Automatic photo quality assessment

Taming subjective problems with hand-coded metrics
How do you measure a subjective quality quantitatively and objectively?

• Find a consensus -
• Only look at things that everyone agrees on
• Get people to vote, and average the results
• Get people to pass judgments multiple times
• Discard outliers
• Ignore ambiguous cases, and focus on cases where you can be more certain
What are some subjective qualities of images?

- Professional or “snapshot”?
- Aesthetically pleasing, or not?
- Photorealistic or not?
- “Original” or not?
- “Familiar” or not?
Can you spot the CG image?
It's the one on the left

Images taken from http://www.autodesk.com/eng/etc/fake_or_foto/about.html without permission, so don't tell anyone.
What makes a photograph memorable?

- Humans prefer colorful things (look for color saturation)
- Good photographs should have good composition (What is that?)
- Technicalities (focus, contrast and exposure levels)
- Images can also have interesting semantics (What is going on in the image?)
How do we use this?

- Look at distribution of colors – Variance? Homogeneity? Contrast? Local gradients?
- Composition – Similar to Saliency; image should have a clear subject – higher concentration of sharp edges close to the center of the image
- Technicalities – Look for variations in intensity, signs of blurring
- Semantics – Don't worry about that just yet
Past approaches

- Ignore semantics – the state of the art just isn't ready for it yet
- Focus on low-level details, which can be detected by hand-coded metrics
- Get lots and lots of metrics
- Train a classifier on them with labeled examples
Low vs. High Level Features

• The papers distinguish between “low level” and “high level” features without defining the terms.
• We use “high level” to describe features which correspond directly to some camera property, or some human response to the image as a whole.
• Low level features thus refer to those which operate on, or close to, a per-pixel basis.
Low Level Features

- Mean pixel intensity
- Contrast
- Color distribution (compared with dist. Metric)
- Mean color saturation and Hue variance
- All of the above, but restricted to the center of the image
- Texture variations
- Edge densities
Mean pixel intensity

• Proxy for brightness
• Used to detect over or under exposure

\[
\frac{1}{XY} \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} I_v(x, y)
\]
Contrast

- Compute gray level histograms for R,G,B channels
- Sum into combined histogram H
- The measure of contrast is the width of the middle 98% mass
Color distribution

• Can look at distribution of pixels in color space
• The types of colors used can tell something about the image.
• Use a distribution distance metric to compare distributions of different images.
Rule of thirds

- If you think of the image as a 3x3 grid, then the center square should have the most interesting things in it.
- Take separate mean values there.

\[\frac{9}{XY} \sum_{x=X/3}^{2X/3} \sum_{y=Y/3}^{2Y/3} I_{H,S,V}(x,y) \]
Image size

- Professionals might use different aspect ratios in their film or final presentation, so look at size and shape of images; Nothing fancy
- Can use \((X + Y)\) as size rather than \(X*Y\)
- \(X/Y\) for shape
High level features

• Familiarity (by nearest neighbor method)
• Blur level
• H,S,V values of n largest patches (objects?)
• Depth of Field indicators
• Shape convexity
• Perceptual edges (intensity vs. color, spatial distribution)
• Saturation variation, hue count, color palette
• Spatial edge distribution, color variation
Familiarity

• Unique pictures are thought to be more original, and thus more interesting to look at.

• See how much the image resembles other known images; the less it looks like known images, the more unique and original it is.

\[
\frac{1}{K} \sum_{i=1}^{K} q(i)
\]

Where \(q(i) \) is a distance measure from the \(i^{th} \) image in the top \(K \) nearest neighbors.
Blur Level

• Estimating blur is a difficult problem

 – One approach: assume $I_b = G_\sigma * I_s$, and find an estimate for σ
Regional Composition

- Could also look at the largest object in the image
- Use clustering algorithm to do segmentation, then look at mean Hue/Sat/Intensity for each of the top 5 clusters bigger than 1% of the image size. (More hand-coded parameters.)
Low Depth of Field detection

- Large aperture can blur everything outside of a certain range of depth.
- Some photographers actually do this on purpose, and it can look good.

