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Abstract

This paper describes a novel multi-view matching frame-
work based on a new type of invariant feature. Our fea-
tures are located at Harris corners in discrete scale-space
and oriented using a blurred local gradient. This defines a
rotationally invariant frame in which we sample a feature
descriptor, which consists of an 8 × 8 patch of bias/gain
normalised intensity values. The density of features in the
image is controlled using a novel adaptive non-maximal
suppression algorithm, which gives a better spatial distri-
bution of features than previous approaches. Matching is
achieved using a fast nearest neighbour algorithm that in-
dexes features based on their low frequency Haar wavelet
coefficients. We also introduce a novel outlier rejection pro-
cedure that verifies a pairwise feature match based on a
background distribution of incorrect feature matches. Fea-
ture matches are refined using RANSAC and used in an
automatic 2D panorama stitcher that has been extensively
tested on hundreds of sample inputs.

1 Introduction

Early work in image matching fell into two camps – di-
rect and feature-based. Feature-based methods attempt to
extract salient features such as edges and corners and use a
small amount of local information e.g. correlation of a small
image patch, to establish matches [1, 2]. Direct methods at-
tempt to use all of the pixel values in order to iteratively
align images [3, 4].

At the intersection of these approaches are invariant fea-
tures, which use large amounts of local image data around
salient features to form invariant descriptors for indexing
and matching. The first work in this area was by Schmid and
Mohr [5], who used a jet of Gaussian derivatives to form
a rotationally invariant descriptor around a Harris corner.
Lowe extended this approach to incorporate scale invari-
ance [6]. Other researchers have developed feature descrip-
tors that are invariant under affine transformations [7, 8, 9].

Interest point detectors range from classic feature detectors
such as Harris corners or DOG maxima to more elaborate
methods such as maximally stable regions [10] and sta-
ble local phase structures [11]. There has also been good
progress in evaluating these techniques with respect to in-
terest point repeatability [12] and descriptor performance
[13].

Invariant feature-based approaches to matching have
been successfully applied to a wide range of problems, in-
cluding object recognition [6], structure from motion[14],
and panoramic image stitching [15]. In this paper, we
concentrate on the latter application, where we expect the
amount of foreshortening and scale variation to be fairly
small.

While a tremendous amount of progress has been made
recently in invariant feature matching, the final word has by
no means been written. In this paper, we advance the state
of the art in several directions. First, we develop a novel
adaptive non-maximal suppression algorithm that better dis-
tributes features across the image than previous techniques
(section 3). Second, we show that with suitable modifi-
cations, a direct patch-based sampling of the local image
structure can serve as a useful invariant feature descriptor
(section 4). Third, we develop a feature space outlier re-
jection strategy that uses all of the images in an n-image
matching problem to give a background distribution for in-
correct matches (section 5). Fourth, we develop an index-
ing scheme based on low-frequency Haar wavelet coeffi-
cients that greatly speeds up the search for feature corre-
spondences with minimal impact on matching performance
(section 6). We close the paper with a discussion of our
results and ideas for future work in this area.

2 Interest Point Detection

The interest points we use are multi-scale Harris corners
[1, 2]. For each input image I(x, y) we form a Gaussian
image pyramid Pl(x, y) using a subsampling rate s = 2
and pyramid smoothing width σp = 1.0. Interest points are
extracted from each level of the pyramid.



Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

The Harris matrix at level l and position (x, y) is the
smoothed outer product of the gradients

Hl(x, y) = ∇σd
Pl(x, y)∇σd

Pl(x, y)T ∗ gσi
(x, y)

We set the integration scale σi = 1.5 and the derivative
scale σd = 1.0. To find interest points, we first compute the
“corner strength” function

fHM (x, y) =
det Hl(x, y)
tr Hl(x, y)

=
λ1λ2

λ1 + λ2

which is the harmonic mean of the eigenvalues (λ1, λ2) of
H. Interest points are located where the corner strength
fHM (x, y) is a local maximum in a 3 × 3 neighbourhood,
and above a threshold t = 10.0. Once local-maxima have
been detected, their position is refined to sub-pixel accuracy
by fitting a 2D quadratic to the corner strength function in
the local 3× 3 neighbourhood and finding its maximum.

