Last lecture

« Passive Stereo
« Spacetime Stereo




Today

« Structure from Motion:
Given pixel correspondences,
how to compute 3D structure and camera motion?

Slides stolen from Prof Yungyu Chuang



Epipolar geometry &
fundamental matrix



The epipolar geometry

epipolar geometry demo
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http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

The epipolar geometry
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What if only C,C’,x are known?



The epipolar geometry

baseline

All points on &t project on | and /’



The epipolar geometry
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The epipolar geometry

epipolar pole epipolar geometry demo
= intersection of baseline with image plane
= projection of projection center in other image

baseline

epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image


http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

The fundamental matrix F

Two reference frames are related via the extrinsic parameters

p'=R(p-T)

The equation of the epipolar plane through X is

X' (Txp)=0 mp (R'p'+T) (Txp)=0



The fundamental matrix F

(R'p) (Txp)=0

Txp=5p
0 -T, T, |
S=| T, 0 -T,
T, T, O

= (R'P)(Sp)=0
= (p"[R)ESp)=0
= p' =0  essential matrix




The fundamental matrix F




The fundamental matrix F

1T
P Ep=0
Let M and M’ be the intrinsic matrices, then

p=M?x  p=M"x

= (M x) E(Mx)=0
= XM TEM =0
) X'TB( =0 fundamental matrix




The fundamental matrix F




The fundamental matrix F

The fundamental matrix is the algebraic representation
of epipolar geometry

The fundamental matrix satisfies the condition that for
any pair of corresponding points x«<»X’ in the two images

XTFx=0  (x"I=0)
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The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0
for all xe—x’

. Transpose: if F is fundamental matrix for (P,P’), then FT

is fundamental matrix for (P’,P)

Epipolar lines: ’=Fx & (=F"x’

Epipoles: on all epipolar lines, thus e’TFx=0, VX
—=e’TF=0, similarly Fe=0

F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

F is a correlation, projective mapping from a point x to
a line ’=Fx (not a proper correlation, i.e. not invertible)



The fundamental matrix F

e It can be used for
- Simplifies matching
- Allows to detect wrong matches



Estimation of F — 8-point algorithm

« The fundamental matrix F is defined by

X' '"Fx =0

for any pair of matches x and x’ in two 1mages.

fll f12 fl3
e Letx=(uv,1)"and x’=(u’,v,1)", F=f, f, f,

] ] ] | f31 f32 f33
each match gives a linear equation

uu' f, +w'f,+u f,+uv' f, +w'f,,+v f,+uf, +vf, +f, =0



8-point algorithm

« In reality, instead of solving Af =0, we seek f to
minimize HAf H least eigenvector of A" A
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8-point algorithm

« To enforce that F is of rank 2, F is replaced by F’ that
minimizes |F — F'|subject to det F'=0.

e It is achieved by SVD. Let F = UXV, where

opb 0 O o, 0 O
>=[0 o, O let =0 o, O
0 0 o, 0 0 0

then F'= X'V lis the solution.



8-point algorithm

% Build the constraint matrix
A=1[x2(1,:).*x1(1,:)" x2(1,:)".*x1(2,:)" x2(1,:)" ...
X2(2,:) . *x1(1,:))" x2(2,:)'.*x1(2,:)" x2(2,:)" ...
x1(1,:)’ x1(2,)' ones(npts,1) |;

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F =reshape(V(:,9),3,3)’;

% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) O])*V*;



8-point algorithm

* Pros: itis linear, easy to implement and fast
« Cons: susceptible to noise



Problem with 8-point algorithm
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Orders of magnitude difference
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Normalized 8-point algorithm

normalized least squares yields good results

Transform image to ~[-1,1]x[-1,1]

(1.1)
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(1-1)



Normalized 8-point algorithm

1. Transform input be = TX,, X = Tx
2. Call 8-point onXI : X to obtaln |:

3. F=T'"TFT

X' '"Fx =0
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Normalized 8-point algorithm

