### **Shape Matching**

Brandon Smith and Shengnan Wang Computer Vision – CS766 – Fall 2007



## Outline

- Introduction and Background
  - Uses of shape matching
  - Kinds of shape matching
  - Support Vector Machine (SVM)
- Matching with Shape Contexts
  - Shape Context
  - Bipartite Graph Matching
  - Modeling Transformations
  - Invariance and Robustness
  - Results
- Questions
- Shengnan's part...

#### Shape matching examples

#### Hieroglyph Lookup



#### **Fingerprint Matching**



#### Trademark Lookup





2: 0.108

1: 0.086query





3: 0.109

query 1: 0.066

3: 0.0772: 0.073

#### **Fruit Inspection**





- Feature-Based Methods
- Brightness-Based Methods

**Feature-Based Methods** 





**Brightness-Based Methods** 

Two different frameworks:

- Explicitly find correspondences
- Build classifiers without explicitly finding correspondences.

Support Vector Machine (SVM)





Approach:

1. Find correspondences between shapes

2. Estimate an aligning transform

3. Measure similarity

Shape Context



Shape Context



Shape Context





Shape Context



**Bipartite Graph Matching** 

$$H(\pi) = \sum_{i} C(p_i, q_{\pi(i)})$$

Solved in about  $O(N^3)$ 

#### **Modeling Transformations**



Thin Plane Spline (TPS) Model (2D Generalization of Cubic Spline)



Thin Plane Spline (TPS) Model (2D Generalization of Cubic Spline)







Belongie, et al, PAMI 2002, Shape matching and object recognition using shape contexts

Invariance and Robustness

- Invariant under translation and scaling
- Insensitive to small affine distortion
- Can be made invariant to rotation

## Matching with Shape Contexts Evaluation and Results



## Matching with Shape Contexts Evaluation and Results



□ Belongie et al.

\* Chui and Rangarajan

 $^{\bigcirc}$  Iterated closed point

## Matching with Shape Contexts Evaluation and Results



## Conclusion

## Questions

## Shape and Image Matching

#### Shengnan Wang <u>shengnan@cs.wisc.edu</u>

# Today

- The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features
  - Kristen Grauman & Trevor Darrell

- MIT

- Matching Local Self-Similarities across Images and Videos
  - Eli Shechtman & Michal Irani
  - @ CVPR07

## Set Representation



invariant region descriptors

local shape features

examples under varying conditions

## Motivation

- How to build a discriminative classifier using the set representation?
- Kernel-based methods (e.g. SVM) are appealing for efficiency and generalization power...
- What determines the appropriates of a kernel?
  Each instance is unordered set of vectors
  - Varying number of vectors per instance

## Pyramid Match Kernel









Shengnan Wang



## Pyramid match kernel

$$\mathcal{I}(H(\mathbf{X}), H(\mathbf{Y})) = \sum_{j=1}^{r} \min(H(\mathbf{X})_j, H(\mathbf{Y})_j)$$

 $N_{i} = \mathcal{I}\left(H_{i}(\mathbf{X}), H_{i}(\mathbf{Y})\right) - \mathcal{I}\left(H_{i-1}(\mathbf{X}), H_{i-1}(\mathbf{Y})\right)$ 

$$K_{\Delta} = \sum_{i=0}^{L} w_i N_i$$



$$K = \max_{\pi: \mathbf{X} \to \mathbf{Y}} \sum_{\mathbf{x}_i \in \mathbf{X}} \mathcal{S}(\mathbf{x}_i, \pi(\mathbf{x}_i))$$
$$= 1(2) + \frac{1}{2}(3) = 3.5$$

optimal match

## Summary: Pyramid match kernel

- linear time complexity:  $O(dmL) \\ \textit{m} \text{ features of dimension } \textit{d}, \textit{L}\text{-level pyramid}$
- model-free
- insensitive to clutter
- positive-definite function
- no independence assumption
- fast, effective object recognition

