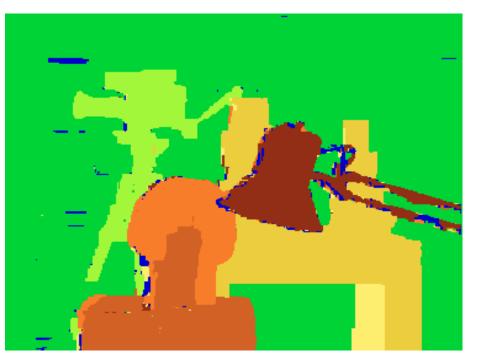
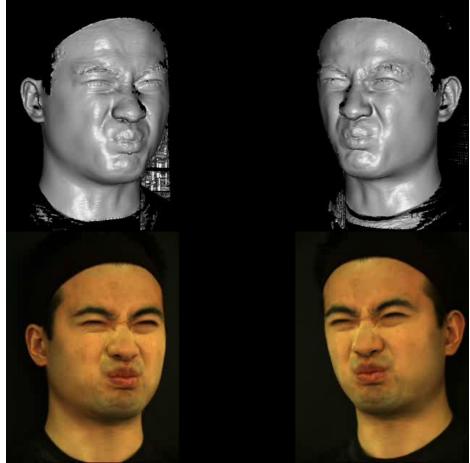
Last lecture

- Passive Stereo
- Spacetime Stereo





Today

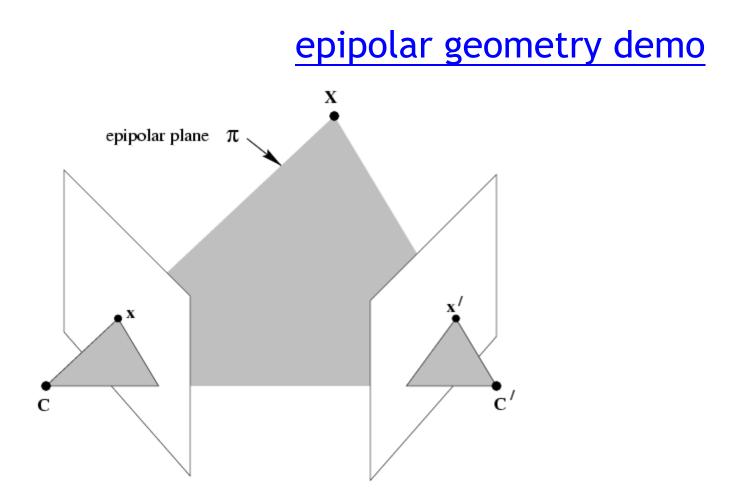
• Structure from Motion:

Given pixel correspondences,

how to compute 3D structure and camera motion?

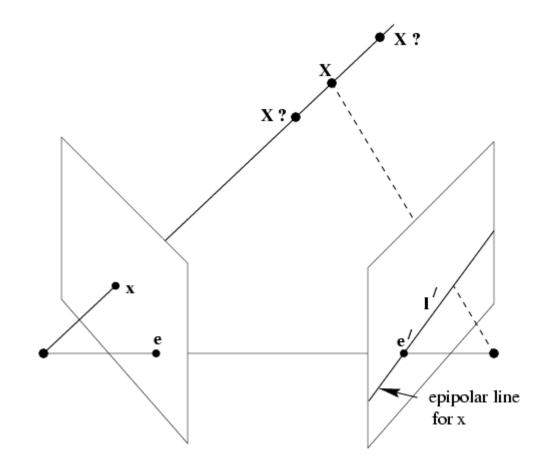
Epipolar geometry & fundamental matrix

The epipolar geometry

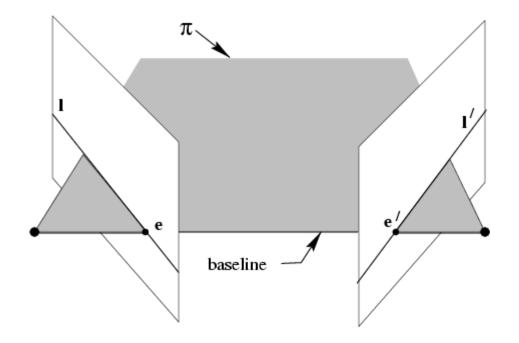


C, C', x, x' and X are coplanar

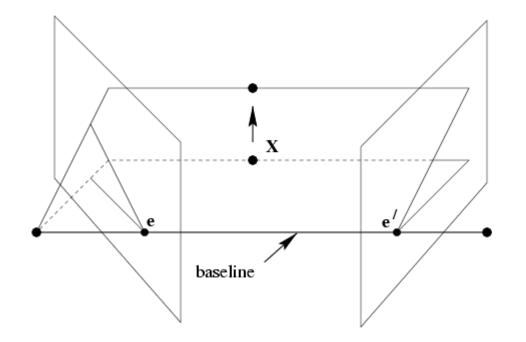
The epipolar geometry



What if only *C*,*C*',*x* are known?



All points on π project on *I* and *I*'



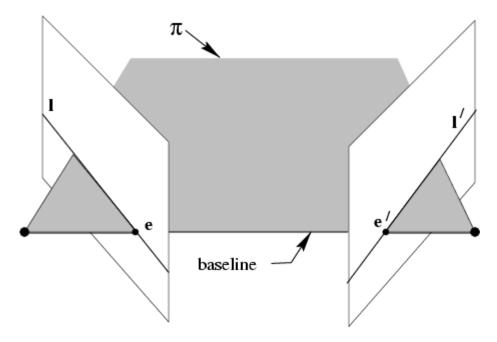
Family of planes π and lines l and l' intersect at e and e'

The epipolar geometry

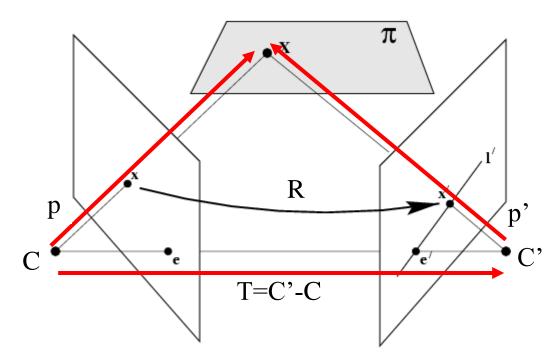
epipolar pole

epipolar geometry demo

- = intersection of baseline with image plane
- = projection of projection center in other image



epipolar plane = plane containing baseline epipolar line = intersection of epipolar plane with image



