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Overview

Original Our algorithm 



Close-up

Original Naïve Sharpening Our algorithm 



Let’s take a photo

Blurry result



Slow-motion replay



Slow-motion replay

Motion of camera



Image formation process

= ⊗

Blurry image Sharp image

Blur 
kernel

Input to algorithm Desired output
Convolution

operatorModel is approximation



Why is this hard?

Simple analogy:
11 is the product of two numbers.
What are they?

No unique solution: 
11 = 1 x 11
11 = 2 x 5.5
11 = 3 x 3.667 
etc…..

Need more information !!!!



Multiple possible solutions

= ⊗

Blurry image

Sharp image Blur kernel

= ⊗

= ⊗



Natural image statistics

Histogram of image gradients

Characteristic distribution with heavy tails



Blury images have different statistics

Histogram of image gradients



Parametric distribution

Histogram of image gradients

Use parametric model of sharp image statistics



Three sources of information
1. Reconstruction constraint:

=⊗

Input blurry imageEstimated sharp image
Estimated
blur kernel

2. Image prior: 3. Blur prior:
Positive

&
Sparse

Distribution 
of gradients



Variational Bayesian method

Based on work of Miskin & Mackay 2000

Keeps track of uncertainty in estimates of image and blur by 
using a distribution instead of a single estimate

Helps avoid local maxima and over-fitting



Variational
Bayes

Variational Bayesian method

Maximum 
a-Posteriori (MAP)

Pixel intensity

Sc
or

e

Objective function for a single variable



Overview of algorithm

Input image

1. Pre-processing

2. Kernel estimation
- Multi-scale approach

3. Image reconstruction
- Standard non-blind deconvolution routine



Preprocessing

Convert to
grayscale

Input image

Remove gamma
correction

User selects patch
from image

Bayesian inference 
too slow to run on 
whole image

Infer kernel 
from this patch



Initialization
Input image

Initialize 3x3 
blur kernel

Initial blur kernelBlurry patch Initial image estimate

Convert to
grayscale

Remove gamma
correction

User selects patch
from image



Inferring the kernel: multiscale method
Input image

Loop over scales

Variational
Bayes

Upsample
estimates

Use multi-scale approach to avoid local minima:

Initialize 3x3 
blur kernel

Convert to
grayscale

Remove gamma
correction

User selects patch
from image



Image Reconstruction
Input image

Full resolution
blur estimate

Non-blind 
deconvolution

(Richardson-Lucy)

Deblurred
image

Loop over scales

Variational
Bayes

Upsample
estimates

Initialize 3x3 
blur kernel

Convert to
grayscale

Remove gamma
correction

User selects patch
from image



Results on real images

Submitted by people from their own photo collections

Type of camera unknown 

Output does contain artifacts
– Increased noise

– Ringing

Compares well to existing methods



Original photograph



Blur kernel Our output



Original photographMatlab’s deconvblind



Original photograph



Matlab’s deconvblind



Photoshop sharpen more



2 4 6 8 10 12

2

4

6

8

Our output Blur kernel



2 4 6 8 10 12

2

4

6

8



Original photograph
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Original photograph



Our output

Blur kernel



Matlab’s deconvblind



Original photograph



Our output

Blur kernel



Close-up of bird

Original Our output



Original photograph



Our output

Blur kernel



Image artifacts & estimated kernels

Blur kernels

Image patterns
Note: blur kernels were inferred from large image patches,

NOT the image patterns shown



Summary 

Method for removing camera shake from real photographs

First method that can handle complicated blur kernels

Uses natural image statistics 

Non-blind deconvolution currently simplistic



Image Warping

• image filtering: change range of image
• g(x) = T(f(x))

f
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• image warping: change domain of image
• g(x) = f(T(x))



Image Warping

• image filtering: change range of image
• g(x) = T(f(x))

T

T

• image warping: change domain of image
• g(x) = f(T(x))



Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical



Parametric (global) warping

• Transformation T is a coordinate-changing machine:
• p’ = T(p)
• What does it mean that T is global?

