Last Lecture

Today

Image Mosaics and Panorama

- Today's Readings
 - Szeliski and Shum paper http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski/

Full screen panoramas (cubic): <u>http://www.panoramas.dk/</u> Mars: <u>http://www.panoramas.dk/fullscreen3/f2_mars97.html</u> 2003 New Years Eve: <u>http://www.panoramas.dk/fullscreen3/f1.html</u>

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°

Slide from Brown & Lowe

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$
 - Panoramic Mosaic = $360 \times 180^{\circ}$

Mosaics: stitching images together

Creating virtual wide-angle camera

Auto Stitch: the State of Art Method

- Demo
- Project 2 is a striped-down AutoStitch

How to do it?

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - If there are more images, repeat

Geometric Interpretation of Mosaics

- If we capture all the 360° rays in different images, we can assemble them into a panorama.
- The basic operation is projecting an image from one plane to another
- The projective transformation is scene-INDEPENDENT

What is the transformation?

left on top

Translations are not enough to align the images

What is the transformation?

Recall in the Image Warping Lecture:

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\Diamond
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Image warping with homographies

Image rectification

To unwarp (rectify) an image

- Find the homography **H** given a set of **p** and **p**' pairs
- How many correspondences are needed?

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Can set scale factor *i*=1. So, there are 8 unkowns.
Set up a system of linear equations:

•Ah = b

- •where vector of unknowns $h = [a,b,c,d,e,f,g,h]^T$
- •Need at least 8 eqs, but the more the better...

•Solve for h. If overconstrained, solve using leastsquares: $\min ||Ah - b||^2$

- •Can be done in Matlab using "\" command
 - see "help Imdivide"

changing camera center

Planar scene (or far away)

- If scene is planar, we are OK!
- This is how big aerial photographs are made

Why is so?

Planar mosaic Examples

- With enough images from the same optical center, we can create panorama.
- If the camera moves, we can't in general
- If the scene is planar or faraway, we are OK.

Can we use homography to create a 360 panorama?

Should use Cylindrical Projection

Cylindrical panoramas

- Steps
 - Reproject each image onto a cylinder
 - Align and Blend
 - Output the resulting mosaic

Taking pictures

Warped Images

Cylindrical projection (An Example)

Cylindrical projection

Cylindrical projection

Cylindrical projection

Cylindrical Projection

Inverse Cylindrical projection

 $\theta = (x_{cyl} - x_c)/f$ $h = (y_{cyl} - y_c)/f$ $\hat{x} = \sin \theta$ $\hat{y} = h$ $\hat{z} = \cos \theta$ $x = f\hat{x}/\hat{z} + x_c$ $y = f\hat{y}/\hat{z} + y_c$

Need to know the focal length

Image 384x300

f = 180 (pixels)

f = 280

f = 380

A simple method for estimating f

Blending

Blending

Blending

• Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
 - small errors accumulate over time

Problem: Drift

• Solution

• copy of first image

- add another copy of first image at the end
- there are a bunch of ways to solve this problem
 - add displacement of $(y_1 y_n)/(n 1)$ to each image after the first
 - compute a global warp: y' = y + ax
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

End-to-end alignment and crop

- 1. Take pictures on a tripod (or handheld)
- 2. Warp to cylindrical coordinate
- 3. Compute pairwise alignments
- 4. Fix up the end-to-end alignment
- 5. Blending
- 6. Crop the result and import into a viewer

Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Removing distortion

Distortion-Free:

Distortion Model:

1. Project (X, Y, Z) to "normalized" image coordinates

2. Apply radial distortion

 $x_n = \frac{X}{Z}$ $y_n = \frac{Y}{Z}$

$$r^{2} = x_{n}^{2} + y_{n}^{2}$$

$$x_{d} = x_{n} \left(1 + \kappa_{1} r^{2} + \kappa_{2} r^{4} \right)$$

$$y_{d} = y_{n} \left(1 + \kappa_{1} r^{2} + \kappa_{2} r^{4} \right)$$

3. Apply focal length translate image center

 $x' = fx_d + x_c$ $y' = fy_d + y_c$

- How can we undo radial distortion if we know k1, k2, and f?
 - Inverse warping

Removing Radial Distortion

Alpha Blending

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$ color at $p = \frac{(\alpha_1 R_1, \alpha_1 G_1, \alpha_1 B_1) + (\alpha_2 R_2, \alpha_2 G_2, \alpha_2 B_2) + (\alpha_3 R_3, \alpha_3 G_3, \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Image Blending

Feathering

Effect of window size

0-

Effect of window size

0.

Good window size

- "Optimal" window: smooth but not ghosted
 - Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

 Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image</u> mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

Multi-band Blending

Multi-band Blending

• Burt & Adelson 1983 – Blend frequency bands over range $\propto \lambda$

Multi-band Blending

Poisson Image Editing

sources/destinations

cloning

seamless cloning

• For more info: Perez et al, SIGGRAPH 2003

<u>http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf</u>

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Before Siggraph Deadline:

http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/siggraph-hires.html

What's inside your refrig?

http://www.cs.washington.edu/education/courses/cse590ss/01wi/

Mars: <u>http://www.panoramas.dk/fullscreen3/f2_mars97.html</u>

2003 New Years Eve: http://www.panoramas.dk/fullscreen3/f1.html

Video Summarization: http://www.vision.huji.ac.il/video-synopsis/

Video Summarization

Video compression

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski.

Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski.

Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.