Two reference frames are related via the extrinsic parameters

$$\mathbf{p'} = \mathbf{R}(\mathbf{p} - \mathbf{T})$$

The equation of the epipolar plane through X is

 $\mathbf{X}^{\mathrm{T}}(\mathbf{T} \times \mathbf{p}) = \mathbf{0} \implies (\mathbf{R}^{\mathrm{T}} \mathbf{p}' + \mathbf{T})^{\mathrm{T}}(\mathbf{T} \times \mathbf{p}) = \mathbf{0}$

$$(\mathbf{R}^{\mathrm{T}}\mathbf{p}')^{\mathrm{T}}(\mathbf{T} \times \mathbf{p}) = 0$$

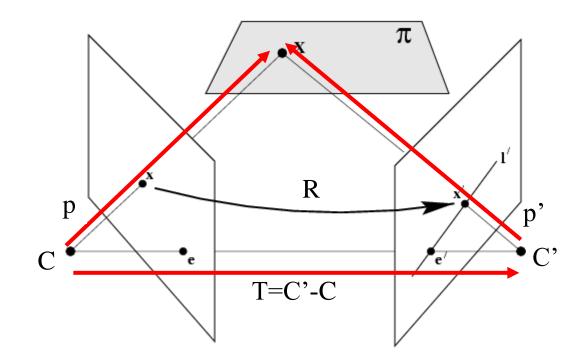
$$\mathbf{T} \times \mathbf{p} = \mathbf{S}\mathbf{p}$$

$$\mathbf{S} = \begin{bmatrix} 0 & -T_{z} & T_{y} \\ T_{z} & 0 & -T_{x} \\ -T_{y} & T_{x} & 0 \end{bmatrix}$$

$$(\mathbf{R}^{\mathrm{T}}\mathbf{p}')^{\mathrm{T}}(\mathbf{S}\mathbf{p}) = 0$$

$$(\mathbf{p}'^{\mathrm{T}}\mathbf{R})(\mathbf{S}\mathbf{p}) = 0$$

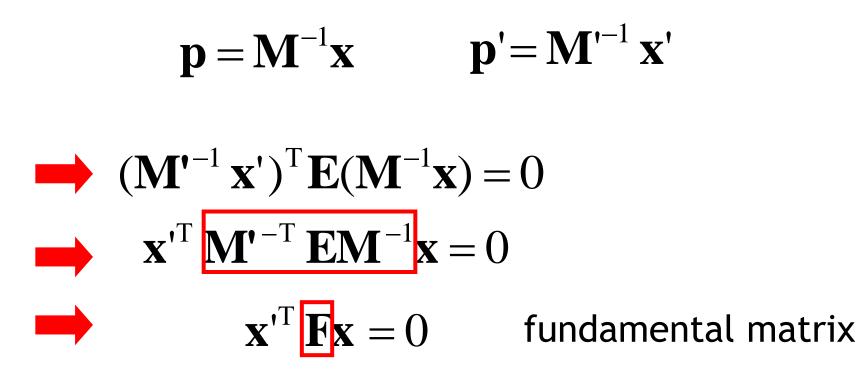
$$\mathbf{p}'^{\mathrm{T}}\mathbf{E}\mathbf{p} = 0 \quad \text{essential matrix}$$

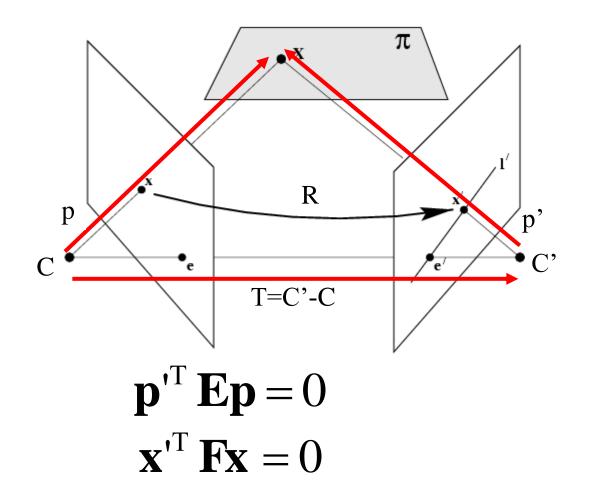


 $\mathbf{p}^{\mathsf{T}}\mathbf{E}\mathbf{p}=\mathbf{0}$

$$\mathbf{p}^{\mathsf{T}} \mathbf{E} \mathbf{p} = \mathbf{0}$$

Let M and M' be the intrinsic matrices, then



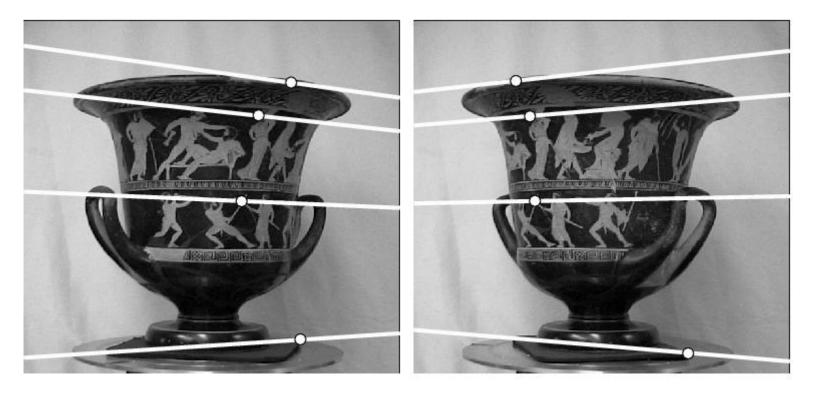


- The fundamental matrix is the algebraic representation of epipolar geometry
- The fundamental matrix satisfies the condition that for any pair of corresponding points x↔x' in the two images

$$x'^{T} Fx = 0$$
 $(x'^{T} l' = 0)$

F is the unique 3x3 rank 2 matrix that satisfies $x'^TFx=0$ for all $x \leftrightarrow x'$