For each interest point, we also compute an orientation
θ, where the orientation vector [cos θ, sin θ] = u/|u| comes
from the smoothed local gradient

ul(x, y) = ∇σoPl(x, y)

The integration scale for orientation is σo = 4.5. A
large derivative scale is desirable so that the gradient field
ul(x, y) varies smoothly across the image, making orienta-
tion estimation robust to errors in interest point location.

3 Adaptive Non-Maximal Suppression

Since the computational cost of matching is superlinear
in the number of interest points, it is desirable to restrict

the maximum number of interest points extracted from each
image. At the same time, it is important that interest points
are spatially well distributed over the image, since for image
stitching applications, the area of overlap between a pair of
images may be small. To satisfy these requirements, we
have developed a novel adaptive non-maximal suppression
(ANMS) strategy to select a fixed number of interest points
from each image.

Interest points are suppressed based on the corner
strength fHM , and only those that are a maximum in a
neighbourhood of radius r pixels are retained. Conceptu-
ally, we initialise the suppression radius r = 0 and then
increase it until the desired number of interest points nip is
obtained. In practice, we can perform this operation with-
out search as the set of interest points which are generated
in this way form an ordered list.

The first entry in the list is the global maximum, which
is not suppressed at any radius. As the suppression radius
decreases from infinity, interest points are added to the list.
However, once an interest point appears, it will always re-
main in the list. This is true because if an interest point is
a maximum in radius r then it is also a maximum in radius
r′ < r. In practice we robustify the non-maximal suppres-
sion by requiring that a neighbour has a sufficiently larger
strength. Thus the minimum suppression radius ri is given
by

ri = min
j
|xi − xj |, s.t. f(xi) < crobustf(xj), xj ε I

where xi is a 2D interest point image location, and I is the
set of all interest point locations. We use a value crobust =
0.9, which ensures that a neighbour must have significantly
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Figure 3. Repeatability of interest points, orientation
and matching for multi-scale oriented patches at the
finest pyramid level. These results were obtained us-
ing the 7 images of the Matier dataset, each matched
to 2 other images. Orientation repeatability means
accurate to 3 standard devations (= 3 × 18.5 ◦).

higher strength for suppression to take place. We select the
nip = 500 interest points with the largest values of ri.

Figure 2 compares the results of using regular feature de-
tection (strongest responses) to adpative non-maximal sup-
pression. Note how the latter features are much better dis-
tributed across the image. Experiments on a large database
of panoramic images (section 7) show that distributing in-
terest points spatially in this way, as opposed to selecting
based on max corner strength, results in fewer dropped im-
age matches.

3.1 Repeatability

To evaluate the accuracy of interest point detection
and orientation estimation, we have computed repeatability
curves [12]. Figure 3 shows the fraction of interest points
whose transformed position is correct (consistent with the
global homography) up to some tolerance ε. Note that con-
trary to the popular perception that Harris corners are sub-
pixel accurate, the majority of interest points have location
errors in the 1-3 pixel range.

4 Feature Descriptor

Once we have determined where to place our interest
points, we need to extract a description of the local image
structure that will support reliable and efficient matching
of features across images. A wide range of such local fea-
ture vectors have been developed, including local intensity

Figure 4. Descriptors are formed using an 8× 8 sam-
pling of bias/gain normalised intensity values, with a
sample spacing of 5 pixels relative to the detection
scale. This low frequency sampling gives the features
some robustness to interest point location error, and is
achieved by sampling at a higher pyramid level than
the detection scale.

patches [1, 2], Gaussian derivatives [5], shift invariant fea-
ture transforms [6], and affine-invariant descriptors [7, 8, 9].
In their comparative survey, Mikolajczyk and Schmid [13]
evaluated a variety of these descriptors and found that SIFT
features generally perform the best. Local patches oriented
to the dominant local orientation were also evaluated, but
found not to perform as well.

