Last Lecture

Edge Detection

Filtering

Pyramid
Today

Motion Deblur

Image Transformation
Removing Camera Shake from a Single Photograph

Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis and William T. Freeman

http://people.csail.mit.edu/fergus/research/deblur.html

Massachusetts Institute of Technology
and
University of Toronto
Overview

Original

Our algorithm
Close-up

Original Naïve Sharpening Our algorithm
Let’s take a photo

Blurry result
Slow-motion replay
Slow-motion replay

Motion of camera
Image formation process

Blurry image = Sharp image

Input to algorithm = Desired output

Model is approximation

Blur kernel

Convolution operator
Why is this hard?

Simple analogy:

11 is the product of two numbers. What are they?

No unique solution:

11 = 1 x 11
11 = 2 x 5.5
11 = 3 x 3.667
e tc.....

Need more information !!!!
Multiple possible solutions

Blurry image

= Sharp image

= Blur kernel

=
Natural image statistics

Characteristic distribution with heavy tails

Histogram of image gradients
Blury images have different statistics

Histogram of image gradients
Parametric distribution

Use parametric model of sharp image statistics
Three sources of information

1. Reconstruction constraint:
 - Estimated sharp image
 - Estimated blur kernel
 - Input blurry image

2. Image prior:
 - Distribution of gradients

3. Blur prior:
 - Positive & Sparse
Variational Bayesian method

Based on work of Miskin & Mackay 2000

Keeps track of uncertainty in estimates of image and blur by using a distribution instead of a single estimate

Helps avoid local maxima and over-fitting
Variational Bayesian method

Objective function for a single variable

Maximum a-Posteriori (MAP)

Variational Bayes

Pixel intensity

Score
Overview of algorithm

1. Pre-processing

2. Kernel estimation
 - Multi-scale approach

3. Image reconstruction
 - Standard non-blind deconvolution routine
Preprocessing

Input image

- Convert to grayscale
- Remove gamma correction

User selects patch from image

Bayesian inference too slow to run on whole image

Infer kernel from this patch
Initialization

Input image → Convert to grayscale → Remove gamma correction → User selects patch from image → Initialize 3x3 blur kernel

Blurry patch → Initial image estimate → Initial blur kernel
Inferring the kernel: multiscale method

Input image

Convert to grayscale → Remove gamma correction → User selects patch from image

Loop over scales

Upsample estimates → Variational Bayes → Initialize 3x3 blur kernel

Use multi-scale approach to avoid local minima:
Image Reconstruction

Input image

Convert to grayscale

Remove gamma correction

User selects patch from image

Loop over scales

Upsample estimates

Variational Bayes

Initialize 3x3 blur kernel

Full resolution blur estimate

Non-blind deconvolution (Richardson-Lucy)

Deblurred image
Results on real images

Submitted by people from their own photo collections
Type of camera unknown

Output does contain artifacts
 – Increased noise
 – Ringing

Compares well to existing methods
Blur kernel

Our output
Matlab’s deconvblind
Matlab’s deconvblind
睇到女人定係愛斯基摩人？
Our output

睇到女人定係
愛斯基摩人？

全新地鐵「車籍橫額廣告」
讓您樂得多！

Blur kernel
Our output

Blur kernel
Matlab’s `deconvblind`
Close-up of bird

Original

Our output
Blur kernel

Our output
Image artifacts & estimated kernels

Blur kernels

Image patterns

Note: blur kernels were inferred from large image patches, NOT the image patterns shown
Summary

Method for removing camera shake from real photographs

First method that can handle complicated blur kernels

Uses natural image statistics

Non-blind deconvolution currently simplistic
Image Warping

- image filtering: change *range* of image
 - \(g(x) = T(f(x)) \)

- image warping: change *domain* of image
 - \(g(x) = f(T(x)) \)
Image Warping

- image filtering: change \textit{range} of image
 \begin{itemize}
 \item \(g(x) = T(f(x)) \)
 \end{itemize}

- image warping: change \textit{domain} of image
 \begin{itemize}
 \item \(g(x) = f(T(x)) \)
 \end{itemize}
Parametric (global) warping

• Examples of parametric warps:

 - translation
 - rotation
 - aspect
 - affine
 - perspective
 - cylindrical
Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$ p' = T(p) $$

What does it mean that T is global?
- Is the same for any point p
- Can be described by just a few numbers (parameters)

Let's represent T as a matrix:

$$ p' = M p $$

$$ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} M $$

$$ p = (x, y) $$

$$ p' = (x', y') $$
Scaling

- **Scaling** a coordinate means multiplying each of its components by a scalar
- **Uniform scaling** means this scalar is the same for all components:

\[\times 2 \]
Scaling

- **Non-uniform scaling**: different scalars per component:

\[X \times 2, \quad Y \times 0.5 \]
Scaling

- Scaling operation:
 \[x' = ax \]
 \[y' = by \]

- Or, in matrix form:
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 a & 0 \\
 0 & b
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

What's inverse of S?
2-D Rotation

\[(x', y') \]

\[\theta \]

\[x' = x \cos(\theta) - y \sin(\theta) \]

\[y' = x \sin(\theta) + y \cos(\theta) \]
2-D Rotation

• This is easy to capture in matrix form:

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix}
= \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

\[
R
\]

• Even though \(\sin(\theta) \) and \(\cos(\theta) \) are nonlinear functions of \(\theta \),
 - \textit{x' is a linear combination of x and y}
 - \textit{y' is a linear combination of x and y}

• What is the inverse transformation?
 - Rotation by \(-\theta\)
 - For rotation matrices

\[
R^{-1} = R^T
\]
2x2 Matrices

- What types of transformations can be represented with a 2x2 matrix?

