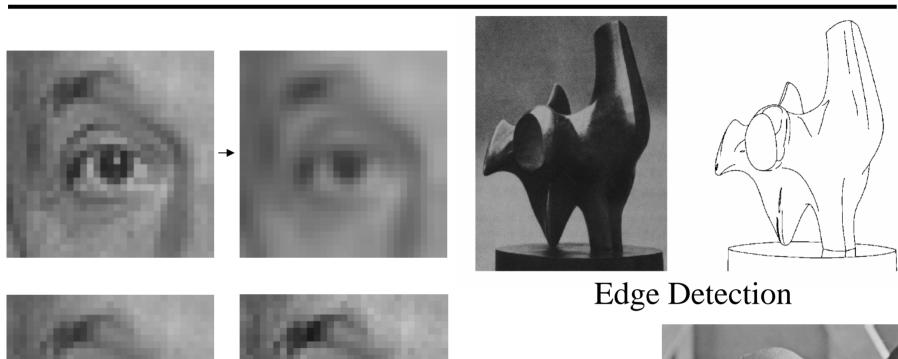
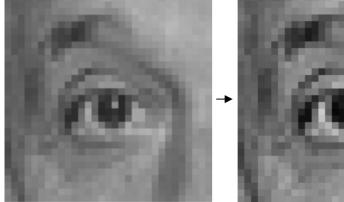
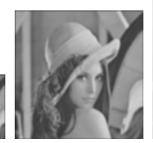
How is project #1 going?

Last Lecture







Pyramid

Today

Motion Deblur

Image Transformation

Removing Camera Shake from a Single Photograph

Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T. Freeman

http://people.csail.mit.edu/fergus/research/deblur.html

Massachusetts Institute of Technology and University of Toronto

Overview

Original

Our algorithm

Close-up

Original

Naïve Sharpening

Our algorithm

Let's take a photo

Blurry result

Slow-motion replay

Slow-motion replay

Motion of camera

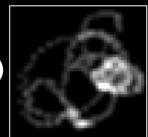
Image formation process

Blurry image

Input to algorithm

Sharp image

Desired output



Blur kernel

Model is approximation

Convolution operator

Why is this hard?

Simple analogy:

11 is the product of two numbers.

What are they?

No unique solution:

 $11 = 1 \times 11$

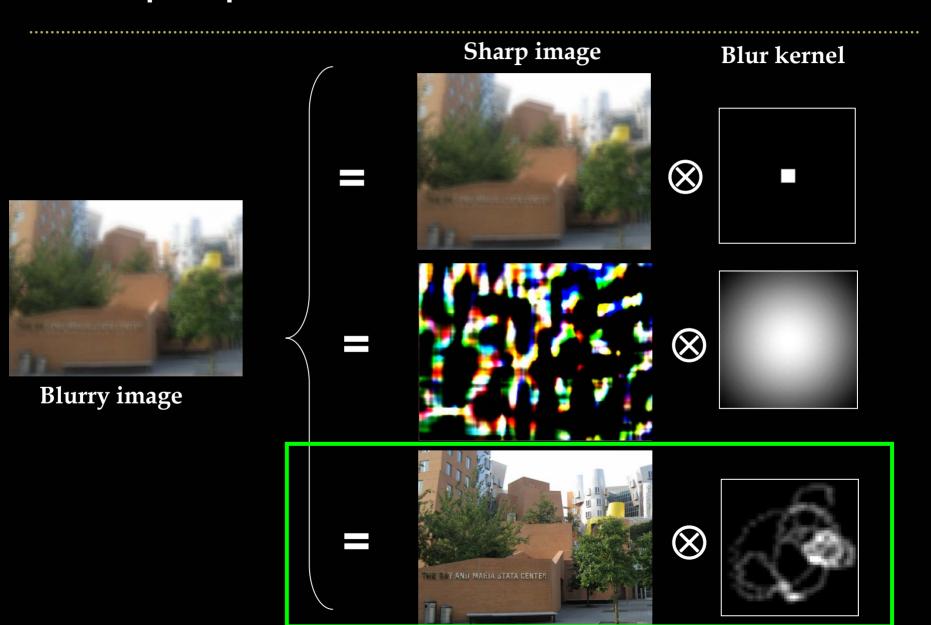
 $11 = 2 \times 5.5$

 $11 = 3 \times 3.667$

etc.....

Need more information !!!!

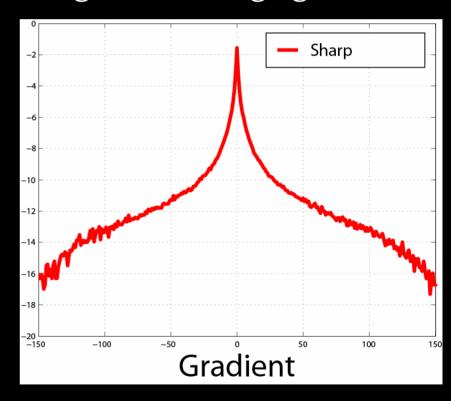
Multiple possible solutions



Natural image statistics

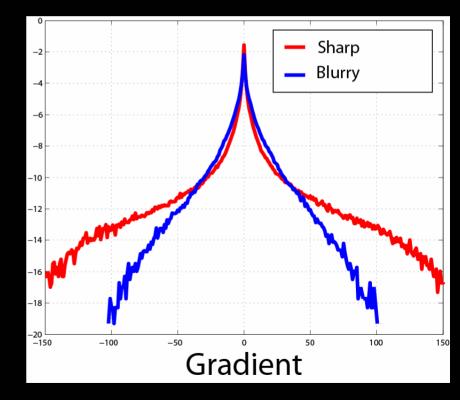
Characteristic distribution with heavy tails