- 1. Transpose: if F is fundamental matrix for (P,P'), then F^{T} is fundamental matrix for (P',P)
- 2. Epipolar lines: l'=Fx & $l=F^Tx'$
- 3. Epipoles: on all epipolar lines, thus e'^TFx=0, $\forall x \Rightarrow e'^{T}F=0$, similarly Fe=0
- 4. F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- 5. F is a correlation, projective mapping from a point x to a line l'=Fx (not a proper correlation, i.e. not invertible)



- It can be used for
 - Simplifies matching
 - Allows to detect wrong matches

Estimation of F — 8-point algorithm

• The fundamental matrix F is defined by

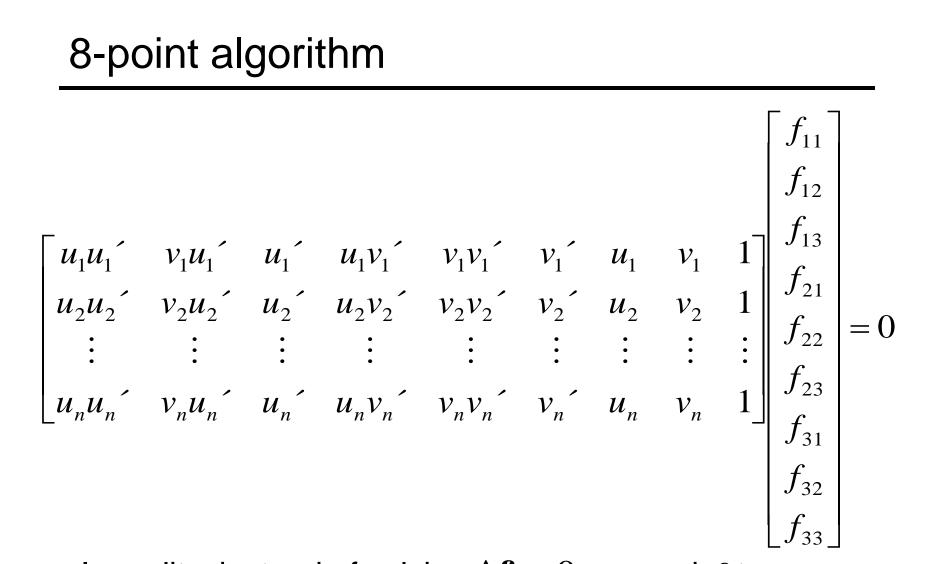
$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathrm{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathrm{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

 $uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$



• In reality, instead of solving $\mathbf{Af} = 0$, we seek f to minimize $\|\mathbf{A}\mathbf{f}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$

8-point algorithm

- To enforce that F is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to det $\mathbf{F}' = 0$.
- It is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F}' = \mathbf{U} \Sigma' \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

% Build the constraint matrix A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(npts,1)];

[U,D,V] = svd(A);

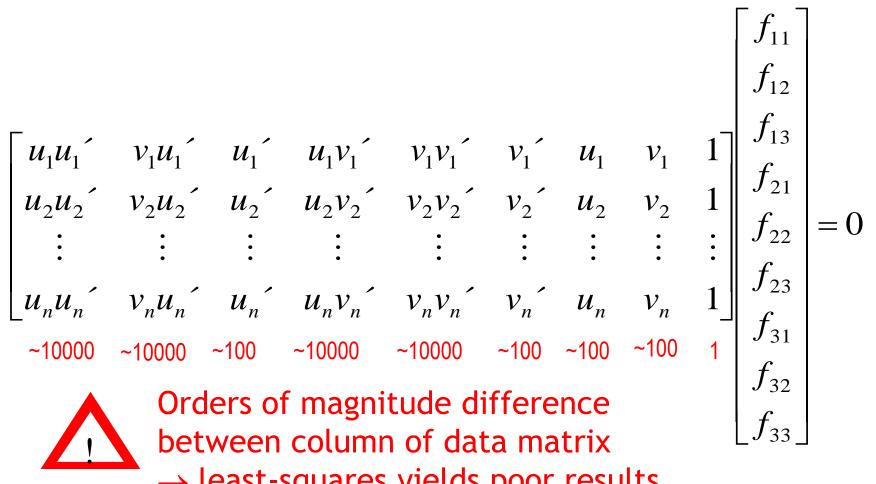
% Extract fundamental matrix from the column of V % corresponding to the smallest singular value. F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint [U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V';

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

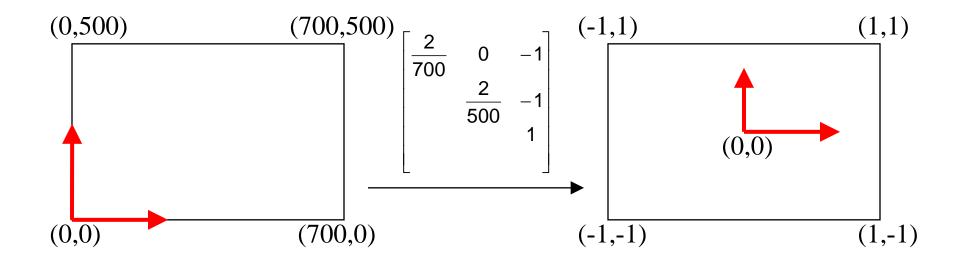
Problem with 8-point algorithm



 \rightarrow least-squares yields poor results

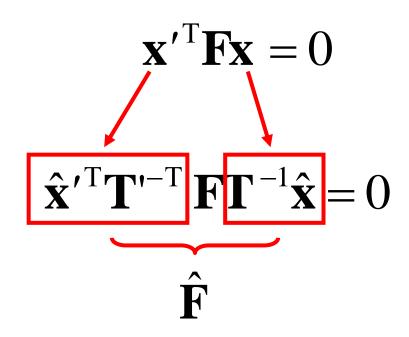
Normalized 8-point algorithm

normalized least squares yields good results Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm

1. Transform input by $\hat{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i$, $\hat{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i'$ 2. Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$ 3. $\mathbf{F} = \mathbf{T'}^T \hat{\mathbf{F}} \mathbf{T}$



Normalized 8-point algorithm

[U,D,V] = svd(A);

```
F = reshape(V(:,9),3,3)';
```

[U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise F = T2'*F*T1;

Normalization

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')'; % Centroid newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid. newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2)); scale = sqrt(2)/meandist;

$$T = [scale \quad 0 \quad -scale^*c(1) \\ 0 \quad scale \quad -scale^*c(2) \\ 0 \quad 0 \quad 1 \quad];$$

newpts = T*pts;

RANSAC

repeat

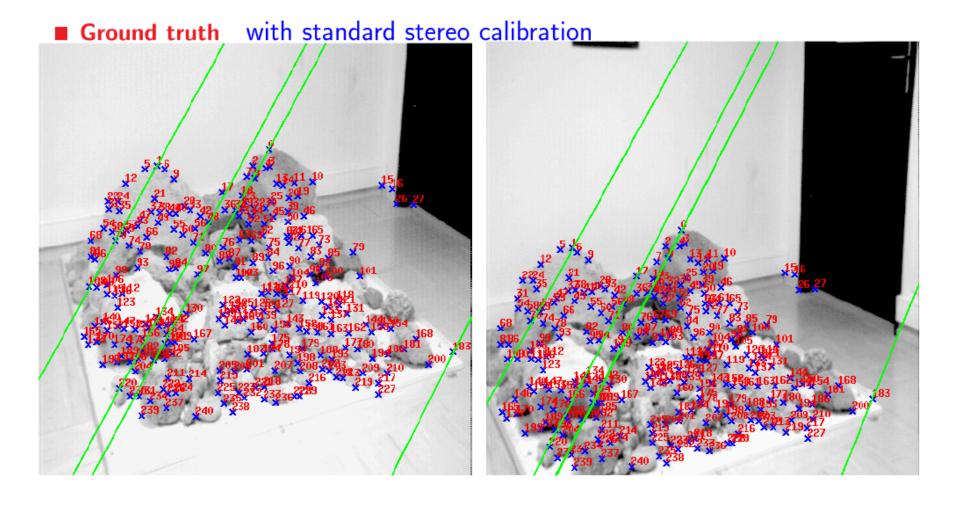
select minimal sample (8 matches) compute solution(s) for F

determine inliers

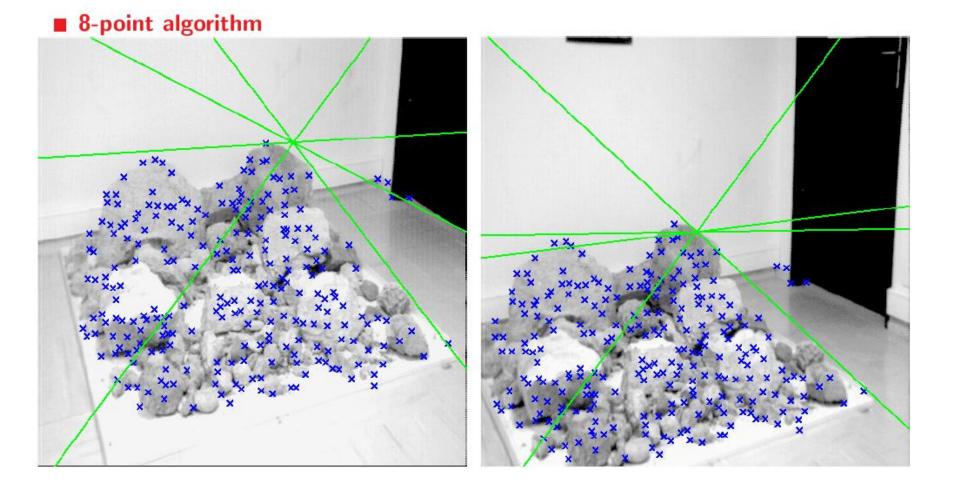
until Γ (*#inliers*,*#samples*)>95% or too many times

compute F based on all inliers

Results (ground truth)

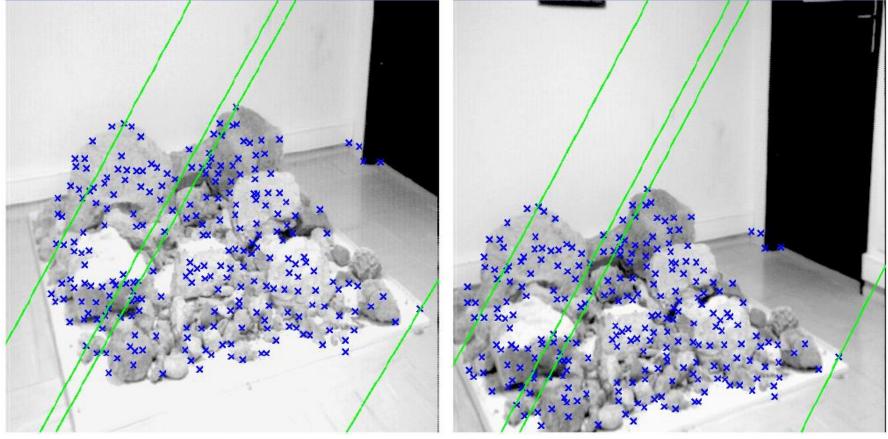


Results (8-point algorithm)



Results (normalized 8-point algorithm)

Normalized 8-point algorithm



From F to R, T

$\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = \mathbf{0}$ $\mathbf{x'}^{\mathrm{T}} \mathbf{M'}^{-\mathrm{T}} \mathbf{E} \mathbf{M}^{-1} \mathbf{x} = \mathbf{0}$ $\mathbf{E} = \mathbf{M'}^{\mathrm{T}} \mathbf{F} \mathbf{M}$ If we know camera parameters $\mathbf{E} = \mathbf{R}[\mathbf{T}]_{\times}$

Hartley and Zisserman, Multiple View Geometry, 2nd edition, pp 259

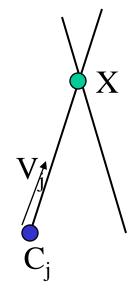
 Problem: Given some points in *correspondence* across two or more images (taken from calibrated cameras), {(u_j,v_j)}, compute the 3D location X