\[
\frac{\sum_{(x,y) \in M_6 \cup M_7 \cup M_{10} \cup M_{11}} w_3(x, y)}{\sum_{i=1}^{16} \sum_{(x,y) \in M_i} w_3(x, y)}
\]

Where \(M_i \) is the \(i^{th} \) square in the 4x4 grid, and \(w_3(x, y) \) is the 3rd band wavelet coefficient at \((x, y) \)
Color Edges vs. Intensity Edges

- Determine intensity edges and count pixels
- Normalize RGB components by pixel intensity and rerun edge detection to determine color edges
- Pure intensity edges are not present in the normalized image. Hue does not change substantially over an intensity edge

\[E_g = \frac{\text{# pixels: intensity, not color edge}}{\text{# pixels: all edges}} \]
Variation in Color and Saturation

• Unique color count
 – $U = \frac{\# \text{ of unique colors}}{\# \text{ of pixels}}$

• Pixel saturation
 – Convert image to HSV color space
 – Make a saturation histogram with 20 bins
 – S is the ratio between the count in the highest and lowest bins
Color Palette

- Quantize RGB channels into 16 values
- Make a 4096 bin histogram and normalize to unit length
- Find closest matches among known professional photos and snapshots
- Intuitively, looks for photos with closest color palettes
Hue Count

- Convert image to HSV
- Consider pixels with brightness in $[0.15,0.95]$ and saturation > 0.2
- Construct 20-bin histogram on hue values
 - $m =$ maximum value in histogram
 - $N = \{i \mid H(i) > \alpha m\}$
 - α sets noise sensitivity
- $20 - \|N\|$ is the number of “unused” hues.
Spatial Edge Distribution

- Apply a Laplacian filter to the image to detect edges
- Can compare a normalized Laplacian image to mean Laplacian for high and low quality images
- Can also calculate area of bounding box enclosing a fixed percentage of edge energy
 - Cluttered backgrounds produce larger bounding boxes
Spatial Color Variation

• For each pixel, fit a plane to a 5 x 5 neighborhood in normalized R, G and B.

• Obtain three normals \mathbf{n}_R, \mathbf{n}_G, \mathbf{n}_B. They define a pyramid; sum the areas of the facets as a measure of local color variation.

• R is the average summed area over all pixels.
Which were the good features?

- In “Studying aesthetics in Photographic images using a computational approach” the best features were:
 - Mean saturation for biggest patch
 - Mean pixel intensity
 - Mean saturation in middle square
 - 3rd wavelet band for saturation
 - Top 100 familiarity score
 - LDOF saturation
 - Size (X + Y)
Paintings vs. Photographs

From http://www.the-romans.co.uk/painting.htm

From http://www.collectiblesgift.com/images/
Qualities of a Painting

- Perceptual edges are color edges
- High spatial variation in color
- Large color palette
- High saturation
- We can use these features to measure “photorealism”
Another Approach: RGBXY Space

- Each pixel is a point in 5-D space
- An image defines a 5 x 5 covariance matrix of the RGBXY point cloud
- Represent each image as a length 5 vector of the singular values of its covariance matrix
- Paintings typically use larger color palettes and have larger spatial color variations
Professional Photo vs. Snapshot

Waiting in line! by Imapix

pot_goldfinger_lrg from www.cleanleaf.ca.
Qualities of a Professional Photo

- Simplicity
 - Easy to distinguish subject from background
- Surrealism
 - Professional photos tend to be distinctive
- Technique
 - Less blur
 - Higher contrast
- We can frame “professionalism” in terms of these qualities
Simplicity and Surrealism

• Subject should be easily distinguished
 - Edges should be spatially concentrated
 - Cluttered images will have many more unique hues

• Distinctive color palettes
 - Professional photos may have similar palettes
Technique

• Professional photos will be higher contrast
• Most cameras adjust brightness to 50% gray
 – Professional photographers will typically adjust for a 50% gray subject, disregarding the background
 – An overall deviation from 50% gray results
• Some part of a professional photo will be in focus; we can expect less overall blur