2D Identity?

\[
x' = x \\
y' = y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

2D Scale around (0,0)?

\[
x' = s_x * x \\
y' = s_y * y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]
2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

\[
x' = \cos \Theta * x - \sin \Theta * y
\]
\[
y' = \sin \Theta * x + \cos \Theta * y
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos \Theta & -\sin \Theta \\
 \sin \Theta & \cos \Theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

2D Shear?

\[
x' = x + sh_x * y
\]
\[
y' = sh_y * x + y
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 1 & sh_x \\
 sh_y & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
2x2 Matrices

- What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

\[
\begin{align*}
x' &= -x \\
y' &= y
\end{align*}
\]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\
y\end{bmatrix}
\]

2D Mirror over (0,0)?

\[
\begin{align*}
x' &= -x \\
y' &= -y
\end{align*}
\]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\
y\end{bmatrix}
\]
2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

\[x' = x + t_x \quad \text{NO!} \]
\[y' = y + t_y \]

Only linear 2D transformations can be represented with a 2x2 matrix
All 2D Linear Transformations

- Linear transformations are combinations of …
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b & e & f \\
 c & d & g & h \\
 i & j & k & l
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Homogeneous Coordinates

- Q: How can we represent translation as a 3x3 matrix?

\[x' = x + t_x \]
\[y' = y + t_y \]
Homogeneous Coordinates

- **Homogeneous coordinates**
 - represent coordinates in 2 dimensions with a 3-vector

\[
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Homogeneous Coordinates

- **Q:** How can we represent translation as a 3x3 matrix?

 \[x' = x + t_x \]
 \[y' = y + t_y \]

- **A:** Using the rightmost column:

 \[
 \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 \textit{Translation}
Translation

- Example of translation

Homogeneous Coordinates

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix} = \begin{bmatrix}
 x + t_x \\
 y + t_y \\
 1
\end{bmatrix}
\]

\[t_x = 2\]
\[t_y = 1\]
Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point
 - \((x, y, w)\) represents a point at location \((x/w, y/w)\)
 - \((x, y, 0)\) represents a point at infinity
 - \((0, 0, 0)\) is not allowed

Convenient coordinate system to represent many useful transformations

\((2,1,1)\) or \((4,2,2)\) or \((6,3,3)\)
Basic 2D Transformations

- Basic 2D transformations as 3x3 matrices

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Translate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 \cos \Theta & -\sin \Theta & 0 \\
 \sin \Theta & \cos \Theta & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Rotate

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 s_x & 0 & 0 \\
 0 & s_y & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Scale

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 & sh_x & 0 \\
 sh_y & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Shear
Affine Transformations

- Affine transformations are combinations of:
 - Linear transformations, and
 - Translations

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]
Projective Transformations

- Projective transformations: $\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

- Affine transformations, and
- Projective warps

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
Matrix Composition

- Transformations can be combined by matrix multiplication

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & tx \\
 0 & 1 & ty \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 \cos \Theta & -\sin \Theta & 0 \\
 \sin \Theta & \cos \Theta & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 sx & 0 & 0 \\
 0 & sy & 0 \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

\[
p' = T(t_x, t_y) \quad R(\Theta) \quad S(s_x, s_y) \quad p
\]
2D image transformations

These transformations are a nested set of groups
- Closed under composition and inverse is a member
Recovering Transformations

What if we know \(f \) and \(g \) and want to recover the transform \(T \)?

- Using correspondences
 - How many do we need?
Translation: How many correspondences needed for translation?
• How many Degrees of Freedom?
• What is the transformation matrix?

\[T(x,y) \]

\[
\begin{bmatrix}
1 & 0 & p'_x - p_x \\
0 & 1 & p'_y - p_y \\
0 & 0 & 1
\end{bmatrix}
\]
Euclidian: # correspondences?

- How many correspondences needed for translation+rotation?
- How many DOF?
Affine: # correspondences?

- How many correspondences needed for affine?
- How many DOF?
Projective: # correspondences?

- How many correspondences needed for projective?
- How many DOF?
Example: warping triangles

- Given two triangles: ABC and A’B’C’ in 2D (12 numbers)
- Need to find transform T to transfer all pixels from one to the other.
- What kind of transformation is T?
- How can we compute the transformation matrix:

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
warping triangles (Barycentric Coordenates)

Don’t forget to move the origin too!

• Very useful in Graphics…
Image morphing

• The goal is to synthesize a fluid transformation from one image to another.
• Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.
Image morphing

• Why ghosting?
• Morphing = warping + cross-dissolving

shape (geometric) color (photometric)
Image morphing

image #1 cross-dissolving image #2

warp morphing warp
Morphing sequence
Warp by triangulation
Image warping

- Given a coordinate transform \((x',y') = T(x,y)\) and a source image \(f(x,y)\), how do we compute a transformed image \(g(x',y') = f(T(x,y))\)?
Forward warping

- Send each pixel $f(x,y)$ to its corresponding location
- $(x',y') = T(x,y)$ in the second image

Q: what if pixel lands “between” two pixels?
Forward warping

- Send each pixel $f(x,y)$ to its corresponding location
- $(x',y') = T(x,y)$ in the second image

Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x',y')
 - Known as “splatting”
Inverse warping

- Get each pixel $g(x',y')$ from its corresponding location
- $T^{-1}(x,y)$ in the first image

Q: what if pixel comes from “between” two pixels?
Inverse warping

- Get each pixel $g(x',y')$ from its corresponding location
- $$(x,y) = T^{-1}(x',y')$$ in the first image

Q: what if pixel comes from “between” two pixels?
A: Interpolate color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic