generate Particles

e Particle Attributes
— initial position,
— initial velocity (both speed and direction),
— Initial size,
— initial color,

— Initial transparency,
— shape,
— lifetime.

WILLIAM T. REEVES, ACM Transactions
on Graphics, Vol. 2, No. 2, April 1983

Generate Particles

e Particle Attributes
— initial position,
— initial velocity (both speed and direction),
— Initial size,
— initial color,

— Initial transparency,
— shape,
— lifetime.

WILLIAM T. REEVES, ACM Transactions
on Graphics, Vol. 2, No. 2, April 1983

Generate Particles

e Particle Attributes
— initial position,
— initial velocity (both speed and direction),
— Initial size,
— initial color,

— Initial transparency,
— shape,
— lifetime.

WILLIAM T. REEVES, ACM Transactions
on Graphics, Vol. 2, No. 2, April 1983

Generate Particles

e |nitial Particle Distribution

‘1 origin of
world coordinate
space

Fig.1. Typical particle system with spherical generation shape.

e Particle hierarchy, for example
— Skyrocket : firework
— Clouds : water drops

Throwing a ball from a robot arm

e Let’s say we had our robot arm example and we
wanted to launch particles from its tip.

e How would we calculate initial speed?
Q=R(theta)*T1*R(phi)*T2*R(psi)*P
We want dQ/dt

Principles of Animation

« Goal: make characters that move in a convincing
way to communicate personality and mood.

 Walt Disney developed a number of principles.
— ~1930

e Computer graphics animators have adapted them
to 3D animation.

John Lasseter. Principles of traditional animation applied
to 3D computer animation. Proceedings of SIGGRAPH
(Computer Graphics) 21(4): 35-44, July 1987.

Principles of Animation

 The following are a set of principles to keep in mind:
. Squash and stretch

. Staging

. Timing

. Anticipation

Follow through

. Secondary action

. Straight-ahead vs. pose-to-pose vs. blocking
. Arcs

. Slow in, slow out

10. Exaggeration

11. Appeal

© 00N O U1 » WN B

Squash and stretch

Squash: flatten an object or character by pressure
or by its own power.

Stretch: used to increase the sense of speed and
emphasize the squash by contrast.

Note: keep volume constant!

FIGURE 2. Squash & surcich in bouncing ball.

http://www.siggraph.org/education/materials/HyperGraph/animation/character
animation/principles/squash and stretch.htm

http://www.siggraph.org/education/materials/HyperGraph/animation/character
animation/principles/bouncing ball example of slow in out.htm

http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/squash_and_stretch.htm
http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/squash_and_stretch.htm
http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/bouncing_ball_example_of_slow_in_out.htm
http://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/principles/bouncing_ball_example_of_slow_in_out.htm

Squash and stretch (cont’d)

K————“

FIGURE 4a. In slow action, an object's position
overlaps from frame to frame which gives the
action a smooth appearance to the eye.

OO

FIGURE 4b. Suobing occurs in a faster action
when the object's positons do not overlap and
the eye perceives seperate images.

FIGURE 4c. Stretching the object so that it's positions
overlap again will relieve the suobing effect.

Squash and stretch (cont’d)

sssss h-ball, avi

Anticipation
e An action has three parts: anticipation, action,

reaction.

e Anatomical motivation: a muscle must extend before
it can contract.

anticip-bug-jump-bad, avi anticip-bug-jump, avi

e Watch: bugs-bunny.virtualdub.new.mpg

* Prepares audience for action so they know what to
expect.

e Directs audience's attention.

Anticipation (cont’d)

e Amount of anticipation (combined with timing)
can affect perception of speed or weight.

weight-bug-light . avi

Arcs

Avoid straight lines since most things in nature
move in arcs.

arc-headturn-bad, avi arc-headturn-good. avi

Slow in and slow out

* An extreme pose can be emphasized by slowing
down as you get to it (and as you leave it).

* |n practice, many things do not move abruptly
but start and stop gradually.

Exaggeration

e Get to the heart of the idea and emphasize it so
the audience can see it.

exagg-paint-bad. avi - exagg-point-good, avi

Exaggeration

 Get to the heart of the idea and emphasize it so
the audience can see it.

baaalll Mot here Buddy, You go to the BALLS

| need same BALLS store, They sell some good munchy tasty BALLS aver
: there.,
50 himme yours
. _M WHAT? | can't even get myself
w 4 i s 2 =

same BALLS | have? Get ot of the
way!!

Appeal

 The character must interest the viewer.

* |t doesn't have to be cute and cuddly.

e Design, simplicity, behavior all affect appeal.
e Example: Luxo, Jr. is made to appear childlike.

FIGURE 11. %Warving the scale of different pars of Tad created the
child-like proporuons o Laxa Jr.

http://www.youtube.com/watch?v=HDuRXvtimQO&feature=related

Appeal (cont’d)

 Note: avoid perfect symmetries.

T 1S WaATS omclLEDR 4 \WOODPERN) cunmacTeER=. T_—‘:ék_
. g TS CHARLCTERE. (OOE=

EACH EVYE JEAR , AEM HAND FINGEWR. ,LEG ,Cottavr, mMoReE MATURA L <SIMPLY

SHOE |, Efc. LOOKS THE =AME AS 17 couneER- FEcALSE EACH BART OF
= A VERSY =T/EFE LOOKIAKK N THE Bobx VARIES N

. =OrAE WAL TROM THE

THE EESULT
CORRESCOMNDING O

Ro=1Te PRBAERT
(3\9; EYES N PERESTECTIVE

Q\a Fink=ERs THAT NARY!
- CriveE THE HoaI P

A MORZE TLraakAaiC
LOO -

AT -

C—
- e ™

i S i, R
= 5
T e e, St FuE
o . —
- —_—

Appeal (cont’d)

 Note: avoid perfect symmetries.

	CS559: Computer Graphics
	Animation
	Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Types of Animation
	Particle Systems
	Balls in Sports
	Fireworks
	Water
	Fire and Explosion
	Galaxy
	Particle in a flow field
	Vector fields
	Diff eqs and integral curves
	Euler’s method
	Particle in a force field
	Second order equations
	Phase space
	Differential equation solver
	Particle structure
	Single particle solver interface
	Particle systems
	Particle system solver interface
	Particle system solver interface
	Particle system solver interface
	Particle system diff. eq. solver
	Forces
	Particle systems with forces
	Gravity and viscous drag
	Damped spring
	derivEval
	Particle system solver interface
	Particle system diff. eq. solver
	Particle system diff. eq. solver
	Bouncing off the walls
	Collision Detection
	Normal and tangential velocity
	Collision Response
	Collision without contact
	Very simple collision response
	More complicated collision response
	Generate Particles
	Generate Particles
	Generate Particles
	Generate Particles
	Throwing a ball from a robot arm
	Principles of Animation
	Principles of Animation
	Squash and stretch
	Squash and stretch (cont’d)
	Squash and stretch (cont’d)
	Anticipation
	Anticipation (cont’d)
	Arcs
	Slow in and slow out
	Exaggeration
	Exaggeration
	Appeal
	Appeal (cont’d)
	Appeal (cont’d)