Histogram of image gradients



Blury images have different statistics

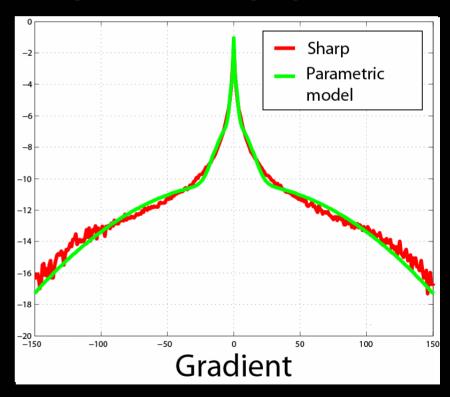
Histogram of image gradients



Parametric distribution

WAZING SKIIL WAZIN

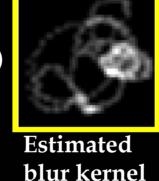
Histogram of image gradients



Use parametric model of sharp image statistics

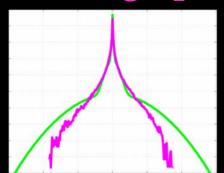
Three sources of information

1. Reconstruction constraint:



Input blurry image

2. Image prior:



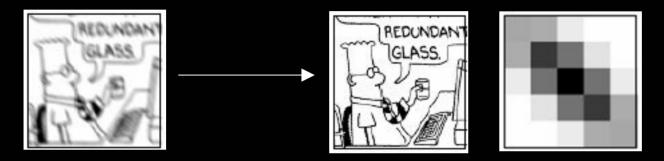
Distribution of gradients

3. Blur prior:

Positive & Sparse

Variational Bayesian method

Based on work of Miskin & Mackay 2000

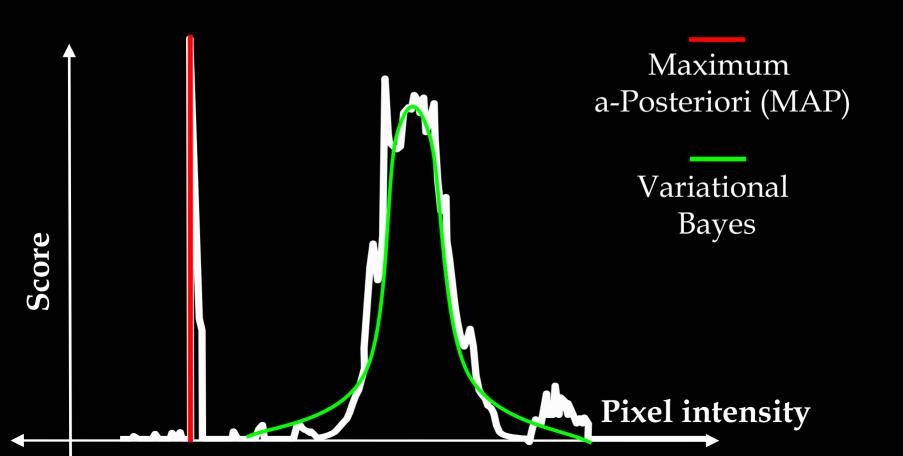


Keeps track of uncertainty in estimates of image and blur by using a distribution instead of a single estimate

Helps avoid local maxima and over-fitting

Variational Bayesian method

Objective function for a single variable



Overview of algorithm

1. Pre-processing

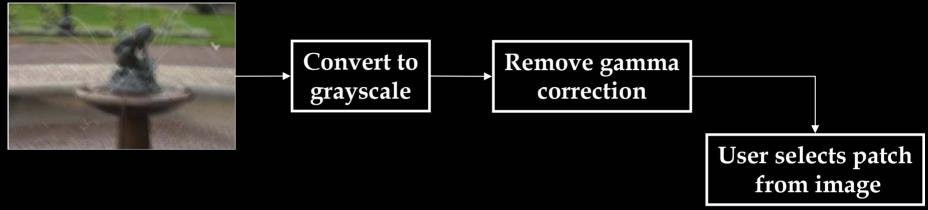
- 2. Kernel estimation
 - Multi-scale approach

