
Last Two Lectures

Panoramic Image Stitching

Feature Detection and Matching

Today

More on Mosaic

Projective Geometry

Single View Modeling

Vermeer’s Music Lesson
Reconstructions by Criminisi et al.

Image Alignment

Feature Detection and Matching

Cylinder:

Translation

2 DoF

Plane:

Homography

8 DoF

Plane perspective mosaics

– 8-parameter generalization of affine motion

• works for pure rotation or planar surfaces

– Limitations:

• local minima

• slow convergence

Revisit Homography

x

(Xc,Yc,Zc)

xcf
















































Z

Y

X

yf

xf

y

x

c

c

100

0

0

~

1

1

1

















































Z

Y

X

yf

xf

y

x

c

c

R

100

0

0

~

1

2

2

2

1

1

1 ~)(xKxKR


Absolute orientation

• Given two sets of matching points,

compute R such that pi’ = R pi

[Arun et al., PAMI 1987] [Horn et al., JOSA A 1988]

Procrustes Algorithm [Golub & VanLoan]

• A = Σi pi pi’
T = U S VT

• R = V UT

What if we don’t know f?

x

(Xc,Yc,Zc)

xcf




















































Z

Y

X

f

f

yy

xx

c

c

100

00

00

~

1

1

1

1

1





















































Z

Y

X

f

f

yy

xx

c

c

R

100

00

00

~

1

2

2

2

2

2

1

21

1

1 ~)(xKxKR


21

1

12 ~)(xxRKK


H

{

























1

2
22

1

1

1

1

2

/

/

~

f

f
jfifh

fged

fcba

HKKR

??, 21  ff

The drifting problem

• Error accumulation

– small errors accumulate over time

Bundle Adjustment

Associate each image i with
iK iR

Each image i has features ijp

Trying to minimize total matching residuals

 
),(

2
11~) and all(

mi j

mjmmiiijiifE pKRRKpR

Rotations

• How do we represent rotation matrices?

1. Axis / angle (n,θ)

R = I + sinθ [n] + (1- cosθ) [n]
2

(Rodriguez Formula), with

[n] be the cross product matrix.

Incremental rotation update

1. Small angle approximation

ΔR = I + sinθ [n] + (1- cosθ) [n]
2

≈ I +θ [n] = I+[ω]
linear in ω= θn

2. Update original R matrix

R ← R ΔR

Recognizing Panoramas

[Brown & Lowe,
ICCV’03]

Finding the panoramas

Finding the panoramas

Algorithm overview

Algorithm overview

Algorithm overview

Algorithm overview

Algorithm overview

Algorithm overview

Finding the panoramas

Finding the panoramas

Algorithm overview

Algorithm overview

Algorithm overview

Get you own copy!

[Brown & Lowe, ICCV 2003]

[Brown, Szeliski, Winder, CVPR’05]

How well does this work?

Test on 100s of examples…

How well does this work?

Test on 100s of examples…

…still too many failures (5-10%)

for consumer application

Matching Mistakes: False Positive

Matching Mistakes: False Positive

Matching Mistakes: False Negative

• Moving objects: large areas of disagreement

Matching Mistakes

• Accidental alignment

– repeated / similar regions

• Failed alignments

– moving objects / parallax

– low overlap

– “feature-less” regions

(more variety?)

• No 100% reliable

algorithm?

How can we fix these?

• Tune the feature detector

• Tune the feature matcher (cost metric)

• Tune the RANSAC stage (motion model)

• Tune the verification stage

• Use “higher-level” knowledge

– e.g., typical camera motions

• → Sounds like a big “learning” problem

– Need a large training/test data set (panoramas)

Enough of images!

We want more

from the image

We want real 3D

scene

walk-throughs:

Camera rotation

Camera

translation

on to 3D…

So, what can we do here?

• Model the scene

as a set of

planes!

(0,0,0)

The projective plane

• Why do we need homogeneous coordinates?

– represent points at infinity, homographies,
perspective projection, multi-view relationships

• What is the geometric intuition?

– a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)

– all points on the ray are equivalent: (x, y, 1)  (sx, sy, s)

image plane

(x,y,1)

y

xz

Projective lines

• What does a line in the image correspond to in

projective space?

• A line is a plane of rays through origin

– all rays (x,y,z) satisfying: ax + by + cz = 0

 


















z

y

x

cba0 :notationvectorin

• A line is also represented as a homogeneous 3-vector l

l p

l

Point and line duality

– A line l is a homogeneous 3-vector

– It is  to every point (ray) p on the line: l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?

• p is  to l1 and l2  p = l1  l2

Points and lines are dual in projective space

• given any formula, can switch the meanings of points and

lines to get another formula

l1

l2

p

What is the line l spanned by rays p1 and p2 ?