# Object recognition results

- ETH-80 database :8 object classes
- Features:
  - Harris detector
  - PCA-SIFT descriptor, d=10



| Kernel                                         | Complexity    | Recognition rate       |
|------------------------------------------------|---------------|------------------------|
| Match <i>[Wallraven et</i><br><i>al.]</i>      | $O(dm^2)$     | 84%                    |
| Bhattacharyya<br>affinity <i>[Kondor &amp;</i> | $O(dm^3)$     | 85%                    |
| Jebara]                                        | $\Box O(dmL)$ |                        |
| Pyramid match                                  | Shengnan Wang | 84%<br>University of V |

11/4/07

# Object recognition results

- Caltech objects database 101 object classes
- Features:
  - SIFT detector
  - PCA-SIFT descriptor, d=10
- 30 training images / class
- 43% recognition rate
   (1% chance performance)
- 0.002 seconds per match



## Localization

- Inspect intersections to obtain correspondences between features
- Higher confidence correspondences at finer resolution levels









target



## Future work

- Geometric constraints
- Fast search of large databases with the pyramid match for image retrieval
- Use as a filter for a slower, explicit correspondence method
- Alternative feature types and classification domains

## Next

- Matching Local Self-Similarities across Images and Videos
  - Eli Shechtman & Michal Irani
  - @ CVPR07

## What do they do?

How to measure similarity between visual entities (images or videos)





## What's new?





- Traditional idea: they share some common visual properties (colors, intensity, gradients, edges or other filter response)
- New idea: they share the same local geometry layout.

Local self repeat

## Self-similarity descriptor



Patch Local Similarity Map  $S_q(x, y) = \exp\left(-\frac{SSD_q(x, y)}{\max(var_{noise}, var_{auto}(q))}\right)$   $r = [(x - x_c)^2 + (y - y_c)^2]^{1/2}, \quad \theta = \tan^{-1}\left(\frac{y - y_c}{x - x_c}\right)$   $R = \frac{(n_r - 1)\log(r/r_{min})}{\log(r_{max}/r_{min})} \quad W = \frac{n_w \theta}{2\pi}$  Self-similarity descriptor

## **Corresponding Self-similarity** descriptor



11/4/07

## Self-similarity descriptor

- Benefits
  - self-similarity descriptor: local descriptors, wider applicability
  - log-polar: accounts for local affine deformations
  - maximal correlation value: insensitive to the exact best match position\*
  - use of patches: more meaningful image patterns

\*T. Wolf, L. Bileschi, S. Riesenhuber, M. Poggio, T., Robust Object Recognition with Cortex-Like Mechanisms Serre, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007

## Matching ensemble of patches\*



$$\max_{X} P\left(c_{x}, d_{x}^{1}, ..., l_{x}^{1}, ..., c_{y}, d_{y}^{1}, ..., l_{y}^{1}\right) = \alpha \prod_{i} \max_{l_{x}^{i}} P\left(l_{y}^{i}|l_{x}^{i}, c_{x}, c_{y}\right) \max_{d_{x}^{i}} P\left(d_{y}^{i}|d_{x}^{i}\right) P\left(d_{x}^{i}|l_{x}^{i}\right)$$

\*O. Boiman and M. Irani. Detecting irregularities in images and in video. In IEEE International Conference on Computer Vision, Beijing, October 2005.

Shengnan Wang

University of Wisconsin-Madison

## Matching ensemble of patches



- Two Implementation Details
  - Filter out non-informative descriptors
    - Descriptors that do not capture any local self-similarity (salient points)
    - Descriptors that contain high self-similarity everywhere (homogeneous region)
  - Scale space representation

### Overview



## Self-similarity descriptor



## Experiments

#### Sketch Detection



## Experiments (1)

Object
 Detection



## Experiments (2)

• Image Retrie val



Shengnan Wang

# Experiments (3)

Action detection





## Experiments (4)

#### Action detection





University of Wisconsin-Madison

## Questions?

Thank you!