Input image

- 3. Image reconstruction
 - Standard non-blind deconvolution routine

Preprocessing

Input image

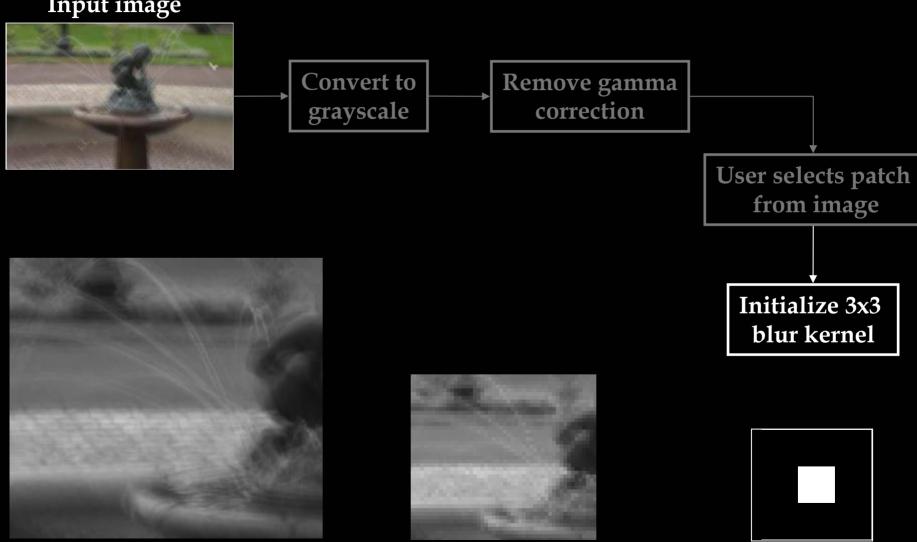


Bayesian inference too slow to run on whole image

Infer kernel from this patch

Initialization

Input image

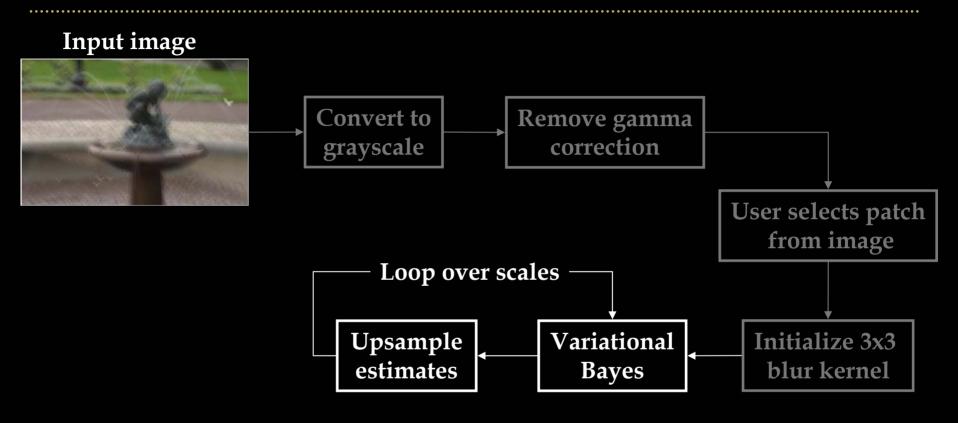


Blurry patch

Initial image estimate

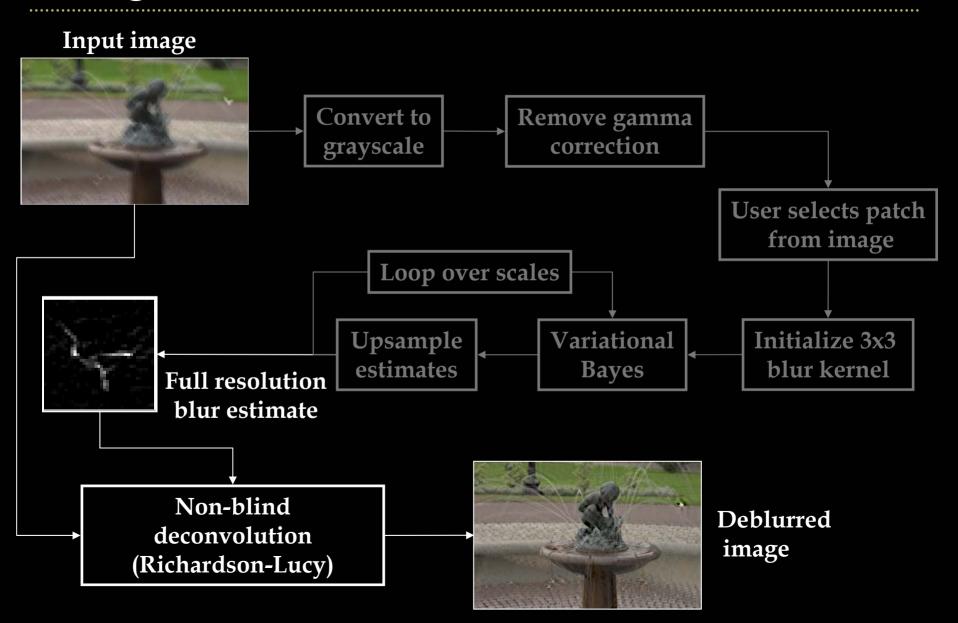
Initial blur kernel

Inferring the kernel: multiscale method



Use multi-scale approach to avoid local minima:

Image Reconstruction



Results on real images

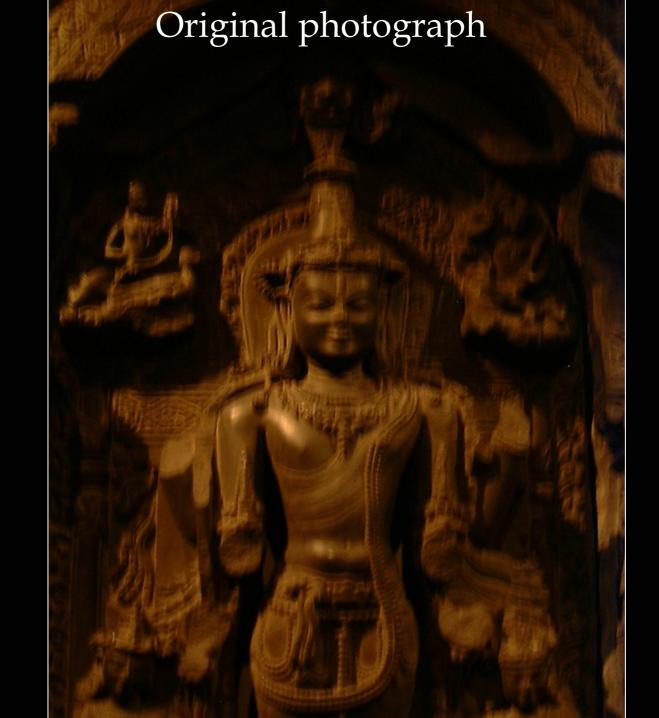
Submitted by people from their own photo collections

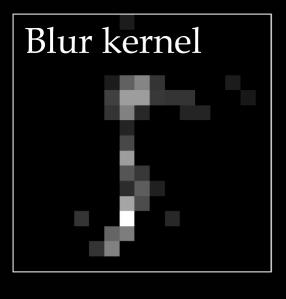
Type of camera unknown

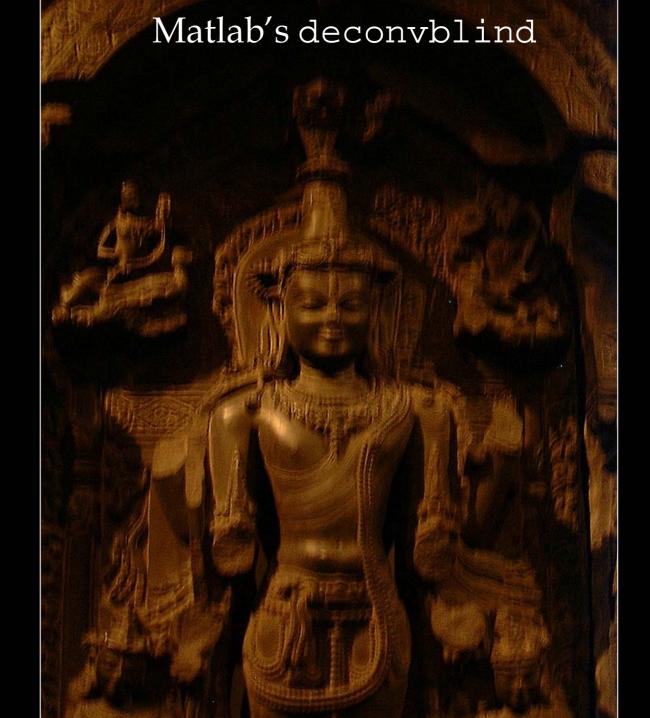
Output does contain artifacts

- Increased noise
- Ringing

Compares well to existing methods



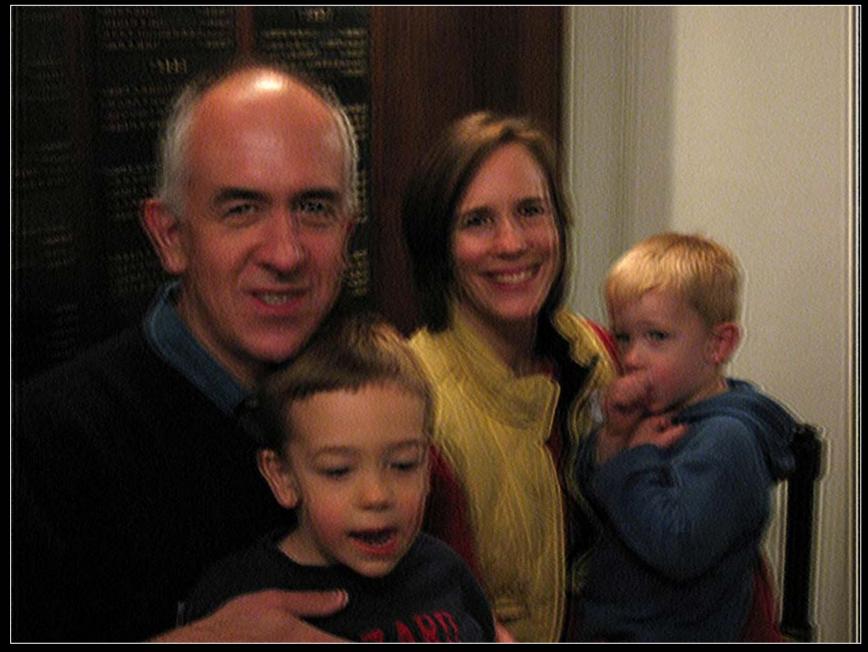




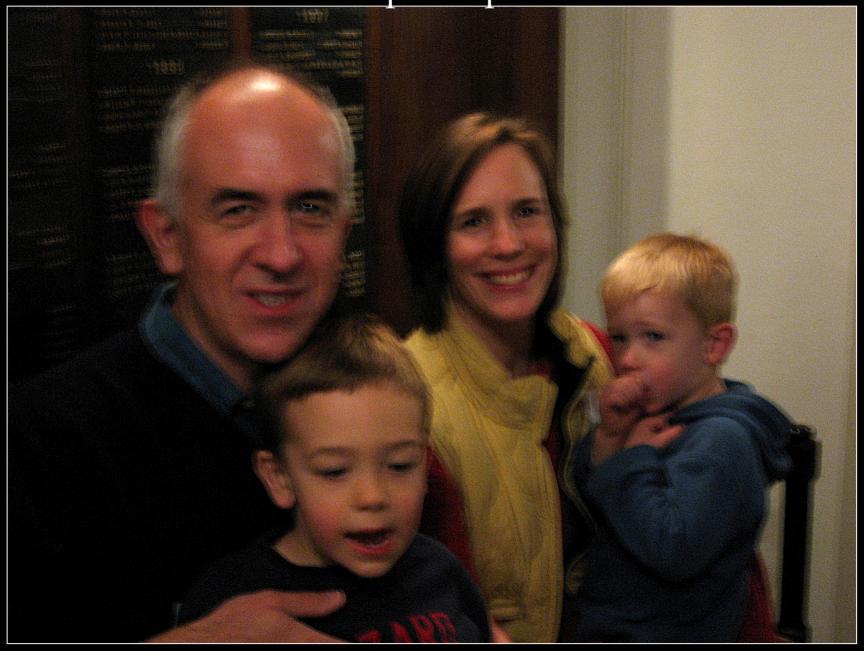
Original photograph



Matlab's deconvblind

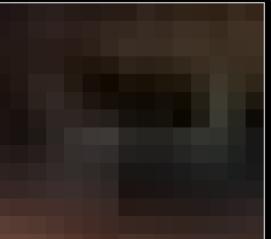


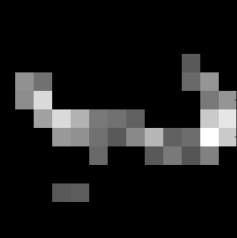
Photoshop sharpen more



Our output Blur kernel





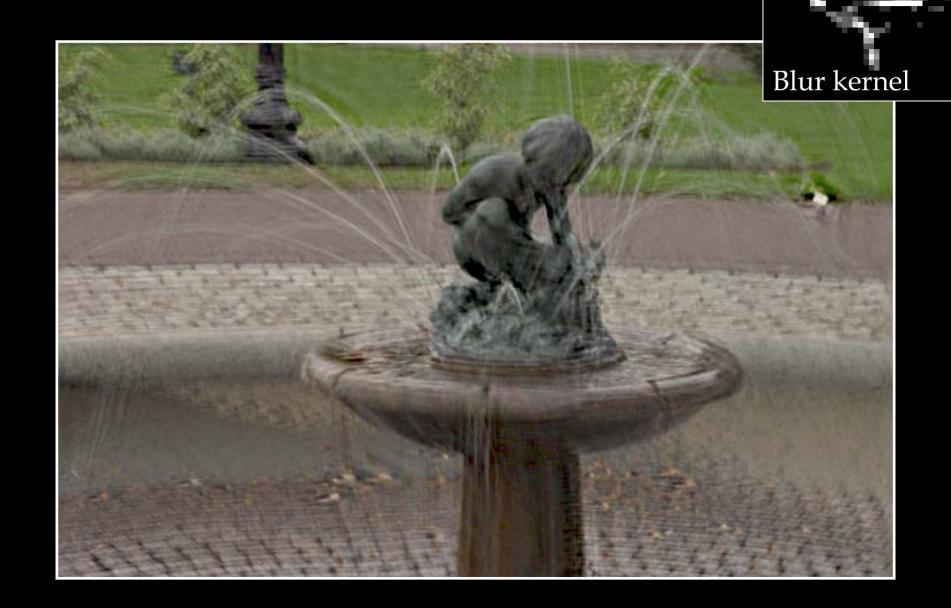


Original photograph

Our output

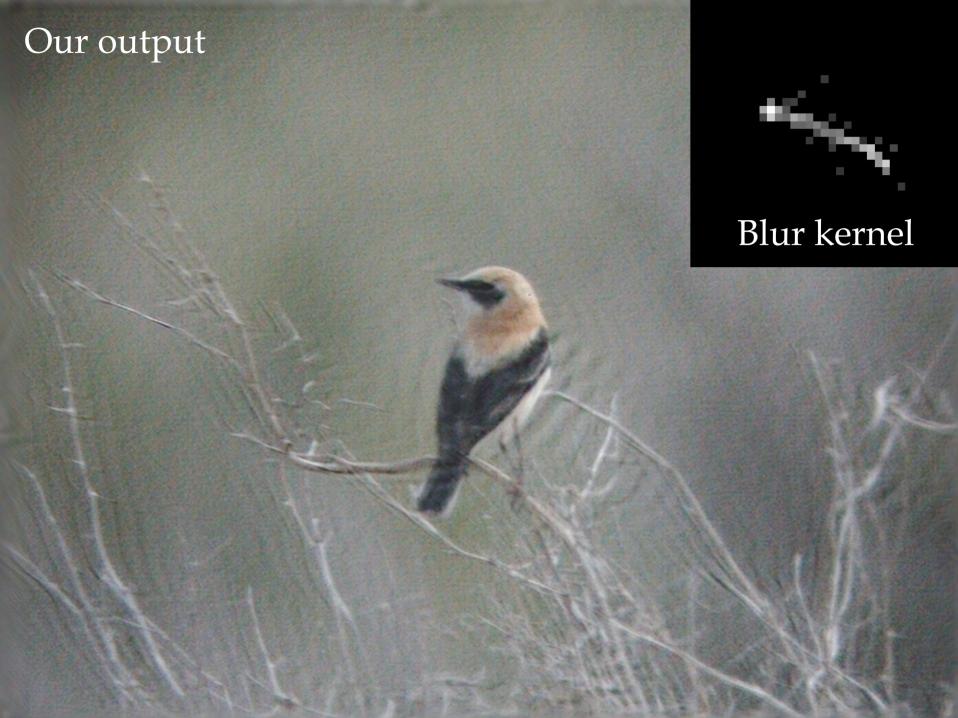
Original photograph

Our output



Matlab's deconvblind

Original photograph



Close-up of bird

Original

Our output

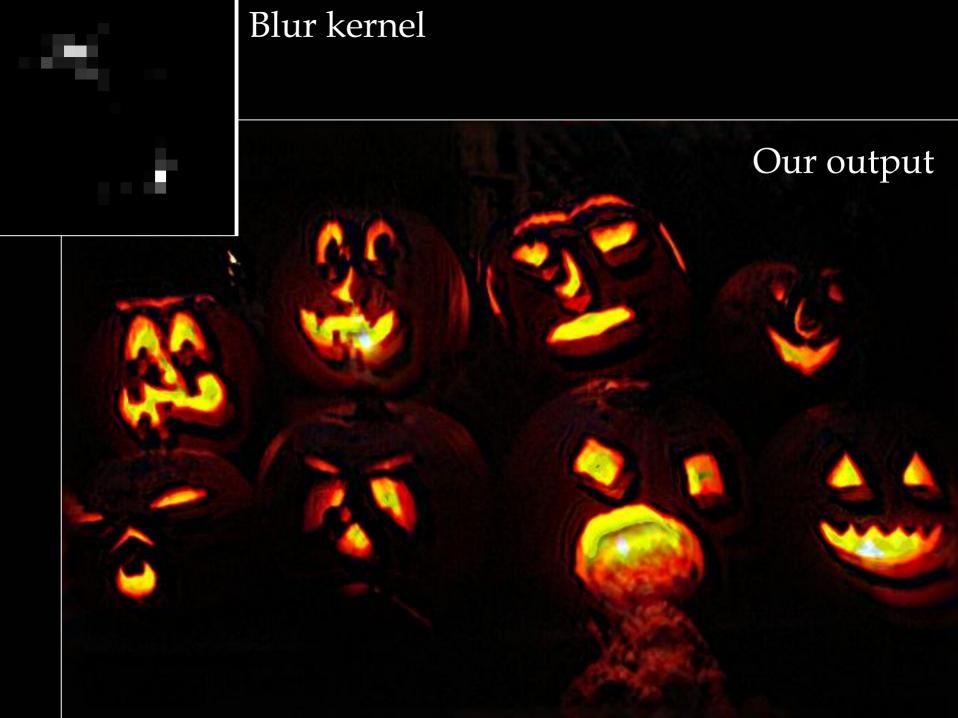


Image artifacts & estimated kernels

Blur kernels

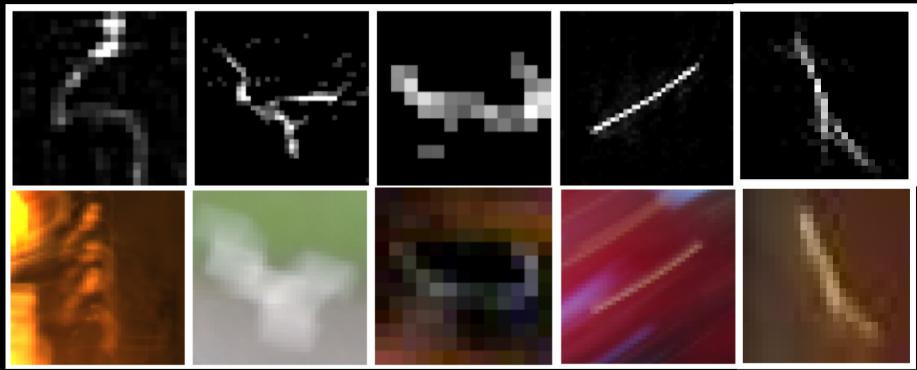


Image patterns

Note: blur kernels were inferred from large image patches, NOT the image patterns shown

Summary

Method for removing camera shake from real photographs

First method that can handle complicated blur kernels

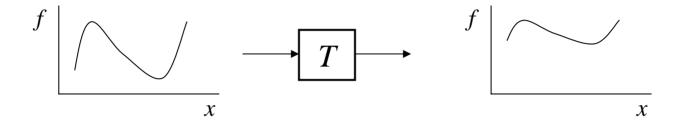
Uses natural image statistics

Non-blind deconvolution currently simplistic

Image Warping

image filtering: change range of image

•
$$g(x) = T(f(x))$$



• image warping: change *domain* of image

•
$$g(x) = f(T(x))$$

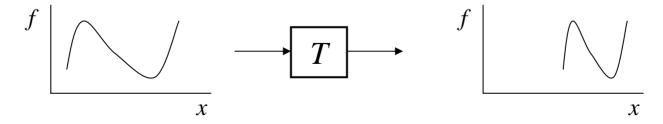
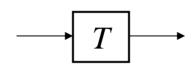


Image Warping

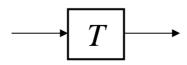
image filtering: change range of image

•
$$g(x) = T(f(x))$$



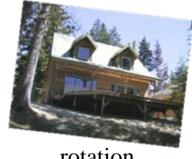
• image warping: change *domain* of image

$$g(x) = f(T(x))$$



Parametric (global) warping

Examples of parametric warps:



rotation

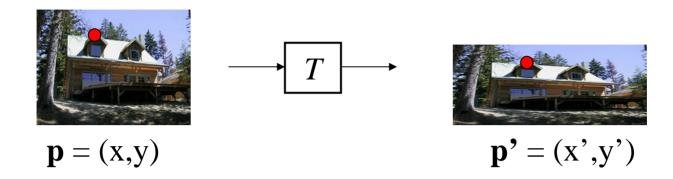
aspect

affine

perspective

cylindrical

Parametric (global) warping



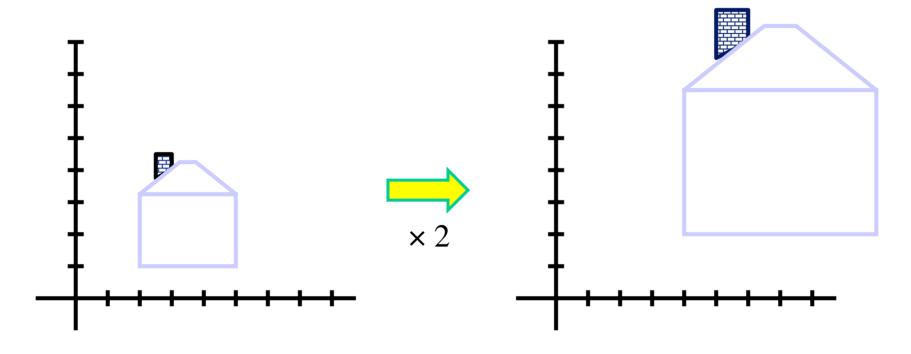
- Transformation T is a coordinate-changing machine:
- p' = T(p)
- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's represent T as a matrix:

$$\mathbf{p}' = \mathbf{M}\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

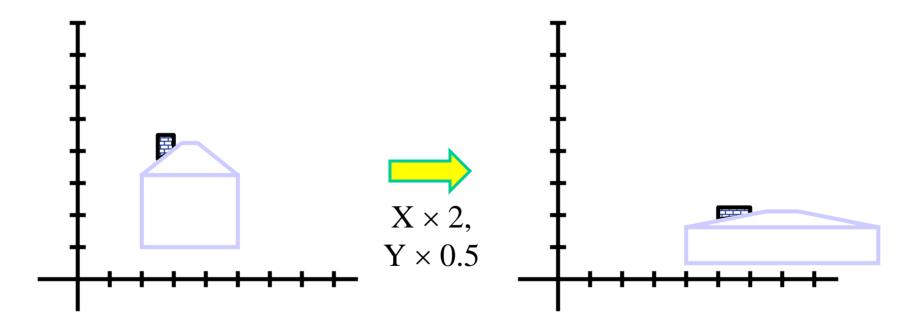
Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling

• *Non-uniform scaling*: different scalars per component:



Scaling

• Scaling operation: x' = ax

$$x' = ax$$

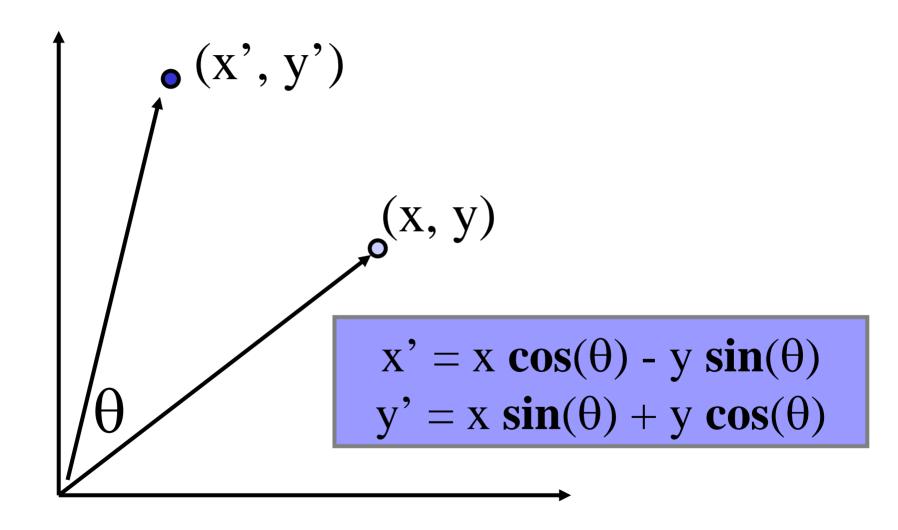
$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What's inverse of S?

2-D Rotation



2-D Rotation

•This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{R}$$

- •Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- •What is the inverse transformation?
 - Rotation by $-\theta$
 - For rotation matrices

$$\mathbf{R}^{-1} = \mathbf{R}^{T}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$\begin{aligned}
\mathbf{x}' &= \mathbf{s}_{x} * \mathbf{x} \\
\mathbf{y}' &= \mathbf{s}_{y} * \mathbf{y}
\end{aligned}
\begin{bmatrix}
\mathbf{x}' \\
\mathbf{y}'
\end{bmatrix} = \begin{bmatrix}
\mathbf{s}_{x} & 0 \\
0 & \mathbf{s}_{y}
\end{bmatrix} \begin{bmatrix}
\mathbf{x} \\
\mathbf{y}
\end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

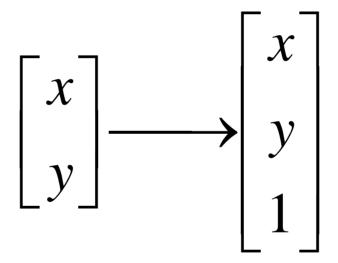
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

