Computer Vision, CS766

Staff

Instructor: Li Zhang lizhang@cs.wisc.edu

TA: Jake Rosin rosin@cs.wisc.edu

Today

Introduction
Administrative Stuff
Overview of the Course

About Me

- Li Zhang (张力)
 - Last name pronounced as Jung
 - www.cs.wisc.edu/~lizhang
- Research
 - Computer Vision
 - Computer Graphics
- Teaching
 - CS766 Computer Vision
 - CS559 Computer Graphics

• 3D shape reconstruction

3D Model

Scene

Depth Map

3D shape reconstruction

Four examples of recovered 3D shapes of a moving face from six video streams

- 3D shape reconstruction
- Application

Entertainment: Games & Movies

Medical Practice: Prosthetics

- 3D shape reconstruction
- Application

Biology: genotype ⇔ phenotype

Please tell me about you

Who you are?
Why you are taking this class?
What do you want to learn?

<u>Name</u>	Honors Type	Honors Y/N	<u>Units</u> <u>Taken</u>	Audit	Program	Current Level	Proj Level
Barnard,Aubrey Francis			3.00		G229	GR	GR
Bechle,Adam Jon			3.00		G175	GR	GR
Chen,Xiyang			3.00		BS	40	40
Deshpande,Alok Shridhar			3.00		G382	GR	GR
Field,Blayne Alan			3.00		G229	GR	GR
Hopman,Christopher John			3.00		BS	30	30
Huang, Yancan			3.00		G229	GR	GR
Jin,Guoliang			3.00		G229	GR	GR
Maheshwari,Mayank			3.00		G229	GR	GR
Nassif,Houssam G			3.00		G229	GR	GR
Pan,Yi			3.00		G229	GR	GR
Song,Jiasi			3.00		G229	GR	GR
Vaddadi,Sundeep			3.00		G382	GR	GR
Vuong,Ba-Quy			3.00		G229	GR	GR
Wang,Tuo			3.00		G229	GR	GR
Wayner,Elisabeth Laura			3.00		G229	GR	GR
Xie,Chao			3.00		G229	GR	GR
Yang,Kong			3.00		G229	GR	GR
Zhang,Yupu			3.00		G229	GR	GR
Zhu,Shengqi			3.00		G229	GR	GR

Prerequisites

- Prerequisites—these are essential!
 - Data structures
 - A good working knowledge of C++/Java programming
 - (or willingness/time to pick it up quickly!)
 - Linear algebra
 - Vector calculus

- Course does not assume prior imaging experience
 - no image processing, graphics, etc.

Administrative Stuff

1 written assignment

5% (this week)

3 programming projects

15%, 2-3 weeks each

Paper presentation

- 15%, over a month

1 final project

- 35%, 5 weeks, open ended of your choice, but needs
- project proposal after 1 week
- progress report after 3 weeks
- Final presentation after 5 weeks

Administrative Stuff

Computer account:

 Everyone registered in this class will get a Computer Systems Lab account to do project assignments.

Email list:

– compsci766-1-f08@lists.wisc.edu

Questions?

Every picture tells a story

Goal of computer vision is to write computer programs that can interpret images

Can computer match human perception?

- Yes and no (but mostly no!)
 - computers can be better at "easy" things

Can computer match human perception?

- Yes and no (but mostly no!)
 - computers can be better at "easy" things
 - humans are much better at "hard" things

Computer Vision vs Human Vision

- Can do amazing things like:
 - Recognize people and objects
 - Navigate through obstacles
 - Understand mood in the scene
 - Imagine stories
- But still is not perfect:
 - Suffers from Illusions
 - Ignores many details
 - Doesn't care about accuracy of world

Computer vision vs Human Vision

What we see

What a computer sees

Components of a computer vision system

Topics Covered

Cameras and their optics

Today's Digital Cameras

The Camera Obscura

Biological vision

Human Eye

Mosquito Eye

A tiny camera

PHOTO: FRAUNHOFER INSTITUTE FOR BIOMEDICAL ENGINEERING

A tiny camera

PHOTO: FRAUNHOFER INSTITUTE FOR BIOMEDICAL ENGINEERING

Project 1: High Dynamic Range Imaging

Cameras have limited dynamic range

Short Exposure

Long Exposure

Desired Image

Project 1: High Dynamic Range Imaging

Image Processing

Fourier Transform Sampling, Convolution

Image enhancement Feature detection

Camera Projection

Image Transformation

Steve Seitz and Chuck Dyer, View Morphing, SIGGRAPH 1996

Project 2: Panoramic Imaging

Input images:

Output Image:

Projective Geometry

Single View Metrology

http://research.microsoft.com/vision/cambridg

e/3d/default.htm

Single View Metrology

 http://research.microsoft.com/vision/cambridg e/3d/default.htm

Shading and Photometric Stereo

Project 3: photometric stereo

Texture Modeling

stochastic

"Semi-stochastic" structures

Texture Synthesis

Image Quilting, Efros and Freeman., SIGGRAPH 2002.

Texture Synthesis

Input images:

Output Image:

Graphcut Textures, Kwatra et al., SIGGRAPH 2003.

Multi-view Geometry

http://phototour.cs.washington.edu/

- Binocular Stereo (2 classes)
- Multiview Stereo (1 class)
- Structure from Motion (2 classes)

Applications

http://photosynth.net/default.aspx

Face Detection and Recognition

Motion Estimation

Hidden Dragon Crouching Tiger

Motion Estimation

Application

Andy Serkis, Gollum, Lord of the Rings

Segmentation

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Segmentation

Application

Medical Image Processing

Matting

Light, Color, and Reflection

Capturing Light Field

Camera Arrays, Graphics Lab, Stanford University

Capturing Light Field

Applications: synthetic aperture imaging

crowd0-parallax.mov

bike-sap.mov

Camera Arrays, Graphics Lab, Stanford University

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

Structured Light and Ranging Scanning

http://graphics.stanford.edu/projects/mich/

Novel Cameras and Displays

http://www1.cs.columbia.edu/CAVE/projects/cc.htm

Assignment 0, Imagination

- Due next Tuesday
- Give FIVE interesting things that you may wish to do with images
 - Better Image Capture
 - Making use of images
 - Design imaging systems

Course Info

http://www.cs.wisc.edu/~cs766-1/