In this section, we show how such patches can be made
less sensitive to the exact feature location by sampling the
pixels at a lower frequency than the one at which the in-
terest points are located. Given an oriented interest point
(x, y, l, θ), we sample a 8 × 8 patch of pixels around the
sub-pixel location of the interest point, using a spacing of
s = 5 pixels between samples (figure 4). To avoid aliasing,
the sampling is performed at a higher pyramid level, such
that the sampling rate is approximately once per pixel (the
Nyquist frequency). Figure 5 shows how varying the sam-
ple spacing s affects the reliability of feature matching. We
have found that performance increases up to a value s = 5,
with negligible gains thereafter.

After sampling, the descriptor vector is normalised so
that the mean is 0 and the standard deviation is 1. This
makes the features invariant to affine changes in intensity
(bias and gain). Finally, we perform the Haar wavelet trans-
form on the 8 × 8 descriptor patch di to form a 64 dimen-
sional descriptor vector containing the wavelet coefficients
ci. Due to the orthogonality property of Haar wavelets, Eu-
clidean distances between features are preserved under this
transformation. The first three non-zero wavelet coefficients
c1, c2, c3 are used in an indexing strategy described in sec-
tion 6.



(a) Strongest 250 (b) Strongest 500

(c) ANMS 250, r = 24 (d) ANMS 500, r = 16

Figure 2. Adaptive non-maximal suppression (ANMS). The two upper images show interest points with the highest
corner strength, while the lower two images show interest points selected with adaptive non-maximal suppression
(along with the corresponding suppression radius r). Note how the latter features have a much more uniform spatial
distribution across the image.
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Figure 6. Distributions of matching error for correct and incorrect matches. Note that the distance of the closest match
(the 1-NN) is a poor metric for distinguishing whether a match is correct or not (figure (a)), but the ratio of the closest
to the second closest (1-NN/2-NN) is a good metric (figure (b)). We have found that using an average of 2-NN distances
from multiple images (1NN/(average 2-NN)) is an even better metric (figure (c)). These results were computed from
18567 features in 20 images of the Abbey dataset, and have been verified for several other datasets.
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Figure 5. Effect of changing the descriptor sample
spacing on performance. These ROC curves show
the results of thresholding feature matches based on
normalised match distance as in section 5.1. Per-
formance improves as the sample spacing increases
(larger patches), but gains are minimal above a sam-
ple spacing of 5 pixels.

5 Feature Matching

Given Multi-scale Oriented Patches extracted from all n
images, the goal of the matching stage is to find geometri-
cally consistent feature matches between all images. This
proceeds as follows. First, we find a set of candidate fea-
ture matches using an approximate nearest neighbour algo-
rithm (section 6). Then we refine matches using an out-
lier rejection procedure based on the noise statistics of cor-
rect/incorrect matches. Finally we use RANSAC to apply
geometric constraints and reject remaining outliers.

5.1 Feature-Space Outlier Rejection

Our basic noise model assumes that a patch in one image,
when correctly oriented and located, corresponds to a patch
in the other image modulo additive Gaussian noise:

I ′(x′) = αI(x) + β + n(x)
x′ = Ax + t

A = s

[
cos θ sin θ
− sin θ cos θ

]
n(x) ∼ N (0, σ2

nI)

where I(x) and I ′(x) are the corresponding patches, and
n(x) is independent Gaussian noise at each pixel. How-
ever, we have found this model to be inadequate for clas-
sification, since the noise distributions for correctly and in-
correctly matching patches overlap significantly (see figure

6(a)). Hence, it is not possible to set a global threshold on
the matching error e =

∑
x n(x)2 in order to distinguish

between correct and incorrect matches.
This behaviour has also been observed by Lowe [6], who

suggested thresholding instead on the ratio e1−NN/e2−NN .
Here e1−NN denotes the error for the best match (first near-
est neighbour) and e2−NN denotes the error for the second
best match (second nearest neighbour). As in Lowe’s work,
we have also found that the distributions of e1−NN/e2−NN

for correct and incorrect matches are better separated than
the distributions of e1−NN alone (figure 6(b)).