Homogeneous coordinates

- represent coordinates in 2 dimensions with a 3-vector



 Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

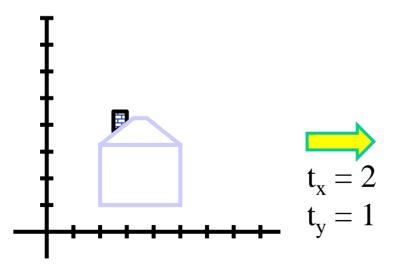
$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

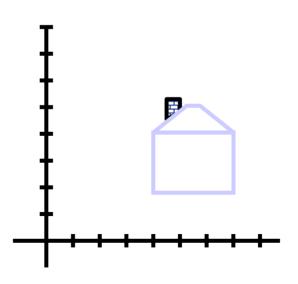
Translation

Example of translation

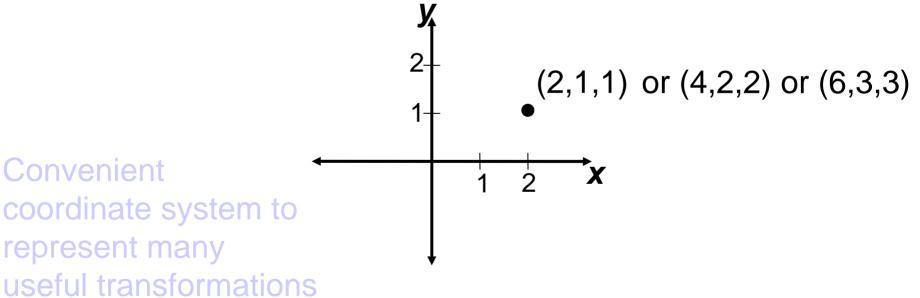
Homogeneous Coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$





- Add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - (x, y, 0) represents a point at infinity
 - -(0, 0, 0) is not allowed



Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Projective Transformations

- Projective transformations ... $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ w' \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$ Affine transformations, and

 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

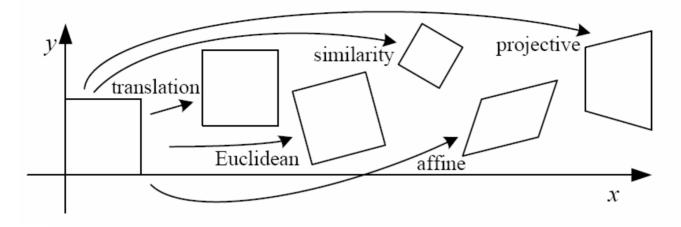
Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

2D image transformations

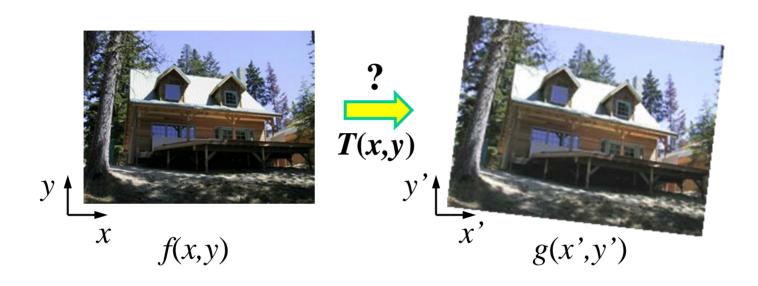


Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$			
rigid (Euclidean)	$egin{bmatrix} R & t \end{bmatrix}_{2 imes 3}$			\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$			\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$			
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$		_	

These transformations are a nested set of groups

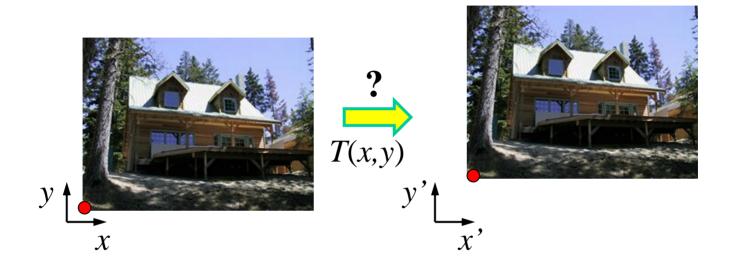
Closed under composition and inverse is a member

Recovering Transformations



- What if we know f and g and want to recover the transform T?
 - Using correspondences
 - How many do we need?

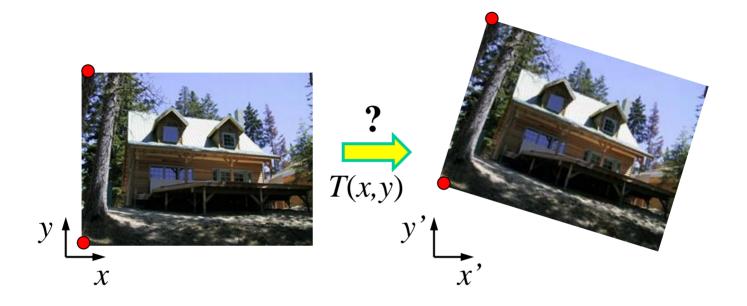
Translation: # correspondences?



- How many correspondences needed for translation?
- How many Degrees of Freedom?
- What is the transformation matrix?

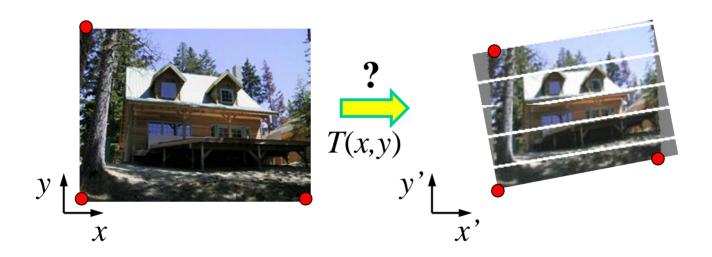
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & p'_x - p_x \\ 0 & 1 & p'_y - p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidian: # correspondences?