– Is the same for any point p
– can be described by just a few numbers (parameters)

• Let’s represent T as a matrix:
• p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Scaling

• Scaling a coordinate means multiplying each of its 
components by a scalar

• Uniform scaling means this scalar is the same for 
all components:

× 2



• Non-uniform scaling: different scalars per 
component:

Scaling

X × 2,
Y × 0.5



Scaling

• Scaling operation:

• Or, in matrix form:
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What’s inverse of S?



2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)



2-D Rotation
•This is easy to capture in matrix form:

•Even though sin(θ) and cos(θ) are nonlinear functions of θ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

•What is the inverse transformation?
– Rotation by –θ
– For rotation matrices
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2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?

2D Identity?
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2D Scale around (0,0)?
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2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx
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2D Shear?
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2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?

2D Mirror about Y axis?
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2D Mirror over (0,0)?
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2x2 Matrices

• What types of transformations can be 
represented with a 2x2 matrix?

2D Translation?

y

x

tyy
txx
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+=

'
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Only linear 2D transformations 
can be represented with a 2x2 matrix

NO!



All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Homogeneous Coordinates

• Q: How can we represent translation as a 
3x3 matrix?
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Homogeneous Coordinates

•Homogeneous coordinates
– represent coordinates in 2 dimensions with a 3-vector
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Homogeneous Coordinates

• Q: How can we represent translation as a 
3x3 matrix?

• A: Using the rightmost column:
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Translation

•Example of translation
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Homogeneous Coordinates

• Add a 3rd coordinate to every 2D point
– (x, y, w) represents a point at location (x/w, y/w)
– (x, y, 0) represents a point at infinity
– (0, 0, 0) is not allowed

Convenient 
coordinate system to 
represent many 
useful transformations

1 2

1

2 (2,1,1) or (4,2,2) or (6,3,3)

x

y



Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices
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Affine Transformations

• Affine transformations are combinations of 
…
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Projective Transformations

• Projective transformations …
– Affine transformations, and
– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition
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Matrix Composition

• Transformations can be combined by 
matrix multiplication
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2D image transformations

These transformations are a nested set of groups
• Closed under composition and inverse is a member



Recovering Transformations

• What if we know f and g and want to 
recover the transform T?

x x’

T(x,y)
’y y

f(x,y) g(x’,y’)

?

– Using correspondences
• How many do we need?



Translation: # correspondences?

• How many correspondences needed for translation?
• How many Degrees of Freedom?
• What is the transformation matrix?

x x’

T(x,y)
’y y

?
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Euclidian: # correspondences?

• How many correspondences needed for 
translation+rotation?

• How many DOF?

x x’

T(x,y)
’y y

?



Affine: # correspondences?

• How many correspondences needed for 
affine?

• How many DOF?

x x’

T(x,y)
’y y

?



Projective: # correspondences?

• How many correspondences needed for 
projective?

• How many DOF?

x x’

T(x,y)
’y y

?



Example: warping triangles

• Given two triangles: ABC and A’B’C’ in 2D (12 numbers) 
• Need to find transform T to transfer all pixels from one to 

the other.
• What kind of transformation is T?
• How can we compute the transformation matrix:

T(x,y)

?
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warping triangles (Barycentric Coordinaes)

•Very useful in Graphics…

A

B

A’
C’

B’

Source Destination
C

(0,0) (1,0)

(0,1)

change
of basis

Inverse 
change
of basis

Don’t forget to move the origin too!

2T1
1
−T



Image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute a 
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

g(x’,y’)

’

f(x,y)

y y



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding 
location 

• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’



f(x,y) g(x’,y’)

Forward warping

• Send each pixel f(x,y) to its corresponding location 
• (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”



f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location 
• (x,y) = T-1(x’,y’) in the first image

x x’
y’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?



f(x,y) g(x’,y’)x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding location 
• (x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic
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