[x1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);
A=[x2(1,:).*x1(1,:)" x2(1,:)".*x1(2,:)" x2(1,:)" ...
X2(2,))' *x1(1,:)" x2(2,))".*x1(2,:)" x2(2,:)" ...
x1(1,:)' x1(2,:)' ones(npts,1) |,

[U,D,V] = svd(A);
F = reshape(V(;,9),3,3)";

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) O])*V";

% Denormalise
F=T2"FT1;



Normalization

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)")"; % Centroid
newp(1l,:) = pts(1,:)-c(1); % Shift origin to centroid.
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sgrt(newp(1,:)."2 + newp(2,:).*2));
scale = sqgrt(2)/meandist;

T=[scale 0 -scale*c(l)
O scale -scale*c(2)
0 0 1 ]
newpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until I'(#inliers,#samples)>95% or too many times

compute F based on all inliers



Results (ground truth)

m Ground truth with standard stereo calibration




Results (8-point algorithm)

m 8-point algorithm




Results (normalized 8-point algorithm)

B Normalized 8-point algorithm




FromFtoR, T

X'"'Fx =0
X' M TTEM 'x=0
E=M"FM If we know camera parameters
E=R[T],

Hartley and Zisserman, Multiple View Geometry, 2" edition, pp 259



Triangulation

* Problem: Given some points in correspondence
across two or more images (taken from calibrated
cameras), {(u;,v;)}, compute the 3D location X

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

32



Triangulation

 Method I: intersect viewing rays in 3D, minimize:

arg m}én Y IC; + sV, = X|
J
« X s the unknown 3D point
* C, is the optical center of camera |
* V,is the viewing ray for pixel (u;,v;)
* s;Is unknown distance along V;
« Advantage: geometrically intuitive v

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

33



Triangulation

« Method lI: solve linear equations in X
« advantage: very simple

w = mooX; + mo1Y; + mo24; + Mo3
moX; + mo1Y; +mooZ; + 1

v = m10X; T+ m11Y; T mi124; + M3
moX; T ma1Y; T~ mooZ; + 1

e Method Ill: non-linear minimization

« advantage: most accurate (image plane error)

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

34



Structure from motion



Structure from motion

\Unknown

camera
viewpoints

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self

calibration technique and called automatic camera tracking or
matchmoving.




Applications

* For computer vision, multiple-view shape
reconstruction, novel view synthesis and autonomous

vehicle navigation.

* For film production, seamless insertion of CGl into
live-action backgrounds



Structure from motion

2D feature . R imizati eometr
—| 3D estimation .| optimization - .9 y

tracking (bundle adjust) fitting

SFM pipeline



Structure from motion

« Step 1. Track Features
» Detect good features, Shi & Tomasi, SIFT
* Find correspondences between frames

— Lucas & Kanade-style motion estimation
—window-based correlation
— SIFT matching




Structure from Motion

« Step 2: Estimate Motion and Structure
« Simplified projection model, e.g., [Tomasi 92]
« 2or3views at atime [Hartley 00]



Structure from Motion

« Step 3: Refine estimates
* “Bundle adjustment” in photogrammetry
« Other iterative methods
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Structure from Motion

« Step 4: Recover surfaces (image-based triangulation,
silhouettes, stereo...)