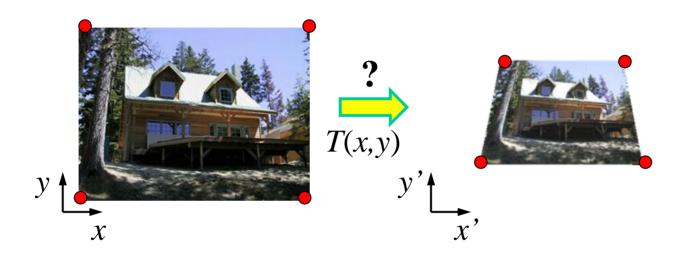
- How many correspondences needed for translation+rotation?
- How many DOF?

Affine: # correspondences?



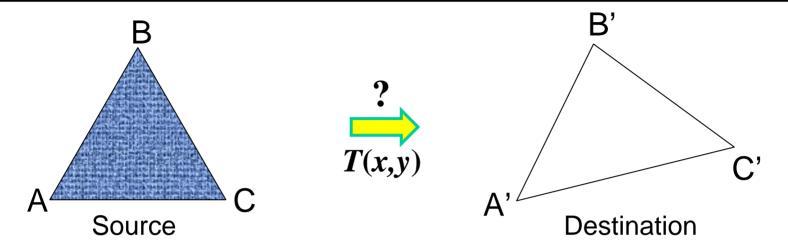
- How many correspondences needed for affine?
- How many DOF?

Projective: # correspondences?



- How many correspondences needed for projective?
- How many DOF?

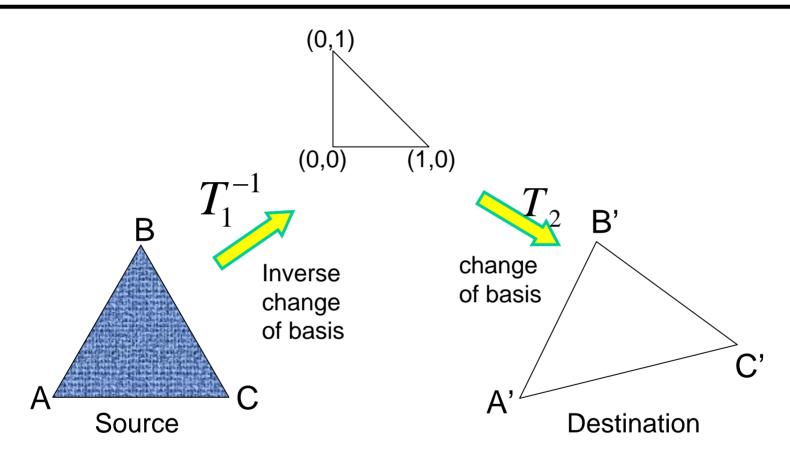
Example: warping triangles



- Given two triangles: ABC and A'B'C' in 2D (12 numbers)
- Need to find transform T to transfer all pixels from one to the other.
- What kind of transformation is T?
- How can we compute the transformation matrix:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

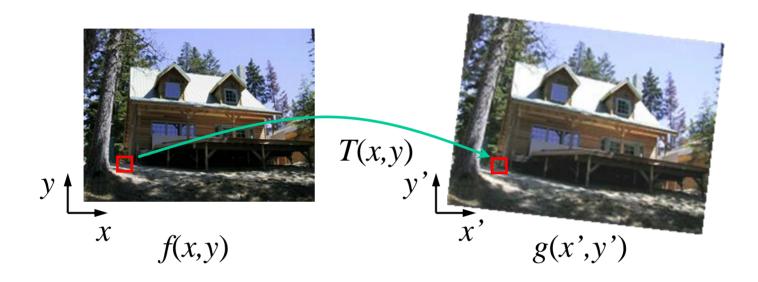
warping triangles (Barycentric Coordinaes)



Don't forget to move the origin too!

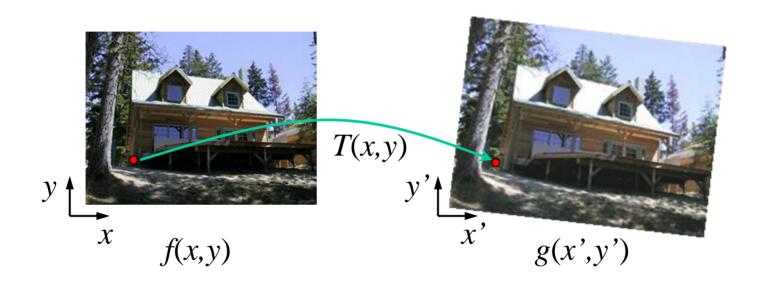
Very useful in Graphics...

Image warping



• Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

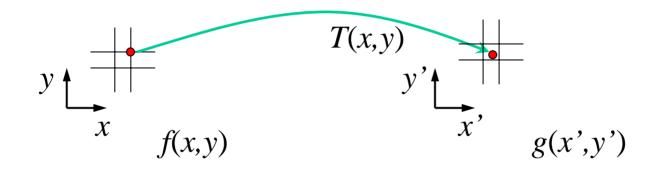
Forward warping



- Send each pixel f(x,y) to its corresponding location
- (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Forward warping



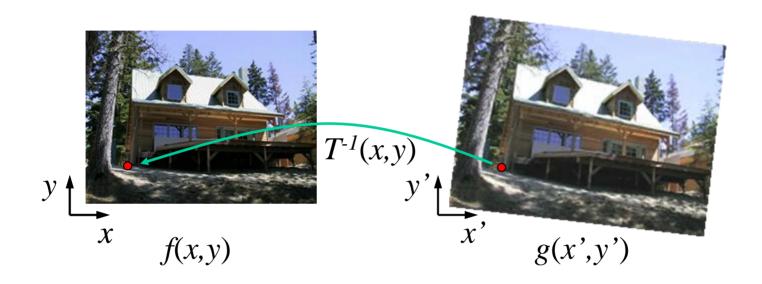
- Send each pixel f(x,y) to its corresponding location
- (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

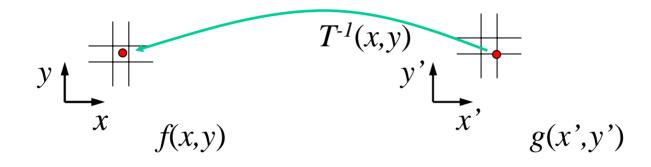
Inverse warping



- Get each pixel g(x',y') from its corresponding location
- $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping



- Get each pixel g(x',y') from its corresponding location
- $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

nearest neighbor, bilinear, Gaussian, bicubic