The intuition for why this works is as follows. For a
given feature, correct matches always have substantially
lower error than incorrect matches. However, the overall
scale of errors varies greatly, depending upon the appear-
ance of that feature (location in feature space). For this rea-
son it is better to use a discriminative classifier that com-
pares correct and incorrect matches for a particular feature,
than it is to use a uniform Gaussian noise model in feature
space.

Lowe’s technique works by assuming that the 1-NN in
some image is a potential correct match, whilst the 2-NN
in that same image is an incorrect match. In fact, we have
observed that the distance in feature space of the 2-NN and
subsequent matches is almost constant1. We call this the
outlier distance, as it gives an estimate of the matching dis-
tance (error) for an incorrect match (figure 7).

We have found that in the n image matching context we
can improve outlier rejection by using information from all
of the images (rather than just the two being matched). Us-
ing the same argument as Lowe, the 2-NN from each image
will almost certainly be an incorrect match. Hence we av-
erage the 2-NN distances from all n images, to give an im-
proved estimate for the outlier distance. This separates the
distributions for correct and incorrect matches still further,
resulting in improved outlier rejection (figure 6(c)). Note
that the extra overhead associated with computing 2-nearest
neighbours in every image is small, since if we want to con-
sider every possible image match, we must compute all of
the 1-nearest neighbours anyway.

In general the feature-space outlier rejection test is very
powerful. For example, we can eliminate 80% of the false
matches for a loss of less than 10% correct matches. This al-
lows for a significant reduction in the number of RANSAC
iterations required in subsequent steps.

6 Fast Approximate Nearest Neighbours us-
ing Wavelet Indexing

To efficiently find candidate feature matches, we use a
fast nearest-neighbour algorithm based on wavelet index-

1This is known as the shell property. The distances of a set of uniformly
distributed points from a query point in high dimensions are almost equal.
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Figure 7. Thresholding based on outlier distance.
This figure shows the best 10 matches for a sample
feature. The first is a correct match, and the rest
are incorrect matches. Thresholding based purely on
matching error gives poor results, since matching er-
rors vary greatly depending upon the position in fea-
ture space. However, thresholding at a fraction of the
outlier distance gives better results.

ing. Features are indexed in a three-dimensional lookup ta-
ble with dimensions corresponding to the first 3 non-zero
wavelet coefficients c1, c2, c3 (estimates of ∂I

∂x , ∂I
∂y , ∂2I

∂x∂y
over the patch). The lookup table has b = 10 bins per di-
mension, which cover ±nσ = 3 standard deviations from
the mean of that dimension. Note that the means are typ-
ically around zero except for the first derivative that is
aligned with the feature orientation, which is significantly
positive.

The bins are overlapped so that data within half a bin
width, i.e. 2nσ

b−1
1
2 = σ

3 , are guaranteed to be matched against
the query. These are approximate nearest neighbours as it
is possible (but unlikely) that the true nearest neighbour lies
outside σ

3 in one of the 3 dimensions. The query is exhaus-
tively matched to all features in the query bin, and k ap-
proximate nearest neighbours are selected. We then apply
the outlier distance constraint as described in section 5.1 to
verify correct matches and eliminate outliers. Indexing with
b bins on 3 dimensions gives a speedup of b3/23 (assuming
features are evenly distributed in the histogram) at the ex-
pense of some potential for lost feature matches.