Example : Photo Tourism

Photo Tourism

Exploring photo collections in 3D
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Factorization methods



Problem statement
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SFM under orthographic projection

orthographic
2D image projection 3D scene image

point matrix point offset

q=1p +t
e 2x1 2x33xl 2x1

* Choose scene origin to be centroid of 3D points
« Choose image origins to be centroid of 2D points
» Allows us to drop the camera translation:

q=1lp



factorization (Tomasi & Kanade)

projection of n features in one image:

o 9, - a)=TTl:. P, - P,

2%N 2%3 3xn
projection of n features in m images
Oiu Uiz -0 g, Hl
Uy Oy v Op | |
S E BV | [ - PO N
' o ’ 3xn
_qml Jno qmn_ _Hm_
2mxn 2mx3
W measurement M motion S shape

Key Observation: rank(W) <=3




Factorization

known —— W M S

———solve for

mxn 2mx3 3xr1

e Factorization Technique
- W is at most rank 3 (assuming

nNo noise)

- We can use singular value decomposition to factor W:

W =M'S

2mxn 2mx3 3x

n

- S’ differs from S by a linear transformation A:
W =M'S' = (MA™7)(AS)

- Solve for A by enforcing metric constraints on M



Metric constraints

« Orthographic Camera 1 0
T _
* Rows of IT are orthonormal: [TI1 = [O J

« Enforcing “Metric” Constraints
« Compute A such that rows of M have these properties

1
MA=M
Trick (not in original Tomasi/Kanade paper, but in followup work)
« Constraints are linear in AA" :

[(1) ﬂ =TI, TI] =IT, AIT A) =TT, GIT]  where G = AAT

« Solve for G first by writing equations for every IT; in M
« Then G =AA" by SVD



Results




Extensions to factorization methods

« Paraperspective [Poelman & Kanade, PAMI 97]
« Sequential Factorization [Morita & Kanade, PAMI 97]

« Factorization under perspective [Christy & Horaud,
PAMI 96] [Sturm & Triggs, ECCV 96]

« Factorization with Uncertainty [Anandan & Irani, [JCV
2002]



Bundle adjustment



Structure from motion

Uz’j —

2 frames:

I

\Kv Rj: t]v Xq

g(

K,Rj,tj,Xi

)

)

(R,1): 5 dof + 3n point locations <
4n point measurements =

n>5
« k frames:
6(k-1)-1 + 3n < 2kn

* always want to use many more

How many points do we need to match?

Richard Szeliski CSE 576 (Spring 2005): Computer

Vision

53



Bundle Adjustment

f(K,R,t],XZ)
g(KaRjatu’nXZ)

Uz’j

« What makes this non-linear minimization hard?
* many more parameters: potentially slow
« poorer conditioning (high correlation)
« potentially lots of outliers

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision



Lots of parameters: sparsity

al] — f(K,R],t],XZ)
@’LJ — g(KaRjatjaxz)
* Only a few entries in Jacobian are non-zero
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Richard Szeliski CSE 576 (Spring 2005): Computer
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Robust error models

Gaussian -I'Gg likelihbod

« Qutlier rejection
« use robust penalty applied

Robuystified -log likelijood ——— 1

to each set of joint
measurements

2 = N W s & ~
| I E— | | I E— |

« for extremely bad data, use random sampling [RANSAC,
Fischler & Bolles, CACM’81]

Zgi_zﬁ (\/(uz — ;)% + (v — @}')2)

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

10
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Structure from motion: limitations

« Very difficult to reliably estimate metric
structure and motion unless:
 large (x or y) rotation or
+ large field of view and depth variation

« Camera calibration important for Euclidean
reconstructions

 Need good feature tracker
« Lens distortion

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

58



Issues in SFM

e Track lifetime

* Nonlinear lens distortion

* Degeneracy and critical surfaces

* Prior knowledge and scene constraints
* Multiple motions



Track lifetime

every 50th frame of a 800-frame sequence



Track lifetime
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Nonlinear lens distortion
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Nonlinear lens distortion

effect of lens distortion



Prior knowledge and scene constraints

add a constraint that several lines are parallel



Prior knowledge and scene constraints

add a constraint that it is a turntable sequence



Applications of Structure from Motion



Jurassic park




PhotoSynth

“What if your photo collection wcﬁ an entry point into the world,

like a wormhole that you couldjq[jvp through and explore...”

Y

http://labs.live.com/photosynth/



http://labs.live.com/photosynth/

