
How is project #1 going?

Edge Detection

Last Lecture

Filtering

Pyramid

Today

Motion Deblur

Image Transformation

Removing Camera Shake from
a Single Photograph

Rob Fergus, Barun Singh, Aaron Hertzmann,
Sam T. Roweis and William T. Freeman

Massachusetts Institute of Technology
and

University of Toronto

http://people.csail.mit.edu/fergus/research/deblur.html

Overview

Original Our algorithm

Close-up

Original Naïve Sharpening Our algorithm

Let’s take a photo

Blurry result

Slow-motion replay

Slow-motion replay

Motion of camera

Image formation process

= ⊗

Blurry image Sharp image

Blur
kernel

Input to algorithm Desired output
Convolution

operatorModel is approximation

Why is this hard?

Simple analogy:
11 is the product of two numbers.
What are they?

No unique solution:
11 = 1 x 11
11 = 2 x 5.5
11 = 3 x 3.667
etc…..

Need more information !!!!

Multiple possible solutions

= ⊗

Blurry image

Sharp image Blur kernel

= ⊗

= ⊗

Natural image statistics

Histogram of image gradients

Characteristic distribution with heavy tails

Blury images have different statistics

Histogram of image gradients

Parametric distribution

Histogram of image gradients

Use parametric model of sharp image statistics

Three sources of information
1. Reconstruction constraint:

=⊗

Input blurry imageEstimated sharp image
Estimated
blur kernel

2. Image prior: 3. Blur prior:
Positive

&
Sparse

Distribution
of gradients

Variational Bayesian method

Based on work of Miskin & Mackay 2000

Keeps track of uncertainty in estimates of image and blur by
using a distribution instead of a single estimate

Helps avoid local maxima and over-fitting

Variational
Bayes

Variational Bayesian method

Maximum
a-Posteriori (MAP)

Pixel intensity

Sc
or

e

Objective function for a single variable

Overview of algorithm

Input image

1. Pre-processing

2. Kernel estimation
- Multi-scale approach

3. Image reconstruction
- Standard non-blind deconvolution routine

Preprocessing

Convert to
grayscale

Input image

Remove gamma
correction

User selects patch
from image

Bayesian inference
too slow to run on
whole image

Infer kernel
from this patch

Initialization
Input image

Initialize 3x3
blur kernel

Initial blur kernelBlurry patch Initial image estimate

Convert to
grayscale

Remove gamma
correction

User selects patch
from image

Inferring the kernel: multiscale method
Input image

Loop over scales

Variational
Bayes

Upsample
estimates

Use multi-scale approach to avoid local minima:

Initialize 3x3
blur kernel

Convert to
grayscale

Remove gamma
correction

User selects patch
from image

Image Reconstruction
Input image

Full resolution
blur estimate

Non-blind
deconvolution

(Richardson-Lucy)

Deblurred
image

Loop over scales

Variational
Bayes

Upsample
estimates

Initialize 3x3
blur kernel

Convert to
grayscale

Remove gamma
correction

User selects patch
from image

Results on real images

Submitted by people from their own photo collections

Type of camera unknown

Output does contain artifacts
– Increased noise

– Ringing

Compares well to existing methods

Original photograph

Blur kernel Our output

Original photographMatlab’s deconvblind

Original photograph

Matlab’s deconvblind

Photoshop sharpen more

2 4 6 8 10 12

2

4

6

8

Our output Blur kernel

2 4 6 8 10 12

2

4

6

8

Original photograph

1

2

3

4

5

6

7

8

9

Our output

Blur kernel

Original photograph

Our output

Blur kernel

Matlab’s deconvblind

Original photograph

Our output

Blur kernel

Close-up of bird

Original Our output

Original photograph

Our output

Blur kernel

Image artifacts & estimated kernels

Blur kernels

Image patterns
Note: blur kernels were inferred from large image patches,

NOT the image patterns shown

Summary

Method for removing camera shake from real photographs

First method that can handle complicated blur kernels

Uses natural image statistics

Non-blind deconvolution currently simplistic

Image Warping

• image filtering: change range of image
• g(x) = T(f(x))

f

x

T
f

x

f

x

T
f

x

• image warping: change domain of image
• g(x) = f(T(x))

Image Warping

• image filtering: change range of image
• g(x) = T(f(x))

T

T

• image warping: change domain of image
• g(x) = f(T(x))

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Parametric (global) warping

• Transformation T is a coordinate-changing machine:
• p’ = T(p)
• What does it mean that T is global?

– Is the same for any point p
– can be described by just a few numbers (parameters)

• Let’s represent T as a matrix:
• p’ = Mp

T

p = (x,y) p’ = (x’,y’)

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

M
'
'

Scaling

• Scaling a coordinate means multiplying each of its
components by a scalar

• Uniform scaling means this scalar is the same for
all components:

× 2

• Non-uniform scaling: different scalars per
component:

Scaling

X × 2,
Y × 0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy
axx

=
=
'
'

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

b
a

y
x

0
0

'
'

scaling matrix S
What’s inverse of S?

2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2-D Rotation
•This is easy to capture in matrix form:

•Even though sin(θ) and cos(θ) are nonlinear functions of θ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

•What is the inverse transformation?
– Rotation by –θ
– For rotation matrices

() ()
() () ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

θθ
θθ

cossin
sincos

'
'

TRR =− 1

R

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Identity?

yy
xx

=
=
'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'

=

=
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

s
s

y
x

y

x

0
0

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'

Θ+Θ=
Θ−Θ=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
ΘΘ
Θ−Θ

=⎥
⎦

⎤
⎢
⎣

⎡
y
x

y
x

cossin
sincos

'
'

2D Shear?

yxshy
yshxx

y

x

+=
+=

*'
*'

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

sh
sh

y
x

y

x

1
1

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡

y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡

−
−=⎥⎦

⎤
⎢⎣
⎡

y
x

y
x

10
01

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

y

x

tyy
txx

+=
+=

'
'

Only linear 2D transformations
can be represented with a 2x2 matrix

NO!

