Announcement

- A total of 5 (five) late days are allowed for projects.
- Office hours
 - Me: 3:50-4:50pm Thursday (or by appointment)
 - Jake: 12:30-1:30PM Monday and Wednesday

Image Formation

Digital Camera

The Eye

Alexei Efros' slide

Image Formation

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole Camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does this transform the image?

Camera Obscura

- The first camera
 - 5th B.C. Aristotle, Mozi (Chinese: 墨子)
 - How does the aperture size affect the image?

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects...

Shrinking the aperture

Shrinking the aperture

Sharpest image is obtained when:

$$d = 2\sqrt{f\lambda}$$

d is diameter, f is distance from hole to film λ is the wavelength of light, all given in metres.

Example: If f = 50mm,

 $\lambda = 600nm \text{ (red)},$

d = 0.36mm

2 mm

1 mm

0.35 mm

0.15 mm

0.07 mm

Pinhole cameras are popular

pinhole camera

Google Search | I'm Feeling Lucky |

Jerry Vincent's Pinhole Camera

Impressive Images

Jerry Vincent's Pinhole Photos

What's wrong with Pinhole Cameras?

Low incoming light => Long exposure time => Tripod

KODAK Film or Paper	Bright Sun	Cloudy Bright
TRI-X Pan	1 or 2 seconds	4 to 8 seconds
T-MAX 100 Film	2 to 4 seconds	8 to 16 seconds
KODABROMIDE Paper, F2	2 minutes	8 minutes

http://www.kodak.com/global/en/consumer/education/lessonPlans/pinholeCamera/pinholeCanBox.shtml

What's wrong with Pinhole Cameras

People are ghosted

What's wrong with Pinhole Cameras

People become ghosts!

Pinhole Camera Recap

- Pinhole size (aperture) must be "very small" to obtain a clear image.
- However, as pinhole size is made smaller, less light is received by image plane.
- If pinhole is comparable to wavelength of incoming light, **DIFFRACTION** effects blur the image!

What's the solution?

Lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

Thin lens optics

- Simplification of geometrical optics for well-behaved lenses
- All parallel rays converge to one point on a plane located at the focal length f

- All rays going through the center are not deviated
 - Hence same perspective as pinhole

Demo!

-<u>http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html</u> (by Fu-Kwun Hwang)

Similar triangles everywhere!

Similar triangles everywhere!

$$y'/y = D'/D$$

Similar triangles everywhere!

$$y'/y = D'/D$$

 $y'/y = (D'-f)/D$

$$\frac{1}{D}, +\frac{1}{D} = \frac{1}{f}$$

The focal length f determines the lens's ability to bend (refract) light. It is a function of the shape and index of refraction of the lens.

Film camera

Film camera

Still Life, Louis Jaques Mande Daguerre, 1837

Before Film was invented

Lens Based Camera Obscura, 1568

Silicon Image Detector

Silicon Image Detector, 1970

Digital camera

- A digital camera replaces film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons

SLR (Single-Lens Reflex)

- Reflex (R in SLR) means that we see through the same lens used to take the image.
- Not the case for compact cameras

SLR view finder

Compound Lens System

- Rule: Image formed by first lens is the object for the second lens.
- If $d \approx 0$, the combined focal length f is

$$f = \frac{f_1 f_2}{f_1 + f_2}$$

Field of View (FoV) vs Focal Length

© The-Digital-Picture.com Canon EF-S Canon EF Canon EF

60mm f/2.8

100mm f/2.8

180mm f/3.5

Field of View (FoV) vs Focal Length

24mm

50mm

135mm

Frédo Durand's slide

Field of View (FoV) vs Focal Length

Gaussian Lens Formula:

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

Field of View:

 $\alpha = 2 \arctan(w/(2i)) \approx 2 \arctan(w/(2f))$

Example: w = 30mm, $f = 50mm => \alpha \approx 33.4^{\circ}$

Question: How does FoV change when we focus on closer objects?

