Computer Vision, CS766

Staff

Instructor: Li Zhang lizhang@cs.wisc.edu

TA: Yu-Chi Lai yu-chi@cs.wisc.edu

Today

Introduction
Administrative Stuff
Overview of the Course

About Me

- Li Zhang (张力)
 - Last name pronounced as Jung
- New Faculty
 - PhD 2005, U of Washington
 - Research Scientist 06-07, Columbia U
- Research
 - Vision and Graphics
- Teaching
 - CS766 Computer Visoin
 - CS559 Computer Graphics

Previous Research Focus

3D shape reconstruction

Four examples of recovered 3D shapes of a moving face from six video streams

Previous Research Focus

- 3D shape reconstruction
- Application

Licensed by SONY for Games

Used by VA Hospital for Prosthetics

Please tell me about you

Prerequisites

- Prerequisites—these are essential!
 - Data structures
 - A good working knowledge of C and C++ programming
 - (or willingness/time to pick it up quickly!)
 - Linear algebra
 - Vector calculus

- Course does not assume prior imaging experience
 - no image processing, graphics, etc.

Administrative Stuff

4 programming projects

- 15%, 2-3 weeks each

1 final project

- 40%, 5 weeks, open ended of your choosing, but needs
- project proposal after 1 week
- progress report after 3 weeks
- Final presentation after 5 weeks

Computer account:

 Everyone registered in this class will get a Computer Systems Lab account to do project assignments.

• Email list:

– compsci766-1-f07@lists.wisc.edu

Questions?

Every picture tells a story

Goal of computer vision is to write computer programs that can interpret images

Can computer match human perception?

- Yes and no (but mostly no!)
 - computers can be better at "easy" things

Can computer match human perception?

- Yes and no (but mostly no!)
 - computers can be better at "easy" things
 - humans are much better at "hard" things

Computer Vision vs Human Vision

- Can do amazing things like:
 - Recognize people and objects
 - Navigate through obstacles
 - Understand mood in the scene
 - Imagine stories
- But still is not perfect:
 - Suffers from Illusions
 - Ignores many details
 - Ambiguous description of the world
 - Doesn't care about accuracy of world

Computer vision vs Human Vision

What we see

What a computer sees

Components of a computer vision system

Topics Covered

Cameras and their optics

Today's Digital Cameras

The Camera Obscura

Biological vision

Human Eye

Mosquito Eye

Project 1: High Dynamic Range Imaging

Cameras have limited dynamic range

Short Exposure

Long Exposure

Desired Image

Project 1: High Dynamic Range Imaging

Image Processing

Fourier Transform Sampling, Convolution

Image enhancement Feature detection

Camera Projection

Image Transformation

Steve Seitz and Chuck Dyer, View Morphing, SIGGRAPH 1996

Project 2: Panoramic Imaging

Input images:

Output Image:

Projective Geometry

Single View Metrology

 https://research.microsoft.com/vision/cambrid ge/3d/3dart.htm

Single View Metrology

https://research.microsoft.com/vision/cambrid

ge/3d/3dart.htm

Shading and Photometric Stereo

Texture Modeling

Project 3: Texture Synthesis

Image Quilting, Efros and Freeman., SIGGRAPH 2002.

Project 3: Texture Synthesis

Input images:

Output Image:

Graphcut Textures, Kwatra et al., SIGGRAPH 2003.

Multi-view Geometry

http://phototour.cs.washington.edu/

- Binocular Stereo (2 classes)
- Multiview Stereo (1 class)
- Structure from Motion (2 classes)

Face Detection and Recognition

Project 4: EigenFaces

Face detection and recognition

Motion Estimation

Hidden Dragon Crouching Tiger

Motion Estimation

Application

Andy Serkis, Gollum, Lord of the Rings

Segmentation

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Segmentation

Application

Medical Image Processing

Matting

Light, Color, and Reflection

Capturing Light Field

Camera Arrays, Graphics Lab, Stanford University

Capturing Light Field

Applications

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

Novel Cameras and Displays

http://www1.cs.columbia.edu/CAVE/projects/cc.htm

Course Info

http://www.cs.wisc.edu/~cs766-1/