Triangulation

• Method I: intersect viewing rays in 3D, minimize:

$$\arg\min_{\mathbf{X}}\sum_{j} \|\mathbf{C}_{j} + s\mathbf{V}_{j} - \mathbf{X}\|$$

- X is the unknown 3D point
- **C**_{*j*} is the optical center of camera *j*
- \mathbf{V}_{j} is the viewing ray for pixel (u_{j}, v_{j})
- s_j is unknown distance along \mathbf{V}_j
- Advantage: geometrically intuitive



Triangulation

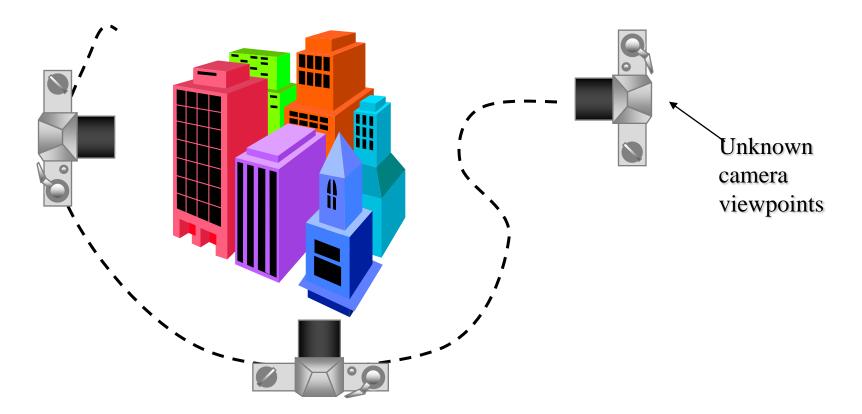
- Method II: solve linear equations in X
 - advantage: very simple

$$u_{i} = \frac{m_{00}X_{i} + m_{01}Y_{i} + m_{02}Z_{i} + m_{03}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$
$$v_{i} = \frac{m_{10}X_{i} + m_{11}Y_{i} + m_{12}Z_{i} + m_{13}}{m_{20}X_{i} + m_{21}Y_{i} + m_{22}Z_{i} + 1}$$

- Method III: non-linear minimization
 - advantage: most accurate (image plane error)

Structure from motion

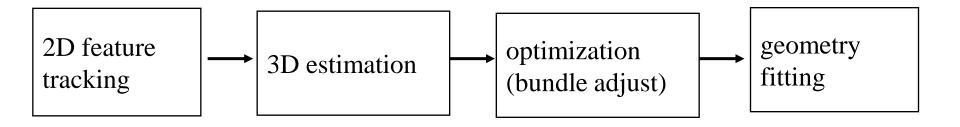
Structure from motion



structure for motion: automatic recovery of <u>camera motion</u> and <u>scene structure</u> from two or more images. It is a self calibration technique and called *automatic camera tracking* or *matchmoving*.

Applications

- For computer vision, multiple-view shape reconstruction, novel view synthesis and autonomous vehicle navigation.
- For film production, seamless insertion of CGI into live-action backgrounds



SFM pipeline

Structure from motion

- Step 1: Track Features
 - Detect good features, Shi & Tomasi, SIFT
 - Find correspondences between frames
 - Lucas & Kanade-style motion estimation
 - -window-based correlation
 - SIFT matching

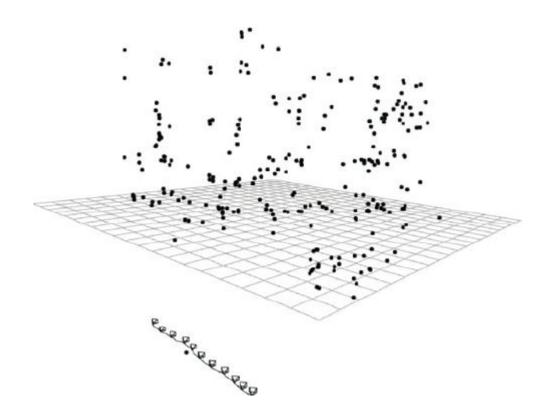


Structure from Motion

- Step 2: Estimate Motion and Structure
 - Simplified projection model, e.g., [Tomasi 92]
 - 2 or 3 views at a time [Hartley 00]

Structure from Motion

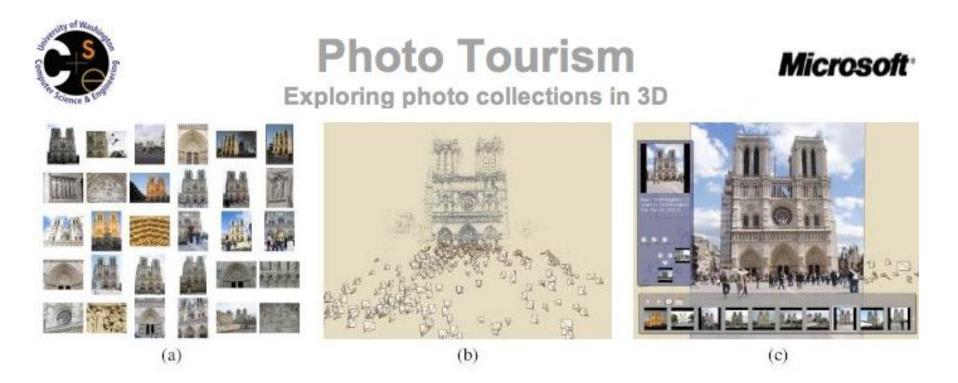
- Step 3: Refine estimates
 - "Bundle adjustment" in photogrammetry
 - Other iterative methods