Depth of Field

Changing the aperture size affects depth of field. A smaller aperture increases the range in which the object is approximately in focus

Aperture

- Aperture is the diameter of the lens opening, usually specified by f-stop, f/D, a fraction of the focal length.
 - f/2.0 on a 50mm means that the aperture is 25mm
 - f/2.0 on a 100mm means that the aperture is 50mm

- When a change in f-stop occurs, the light is either doubled or cut in half.
- Lower f-stop, more light (larger lens opening)
- Higher f-stop, less light (smaller lens opening)

F-stop

Gaussian Law:
$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f} \qquad \frac{1}{i'} + \frac{1}{o'} = \frac{1}{f} \qquad \Longrightarrow \qquad (i'-i) = \frac{f}{(o'-f)} \frac{f}{(o-f)} (o-o')$$

Blur Circle Diameter:
$$b = \frac{d}{i'}(i'-i) \approx \frac{d}{f}(i'-i)$$

$$f$$
-stop: $\# = \frac{f}{d}$

F-stop

© The-Digital-Picture.com a 2 3 : Canon EF-S Canon EF Canon EF

60mm f/2.8

100mm f/2.8

180mm f/3.5

Exposure

- Two main parameters:
 - Aperture (in f stop)
 - shutter speed (in fraction of a second)

See http://www.photonhead.com/simcam/

Effects of shutter speeds

Slower shutter speed => more light, but more motion blur

Faster shutter speed freezes motion

Color

So far, we've only talked about monochrome sensors. Color imaging has been implemented in a number of ways:

- Field sequential
- Multi-chip
- Color filter array
- X3 sensor

Field sequential

Field sequential

Field sequential

Prokudin-Gorskii (early 1900's)

Lantern projector

http://www.loc.gov/exhibits/empire/

Prokudin-Gorskii (early 1990's)

Multi-chip

Embedded color filters

Color filters can be manufactured directly onto the photodetectors.

Color filter array

Color filter arrays (CFAs)/color filter mosaics

Color filter array

Color filter arrays (CFAs)/color filter mosaics

Why CMY CFA might be better

Bayer's pattern

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	B	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57

bilinear interpolation

$$G_{44} = (G_{34} + G_{43} + G_{45} + G_{54})/4$$

$$R_{44} = (R_{33} + R_{35} + R_{53} + R_{55})/4$$

linear interpolation

R	G	R	G	R	G	R
11	12	13	14	15	16	17
G	B	G	В	G	B	G
21	22	23	24	25	26	27
R	G	R	G	R	G	R
31	32	33	34	35	36	37
G	B	G	B	G	B	G
41	42	43	44	45	46	47
R	G	R	G	R	G	R
51	52	53	54	55	56	57
G	B	G	B	G	B	G
61	62	63	64	65	66	67
R	G	R	G	R	G	R
71	72	73	74	75	76	77

Median-based interpolation (Freeman)

- 1. Linear interpolation
- 2. Median filter on color differences

Median-based interpolation (Freeman)

Generally, Freeman's is the best, especially for natural images.

Foveon X3 sensor

- light penetrates to different depths for different wavelengths
- multilayer CMOS sensor gets 3 different spectral sensitivities

Color filter array

YungYu Chuang's slide

X3 technology

YungYu Chuang's slide

Foveon X3 sensor

Cameras with X3

Sigma SD10, SD9

Polaroid X530

Sigma SD9 vs Canon D30

Color processing

- After color values are recorded, more color processing usually happens:
 - White balance
 - Non-linearity to approximate film response or match TV monitor gamma

Auto White Balance

warmer

automatic white balance

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 255/R'_w & 0 & 0 \\ 0 & 255/G'_w & 0 \\ 0 & 0 & 255/B'_w \end{bmatrix} \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix}$$

Auto White Balance

The auto white balance was unable to find a white reference, resulting in dull and artificial colors.

The auto white balance got it right this time in a very similar scene because it could use the clouds as its white reference.

Manual white balance

white balance with the white book

white balance with the red book

Lens related issues: Coumpound Thick Lens

Lens related issues: Vignetting

Lens related issues: Vignetting

Goldman & Seitz ICCV 2005

Lens related issues: Chromatic Abberation

Lens has different refractive indices for different wavelengths.

http://www.dpreview.com/learn/?/Glossary/Optical/chromatic_aberration_01.htm

Special lens systems using two or more pieces of glass with different refractive indexes can reduce or eliminate this problem.

Lens related issues: Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Digital camera review website

- http://www.dpreview.com/
- http://www.imaging-resource.com/
- http://www.steves-digicams.com/