Table 1 compares low frequency wavelet indexing to
indexing using random grey values from the descriptor.
At our chosen operating point of 10 bins per dimension,
wavelet indexing retains 10% more matches than indexing
on random grey values. At this operating point our indexing
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Figure 8. ROC curves for patch refinement with dif-
ferent alignment models (Matier dataset). Each addi-
tional free parameter degrades the matching perfor-
mance.

scheme gives a speedup of 103/23 = 125 for a loss of less
than 10% of the correct matches.

Indexing Dataset Number of bins / dimension
Method 1 5 10 15
Wavelet Matier 100 99.6 91.4 72.4

Abbey 100 99.9 95.1 80.2
Random pixel Matier 100 97.9 79.8 57.8

Abbey 100 96.7 77.8 56.3

Table 1. Indexing on wavelet coefficients vs. pixel val-
ues - percent recall in database matching. Using 10
bins per dimension, indexing on the 3 non-zero low
frequency Haar wavelet coefficients (x and y deriva-
tives and the cross derivative) gives about 10% better
recall than indexing on random dimensions (pixels) of
the descriptor.

7 Experimental Results

7.1 Patch Refinement

In [13], Mikolajczyk and Schmid note that “It would
be interesting to include correlation with patch alignment
which corrects for these errors and to measure the gain ob-
tained by such an alignment.” Since sensitivity to local-
ization errors has been touted as one of the weaknesses of
pixel-based descriptors, we decided to implement this sug-
gestion to see how much it would help. Rather than com-
puting sum-squared error on pixel patches (or wavelet co-
efficients) directly, we included a stage of Lucas-Kanade



[3] refinement to bring the patches more closely into spa-
tial alignment before computing the pairwise descriptor dis-
tance. Since this has elements in common with the use of
tangent distances [16] we expected that there might be an
improvement in the separation of good and bad matches.
Instead we found the opposite to be true.

We used four motion models (direct, translation, similar-
ity and affine) with 0, 2, 4 and 6 parameters respectively.
The results are shown in figure 8. Note that matching per-
formance is degraded for each new parameter that is added
to the model.

Since correct matches are already fairly well aligned, but
bad matches typically have large errors, refinement tends to
overfit the incorrect matches, whilst making only small im-
provements to the correct matches. This means that Lucas-
Kanade refinement actually makes it more difficult to dis-
tinguish between correct and incorrect matches than before.

7.2 Panoramic Image Stitching

We have successfully tested our multi-image
matching scheme on a dataset containing hun-
dreds of panoramic images. We present results
for the Matier and Abbey datasets in figure 9. See
www.research.microsoft.com/∼szeliski/StitchingEvaluation
for more examples.

8 Conclusions

We have presented a new type of invariant feature, which
we call Multi-Scale Oriented Patches (MOPs). These fea-
tures utilise a novel adaptive non-maximal suppression al-
gorithm for interest point location, and a simple sampling
of the (oriented) local image intensity for the feature de-
scriptor. We have also introduced two innovations in multi-
image matching. First, we have demonstrated an improved
test for verification of pairwise image matches that uses
matching results from all n images. Second, we have shown
that an indexing scheme based on low frequency wavelet
coefficients yields a fast approximate nearest neighbour al-
gorithm that is superior to indexing using the raw data val-
ues.

Future work will extend the features to incorporate true
scale invariance, colour, and more robust rotation estimates.
We would also like to perform a more detailed, quanti-
tative analysis of feature matching performance on large
databases of panoramic images.
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(a) Matier data set (7 images)

(b) Matier final stitch

(c) Abbey data set (20 images)

(d) Abbey final stitch

Figure 9. The stitched images used for the matching results found in this paper. We have successfully
tested our multi-image matching scheme on a database containing hundreds of panoramic images. See
http://www.research.microsoft.com/∼szeliski/StitchingEvaluation for more examples.