Structure from Motion

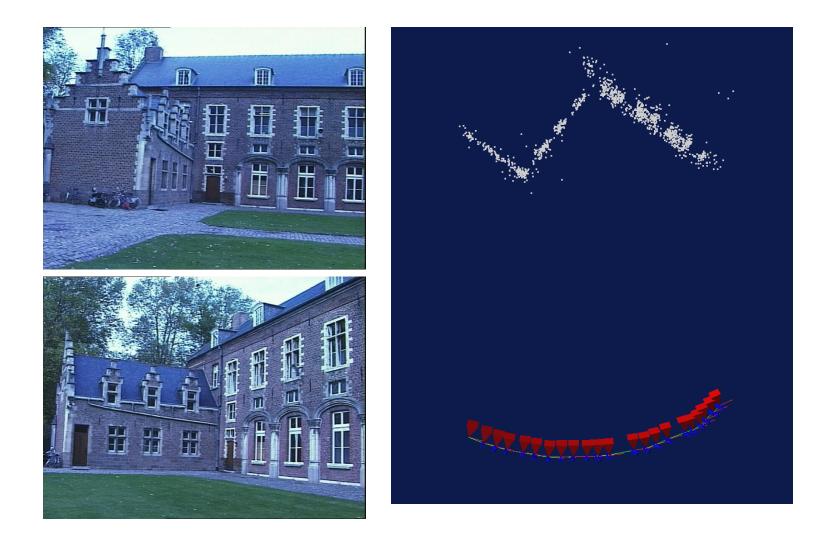
• Step 4: Recover surfaces (image-based triangulation, silhouettes, stereo...)

Example : Photo Tourism

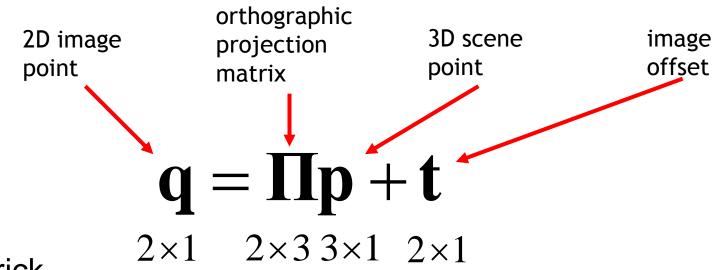


Factorization methods

Problem statement



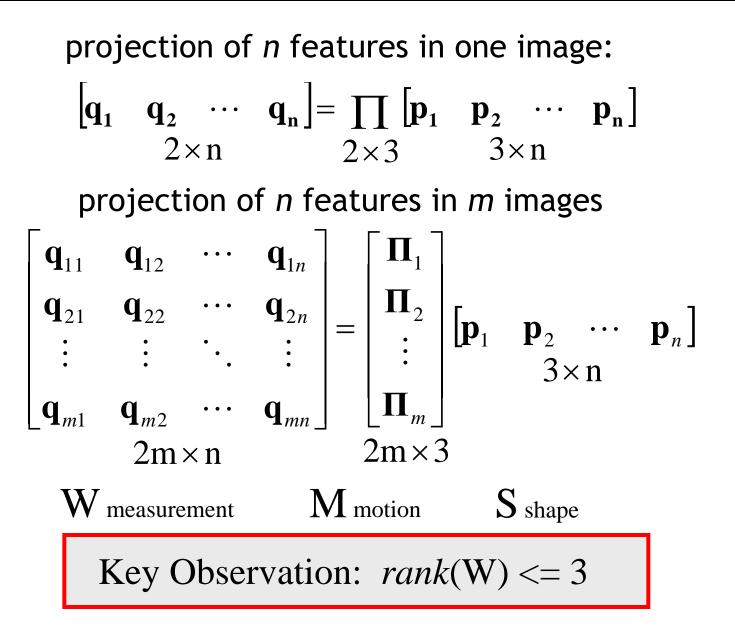
SFM under orthographic projection



- Trick
 - Choose scene origin to be centroid of 3D points
 - Choose image origins to be centroid of 2D points
 - Allows us to drop the camera translation:

$\mathbf{q} = \mathbf{\Pi} \mathbf{p}$

factorization (Tomasi & Kanade)



known
$$----W_{2m\times n} = M_{2m\times 3} S_{3\times n}$$
 solve for

- Factorization Technique
 - W is at most rank 3 (assuming no noise)
 - We can use *singular value decomposition* to factor W:

 $\mathbf{W}_{2m\times n} = \mathbf{M}'_{2m\times 3} \mathbf{S}'_{3\times n}$

- S' differs from S by a linear transformation A:

$$\mathbf{W} = \mathbf{M}'\mathbf{S}' = (\mathbf{M}\mathbf{A}^{-1})(\mathbf{A}\mathbf{S})$$

- Solve for A by enforcing *metric* constraints on M

Metric constraints

- Orthographic Camera
 - Rows of Π are orthonormal:

• Compute **A** such that rows of **M** have these properties

$\mathbf{M'}\mathbf{A} = \mathbf{M}$

Trick (not in original Tomasi/Kanade paper, but in followup work)

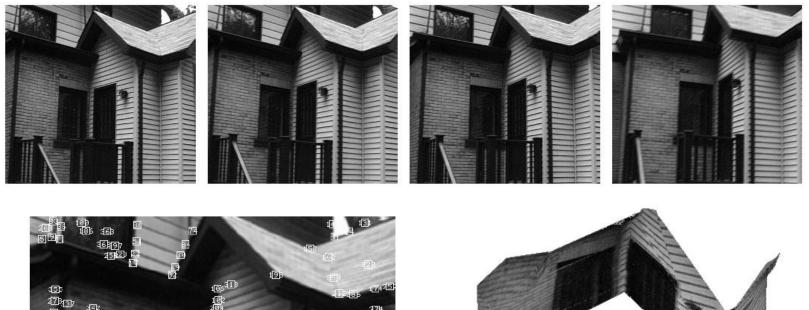
• Constraints are linear in AA^T :

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \prod_{i} \prod_{i}^{\mathrm{T}} = \prod_{i}' \mathbf{A} \left(\prod_{i}'^{\mathrm{T}} \mathbf{A} \right)^{T} = \prod_{i}' \mathbf{G} \prod_{i}'^{\mathrm{T}} \qquad where \ \mathbf{G} = \mathbf{A} \mathbf{A}^{T}$$

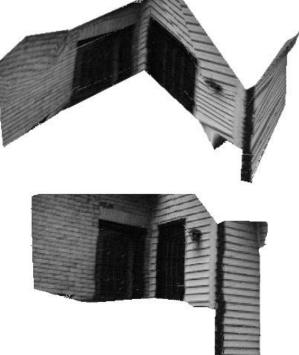
- Solve for G first by writing equations for every Π_i in M
- Then $G = AA^T$ by SVD

$$\prod_{i} \prod_{i} \prod_{i}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Results



L7 E3		198	deb	426
(B)	100 ³¹³		ාධා 2022ම	, ₁₇₁ -5
47837 4783 478 4785 478 477 4785 478 477		110		3 <u>7</u> 4
				<u>4</u> 4
100 4978 100 4778 100 1788 40	319 276 360481		355 327	1399 1191 7091
· · · · · · · · · · · · · · · · · · ·	30481 36167 138		427 4950	1333 8504
	(유 (명)(학교 (명) (영)(학교 (명)		ĬŢĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊ	1211
	3255 191	29 21226	4/79 415 1614	93(8) 10(5)
			124	457 4856
264 212 154 54 261 262	3 0 ;72		123 173 177	1915 16159
		시수가면 것도야?#ㅋㅋ	jā jā	
12h 17kk	24		163 159 171	1427 1172 1911:
49 49 49 49 49 49 49 49 49 49 49 49 49 4	3. B		120	101613 1783 20152
16 - <u>15 - 18 - 19 - 1</u> - 1	73 29 72 47 1972 282 3	1613 1613144 7523 1610183 55 8 141	129	1915) 1915:
4119258 270 424	ৰতদ বৃদ্ধদ ব	528347		



Extensions to factorization methods

- Paraperspective [Poelman & Kanade, PAMI 97]
- Sequential Factorization [Morita & Kanade, PAMI 97]
- Factorization under perspective [Christy & Horaud, PAMI 96] [Sturm & Triggs, ECCV 96]
- Factorization with Uncertainty [Anandan & Irani, IJCV 2002]

Bundle adjustment

$$\widehat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\widehat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

- How many points do we need to match?
- 2 frames:

(*R*,*t*): 5 dof + 3n point locations $\leq 4n$ point measurements $\Rightarrow n \geq 5$

- *k* frames: $6(k-1)-1 + 3n \le 2kn$
- always want to use many more

$$\widehat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\widehat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

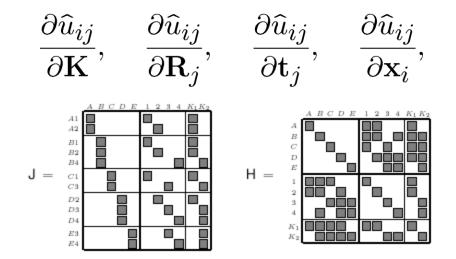
- What makes this non-linear minimization hard?
 - many more parameters: potentially slow
 - poorer conditioning (high correlation)
 - potentially lots of outliers

Lots of parameters: sparsity

$$\widehat{u}_{ij} = f(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

$$\widehat{v}_{ij} = g(\mathbf{K}, \mathbf{R}_j, \mathbf{t}_j, \mathbf{x}_i)$$

• Only a few entries in Jacobian are non-zero

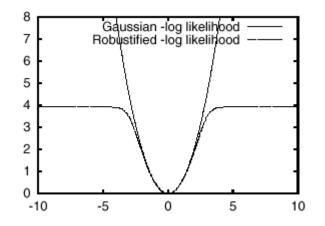


Richard Szeliski

CSE 576 (Spring 2005): Computer Vision

Robust error models

- Outlier rejection
 - use robust penalty applied to each set of joint measurements



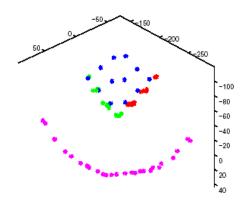
 for extremely bad data, use random sampling [RANSAC, Fischler & Bolles, CACM'81]

$$\sum_{i} \sigma_i^{-2} \rho \left(\sqrt{(u_i - \hat{u}_i)^2 + (v_i - \hat{v}_i)^2} \right)$$

CSE 576 (Spring 2005): Computer Vision

Structure from motion: limitations

- Very difficult to reliably estimate <u>metric</u> structure and motion unless:
 - large (x or y) rotation or
 - large field of view and depth variation
- Camera calibration important for Euclidean reconstructions
- Need good feature tracker
- Lens distortion

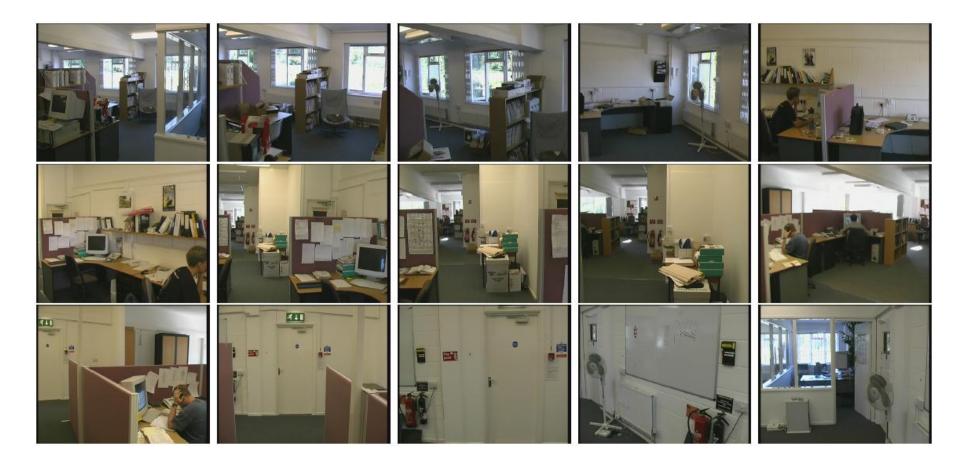


CSE 576 (Spring 2005): Computer Vision

Issues in SFM

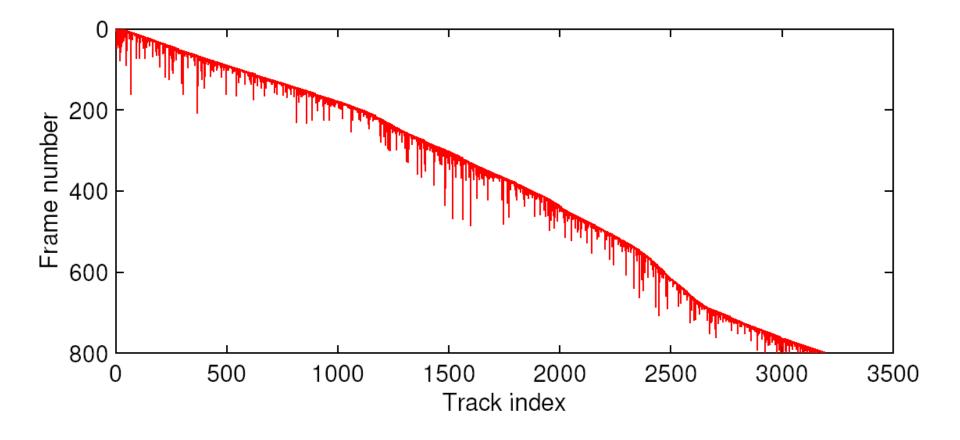
- Track lifetime
- Nonlinear lens distortion
- Degeneracy and critical surfaces
- Prior knowledge and scene constraints
- Multiple motions

Track lifetime



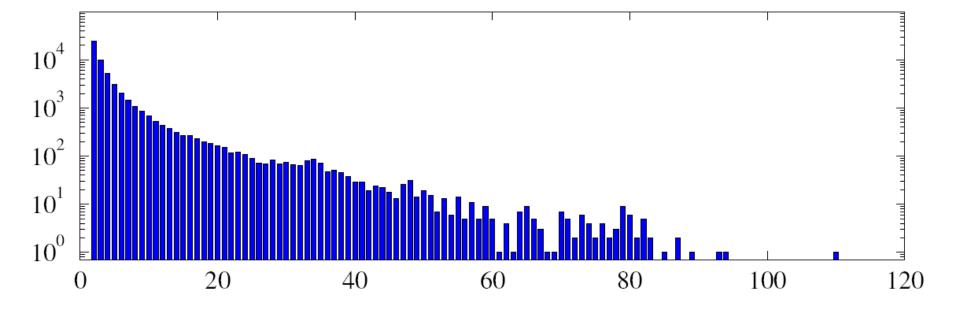
every 50th frame of a 800-frame sequence

Track lifetime



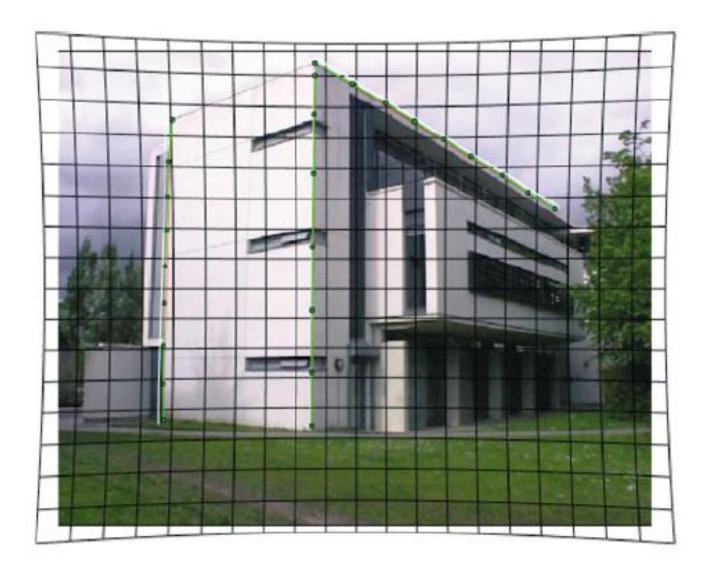
lifetime of 3192 tracks from the previous sequence

Track lifetime

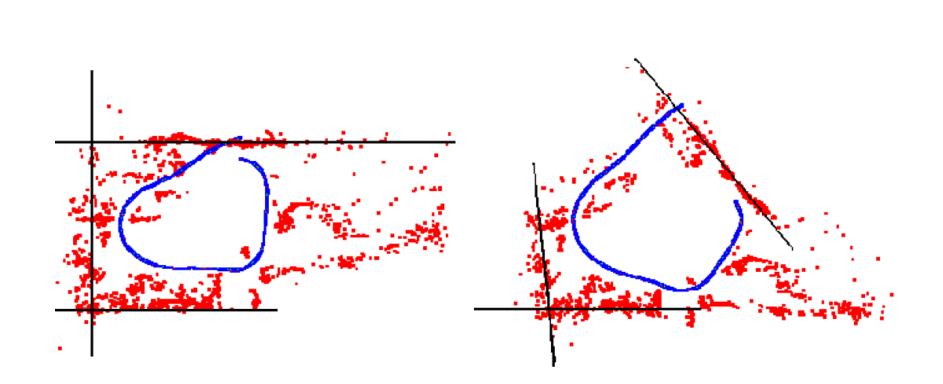


track length histogram

Nonlinear lens distortion



Nonlinear lens distortion

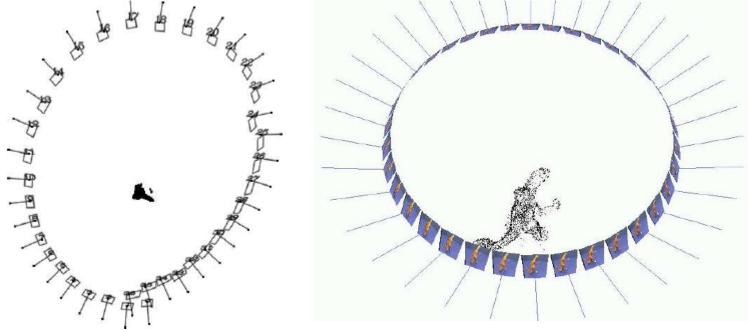


effect of lens distortion

Prior knowledge and scene constraints

add a constraint that several lines are parallel

Prior knowledge and scene constraints



add a constraint that it is a turntable sequence

Applications of Structure from Motion

Jurassic park

PhotoSynth

http://labs.live.com/photosynth/