All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

dc
ba

y
x
'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

y
x

lk
ji

hg
fe

dc
ba

y
x

'
'

Homogeneous Coordinates

• Q: How can we represent translation as a
3x3 matrix?

y

x

tyy
txx

+=
+=

'
'

Homogeneous Coordinates

•Homogeneous coordinates
– represent coordinates in 2 dimensions with a 3-vector

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎯→⎯⎥

⎦

⎤
⎢
⎣

⎡

1
y
x

y
x

Homogeneous Coordinates

• Q: How can we represent translation as a
3x3 matrix?

• A: Using the rightmost column:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
100

10
01

y

x

t
t

ranslationT

y

x

tyy
txx

+=
+=

'
'

Translation

•Example of translation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11100
10
01

1
'
'

y

x

y

x

ty
tx

y
x

t
t

y
x

tx = 2
ty = 1

Homogeneous Coordinates

Homogeneous Coordinates

• Add a 3rd coordinate to every 2D point
– (x, y, w) represents a point at location (x/w, y/w)
– (x, y, 0) represents a point at infinity
– (0, 0, 0) is not allowed

Convenient
coordinate system to
represent many
useful transformations

1 2

1

2 (2,1,1) or (4,2,2) or (6,3,3)

x

y

Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
ΘΘ
Θ−Θ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
0cossin
0sincos

1
'
'

y
x

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
10
01

1
'
'

y
x

t
t

y
x

y

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
01
01

1
'
'

y
x

sh
sh

y
x

y

x

Translate

Rotate Shear

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
00
00

1
'
'

y
x

s
s

y
x

y

x

Scale

Affine Transformations

• Affine transformations are combinations of
…
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

w
y
x

fed
cba

w
y
x

100
'
'

Projective Transformations

• Projective transformations …
– Affine transformations, and
– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

w
y
x

ihg
fed
cba

w
y
x

'
'
'

Matrix Composition

• Transformations can be combined by
matrix multiplication

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ΘΘ
Θ−Θ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

w
y
x

sy
sx

ty
tx

w
y
x

100
00
00

100
0cossin
0sincos

100
10
01

'
'
'

p’ = T(tx,ty) R(Θ) S(sx,sy) p

2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member

Recovering Transformations

• What if we know f and g and want to
recover the transform T?

x x’

T(x,y)
’y y

f(x,y) g(x’,y’)

?

– Using correspondences
• How many do we need?

Translation: # correspondences?

• How many correspondences needed for translation?
• How many Degrees of Freedom?
• What is the transformation matrix?

x x’

T(x,y)
’y y

?

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=
100

'10
'01

yy

xx

pp
pp

M

Euclidian: # correspondences?

• How many correspondences needed for
translation+rotation?

• How many DOF?

x x’

T(x,y)
’y y

?

Affine: # correspondences?

• How many correspondences needed for
affine?

• How many DOF?

x x’

T(x,y)
’y y

?

Projective: # correspondences?

• How many correspondences needed for
projective?

• How many DOF?

x x’

T(x,y)
’y y

?

Example: warping triangles

• Given two triangles: ABC and A’B’C’ in 2D (12 numbers)
• Need to find transform T to transfer all pixels from one to

the other.
• What kind of transformation is T?
• How can we compute the transformation matrix:

T(x,y)

?

A

B

Source
C A’

C’

B’

Destination

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11001
'
'

y
x

fed
cba

y
x

warping triangles (Barycentric Coordinaes)

•Very useful in Graphics…

A

B

A’
C’

B’

Source Destination
C

(0,0) (1,0)

(0,1)

change
of basis

Inverse
change
of basis

Don’t forget to move the origin too!

2T1
1
−T

Image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

g(x’,y’)

’

f(x,y)

y y

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding
location

• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location
• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location
• (x,y) = T-1(x’,y’) in the first image

x x’
y’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location
• (x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q: what if pixel comes from “between” two pixels?

y’

A: Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

	How is project #1 going?
	Last Lecture
	Today
	Overview
	Close-up
	Let’s take a photo
	Slow-motion replay
	Slow-motion replay
	Image formation process
	Why is this hard?
	Multiple possible solutions
	Natural image statistics
	Blury images have different statistics
	Parametric distribution
	Three sources of information
	Variational Bayesian method
	Variational Bayesian method
	Overview of algorithm
	Preprocessing
	Initialization
	Inferring the kernel: multiscale method
	Image Reconstruction
	Results on real images
	Image artifacts & estimated kernels
	Summary
	Image Warping
	Image Warping
	Parametric (global) warping
	Parametric (global) warping
	Scaling
	Scaling
	Scaling
	2-D Rotation
	2-D Rotation
	2x2 Matrices
	2x2 Matrices
	2x2 Matrices
	2x2 Matrices
	All 2D Linear Transformations
	Homogeneous Coordinates
	Homogeneous Coordinates
	Homogeneous Coordinates
	Translation
	Homogeneous Coordinates
	Basic 2D Transformations
	Affine Transformations
	Projective Transformations
	Matrix Composition
	2D image transformations
	Recovering Transformations
	Translation: # correspondences?
	Euclidian: # correspondences?
	Affine: # correspondences?
	Projective: # correspondences?
	Example: warping triangles
	warping triangles (Barycentric Coordinaes)
	Image warping
	Forward warping
	Forward warping
	Inverse warping
	Inverse warping