• l is  to p1 and p2  l = p1  p2

• l is the plane normal

Ideal points and lines

• Ideal point (“point at infinity”)

– p  (x, y, 0) – parallel to image plane

– It has infinite image coordinates

(sx,sy,0)y

x

z image plane

Ideal line

• l  (a, b, 0) – parallel to image plane

(a,b,0)

y

x

z image plane

• Corresponds to a line in the image (finite coordinates)

Homographies of points and lines

• Computed by 3x3 matrix multiplication
– To transform a point: p’ = Hp

– To transform a line: lp=0  l’p’=0
– 0 = lp = lH-1Hp = lH-1p’  l’ = lH-1

– lines are transformed by postmultiplication of H-1

3D projective geometry

• These concepts generalize naturally to

3D

– Homogeneous coordinates

• Projective 3D points have four coords: P =

(X,Y,Z,W)

– Duality

• A plane N is also represented by a 4-vector

• Points and planes are dual in 4D: N P=0

– Projective transformations

• Represented by 4x4 matrices T: P’ = TP, N’

= N T-1

3D to 2D: “perspective” projection

• Matrix Projection: ΠPp 















































1

Z
Y
X

w

wy
wx

What is not preserved under perspective projection?

What IS preserved?

Vanishing points

• Vanishing point

– projection of a point at infinity

image plane

camera
center

ground plane

vanishing point

Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point

Vanishing points

• Properties

– Any two parallel lines have the same vanishing point v

– The ray from C through v is parallel to the lines

– An image may have more than one vanishing point
• in fact every pixel is a potential vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane

Vanishing lines

• Multiple Vanishing Points

– Any set of parallel lines on the plane define a vanishing point

– The union of all of these vanishing points is the horizon line
• also called vanishing line

– Note that different planes define different vanishing lines

v1 v2

Vanishing lines

• Multiple Vanishing Points

– Any set of parallel lines on the plane define a vanishing point

– The union of all of these vanishing points is the horizon line
• also called vanishing line

– Note that different planes define different vanishing lines

Computing vanishing points

• Properties

– P is a point at infinity, v is its projection

– They depend only on line direction

– Parallel lines P0 + tD, P1 + tD intersect at P

V

DPP t 0







































































 

0/1

/

/

/

1

Z

Y

X

ZZ

YY

XX

ZZ

YY

XX

t
D

D

D

t

t

DtP

DtP

DtP

tDP

tDP

tDP

PP

ΠPv

P0

D

Computing vanishing lines

• Properties
– l is intersection of horizontal plane through C with image plane

– Compute l from two sets of parallel lines on ground plane

– All points at same height as C project to l

• points higher than C project above l

– Provides way of comparing height of objects in the scene

ground plane

l
C

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Vanishing

Point

Measuring height

1

2

3

4

5
5.4

2.8

3.3

Camera height

q1

Computing vanishing points (from lines)

• Intersect p1q1 with p2q2

v

p1

p2

q2

Least squares version
• Better to use more than two lines and compute the “closest” point of

intersection

• See notes by Bob Collins for one good way of doing this:

– http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

http://www-2.cs.cmu.edu/afs/cs/user/rcollins/www/home.html
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

C

Measuring height without a ruler

ground plane

Compute Z from image measurements

• Need more than vanishing points to do this

Z

The cross ratio

• A Projective Invariant

– Something that does not change under projective transformations

(including perspective projection)

P1

P2

P3

P4

1423

2413

PPPP

PPPP





The cross-ratio of 4 collinear points

Can permute the point ordering

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry





















1

i

i

i

i
Z

Y

X

P

3421

2431

PPPP

PPPP





vZ

r

t

b

tvbr

rvbt





Z

Z

image cross ratio

Measuring height

B (bottom of object)

T (top of object)

R (reference point)

ground plane

H
C

TBR

RBT





scene cross ratio























1

Z

Y

X

P



















1

y

x

pscene points represented as image points as

R

H


R

H


R

Measuring height

RH

vz

r

b

t

R

H

Z

Z






tvbr

rvbt

image cross ratio

H

b0

t0

vvx vy

vanishing line (horizon)

Measuring height vz

r

b

t0

vx vy

vanishing line (horizon)

v

t0

m0

What if the point on the ground plane b0 is not known?

• Here the guy is standing on the box, height of box is known

• Use one side of the box to help find b0 as shown above

b0

t1

b1

Computing (X,Y,Z) coordinates

• Okay, we know how to compute height (Z

coords)

– how can we compute X, Y?

Camera calibration

• Goal: estimate the camera parameters

– Version 1: solve for projection matrix

ΠXx 















































1

Z
Y
X

w

wy
wx

• Version 2: solve for camera parameters separately

– intrinsics (focal length, principle point, pixel size)

– extrinsics (rotation angles, translation)

– radial distortion

Vanishing points and projection matrix
















Π  4321 ππππ

1π 2π 3π 4π

 T
00011 Ππ  = vx (X vanishing point)

Z3Y2 ,similarly, vπvπ 

  origin worldof projection10004 
T

Ππ

 ovvvΠ ZYX

Not So Fast! We only know v’s up to a scale factor

 ovvvΠ ZYX cba

• Can fully specify by providing 3 reference points

3D Modeling from a photograph

https://research.microsoft.com/vision/cambridge/3d/3dart.htm

