Video Google: A Text Retrieval Approach to Object Matching in Videos

Josef Sivic and Andrew Zisserman

Goal

- Google search for videos
- Query is an portion of a frame of a video selected by the user

Google Text Search

- Web pages are parsed into words
- Words are replaced by their root word
- Stop list to filter common words
- Remaining words represent that web page as a vector weighted based on word frequency

Text Retrieval

- Efficient retrieval for with an index
- Text is retrieved by computing its vector of word frequencies, return documents with the closest vectors
- Consider order and location of words

Approach

Apply text search properties to image search

Video Google: Descriptors

- Compute two types of covariant regions:
 Shape Adapted and Maximally Stable
- Regions computed in grayscale

Descriptors

Descriptors

- Each elliptical region is then represented by a SIFT descriptor
- Descriptor is averaged over the frames the region exists in
- Reduce noise: filter regions which do not exist in more than 3 frames
- Reject 10% of the regions with the largest diagonal covariance matrix

Build "Visual Words"

- Quantize the descriptors into visual words for text retrieval
- 1000 regions per frame and 128-vector descriptor
- Select 48 scenes containing 10,000 frames
- 200K descriptors

Clustering descriptors

- K-means clustering
- Run several times with random initial assignments
- $D(x1, x2) = sqrt((x1 x2)^T \sum^{-1} (x1 x2))$
- MS and SA regions are clustered separately

Indexing using text retrieval methods

 Term frequency - inverse document frequency used for weighting the words of a document

 $t_i = \frac{n_{id}}{n_d} \log \frac{N}{n_i}$

 Retrieval: documents are ranked by their normalized scalar product between the query vector and all the document vectors

Image Retrieval

- Video google: The visual words of the query are the visual words in the userspecified portion of a frame
- Search the index with the visual words to find all the frames which contain the same word
- Rank all the results, return the most relevant results

Stop List

 Visual words in the top 5% and bottom 10% are stopped

Spatial Consistency

- Google increases the ranking of documents where the query words appear close together in the searched text
- In video: 15 nearest neighbors defines search area
- Regions in this area by the query region vote on each match
- Re-ranked on the number of votes

Evaluation

- Tested on feature length movies with 100K - 150K frames
- Use one frame per second
- Ground truth determined by hand
- Retrieval performance measured by averaged rank of relevant images

$$\widetilde{Rank} = \frac{1}{NN_{rel}} \left(\sum_{i=1}^{N_{rel}} R_i - \frac{N_{rel}(N_{rel} + 1)}{2} \right)$$

	binary	tf	tf-idf	
SA	0.0265	0.0275	0.0209	
MS	0.0237	0.0208	0.0196	
SA+MS	0.0165	0.0153	0.0132	

Example

Questions?

Scalable Recognition with a Vocabulary Tree

David Nister and

Henrik Stewenius

Vocabulary Tree

- Continuation of Video google
- 10,000 visual words in the database
- Offline crawling stage to index video takes 10 seconds per frame

Vocabulary Tree

- Too slow for a large database
- Larger databases result in better retrieval quality
- More words utilizes the power of the index: less database images must be considered
- On the fly insertion of new objects into the database

Training

- Training with hierarchical k-means
- More efficient than k-means
- 35,000 training frames instead of 400 with video google

Feature Extraction

- Maximally Stable regions used only
- Build SIFT descriptor from the region

Building Vocab Tree

- Hierarchical k-means, with k being the number of children nodes
- First run k-means to find k clusters
- Recursively apply to each cluster L times
- Visual words become the nodes

Performance

- Increasing the size of the vocabulary is logarithmic
- K = 10, L = 6: one million leaf nodes

Retrieval

- Determine the visual words from the query
- Propagate the region descriptor down the tree selecting the closest cluster at each level

Scoring

- Determine the relevance of a query image to a database image based on the similarity of their paths down the tree
- Use TD-IDF to assign weights to the query and database image vector

Scoring

- Use TD-IDF for weights of descriptor vectors
- Normalized relevance score:

$$s(q,d) = \parallel rac{q}{\parallel q \parallel} - rac{d}{\parallel d \parallel} \parallel$$

L₁-normalization is the most effective

Results

- Tested on a ground truth database of 6,376 images
- Groups of four images of the same object

Results

Results

- Tested on a database of 1 million images of CD covers
- Sub-second retrieval times for a database of a million images
- Performance increases with the number of leaf nodes

Me	En	No	S%	Voc-Tree	Le	Eb	Perf
A	y/y	L1	0	6x10=1M	1	ir	90.6
В	y/y	L1	0	6x10=1M	1	vr	90.6
C	y/y	L1	0	6x10=1M	2	ir	90.4
D	n/y	L1	0	6x10=1M	2	ir	90.4
E	y/n	L1	0	6x10=1M	2	ir	90.4
F	n/n	L1	0	6x10=1M	2	ir	90.4
G	n/n	L1	0	6x10=1M	1	ir	90.2
H	y/y	L1	m2	6x10=1M	1	ir	90.0
I	y/y	L1	0	6x10=1M	3	ir	89.9
J	y/y	L1	0	6x10=1M	4	ir	89.9
K	y/y	L1	0	6x10=1M	2	Vľ	89.8
L	y/y	L1	0	6x10=1M	2	ip	89.0
M	y/y	L1	m5	6x10=1M	1	ir	89.1
N	y/y	L2	0	6x10=1M	1	ir	87.9
О	y/y	L2	0	6x10=1M	2	ir	86.6
P	y/y	L1	110	6x10=1M	2	ir	86.5
Q	y/y	L1	0	1x10K=10K	1	-	86.0
R	y/y	L1	0	4x10=10K	2	ir	81.3
S	y/y	L1	0	4x10=10K	1	ir	80.9
T	y/y	L2	0	1x10K=10K	1	-	76.0
U	y/y	L2	0	4x10=10K	1	ir	74.4
V	y/y	L2	0	4x10=10K	2	ir	72.5
W	n/n	L2	0	1x10K=10K	1	-	70.1

Questions?