Invariant Local Features

• Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters.
More motivation…

• Feature points are used for:
 – Image alignment (homography, fundamental matrix)
 – 3D reconstruction
 – Motion tracking
 – Object recognition
 – Indexing and database retrieval
 – Robot navigation
 – … other
Corner detector

- C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988
The Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity
Moravec corner detector

flat
Moravec corner detector

flat
Moravec corner detector

flat

edge
Moravec corner detector

- **Flat**
- **Edge**
- **Corner isolated point**
Moravec corner detector

Change of intensity for the shift \([u,v]\):

\[
E(u, v) = \sum_{x,y} w(x, y) [I(x+u, y+v) - I(x, y)]^2
\]

Window function

Shifted intensity

Intensity

Window function \(w(x,y) = \begin{cases} 1 & \text{in window, } 0 & \text{outside} \end{cases}\)

Four shifts: \((u,v) = (1,0), (1,1), (0,1), (-1,1)\)

Look for local maxima in \(\min\{E\}\)

When does this idea fail?
Problems of Moravec detector

- Only a set of shifts at every 45 degree is considered
- Noisy response due to a binary window function
- Only minimum of E is taken into account

\Rightarrow Harris corner detector (1988) solves these problems.
Harris corner detector

Noisy response due to a binary window function

➢ Use a Gaussian function

\[w(x, y) = \exp\left(- \frac{(x^2 + y^2)}{2\sigma^2} \right) \]

Window function \(w(x, y) = \) Gaussian
Harris corner detector

Only a set of shifts at every 45 degree is considered

Consider all small shifts by Taylor’s expansion

\[
E(u,v) = \sum_{x,y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
= \sum_{x,y} w(x, y) \left[I_x u + I_y v + O(u^2, v^2) \right]^2
\]

\[
E(u,v) = Au^2 + 2Cuv + Bv^2
\]

\[
A = \sum_{x,y} w(x, y) I_x^2(x, y)
\]

\[
B = \sum_{x,y} w(x, y) I_y^2(x, y)
\]

\[
C = \sum_{x,y} w(x, y) I_x(x, y) I_y(x, y)
\]
Harris corner detector

Equivalently, for small shifts \([u, v]\) we have a bilinear approximation:

\[
E(u, v) \approx [u, v] M \begin{bmatrix} u \\ v \end{bmatrix}
\]

, where \(M\) is a 2×2 matrix computed from image derivatives:

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]
Harris corner detector

Only minimum of E is taken into account

- A new corner measurement
Harris corner detector

Intensity change in shifting window: eigenvalue analysis

\[E(u, v) \approx [u, v] M \begin{bmatrix} u \\ v \end{bmatrix} \]

\(\lambda_1, \lambda_2 \) – eigenvalues of \(M \)

Ellipse \(E(u, v) = \text{const} \)

Direction of the fastest change

Direction of the slowest change

\((\lambda_{\text{max}})^{-1/2} \)

\((\lambda_{\text{min}})^{-1/2} \)
Harris corner detector

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are large; E increases in all directions
- λ_1 and λ_2 are small; E is almost constant in all directions
- $\lambda_1 \gg \lambda_2$; edge
- $\lambda_2 \gg \lambda_1$; edge
- $\lambda_1 \sim \lambda_2$; flat

Corner

- λ_1 and λ_2 are large,
- $\lambda_1 \sim \lambda_2$;
- E increases in all directions
Harris corner detector

Measure of corner response:

\[R = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\text{det } M}{\text{Trace } M} \]
Harris Detector

• The Algorithm:
 – Find points with large corner response function R ($R > \text{threshold}$)
 – Take the points of local maxima of R
Harris Detector: Workflow
Harris Detector: Workflow

Compute corner response R
Harris Detector: Workflow

Find points with large corner response: $R > \text{threshold}$
Harris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: Workflow
Harris Detector: Some Properties

- Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Some Properties

- Partial invariance to *affine intensity* change

- Only derivatives are used \Rightarrow invariance to intensity shift $I \rightarrow I + b$
- Intensity scale: $I \rightarrow a \ I$
Harris Detector: Some Properties

• But: non-invariant to *image scale*!

All points will be classified as *edges*

Corner!
Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images
The problem: how do we choose corresponding circles *independently* in each image?

Choose the scale of the “best” corner.
Feature selection

- Distribute points evenly over the image
Adaptive Non-maximal Suppression

- Desired: Fixed # of features per image
 - Want evenly distributed spatially…
 - Sort points by non-maximal suppression radius

[Brown, Szeliski, Winder, CVPR’05]
Feature descriptors

• We know how to detect points
• Next question: **How to match them?**

Point descriptor should be:
1. Invariant
2. Distinctive
Descriptors Invariant to Rotation

- **Find local orientation**

 Dominant direction of gradient

- **Extract image patches relative to this orientation**
Descriptor Vector

- Rotation Invariant Frame
- Orientation = blurred gradient
MOPS descriptor vector

- 8x8 oriented patch
 - Sampled at 5 x scale
- Bias/gain normalisation: $I' = (I - \mu)/\sigma$
Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Master images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.
Multi-Scale Oriented Patches (Summary)

- Interest points
 - Multi-scale Harris corners
 - Orientation from blurred gradient
 - Geometrically invariant to rotation
- Descriptor vector
 - Bias/gain normalized sampling of local patch (8x8)
 - Photometrically invariant to affine changes in intensity
- [Brown, Szeliski, Winder, CVPR’2005]
Feature matching
Feature matching

• Exhaustive search
 – for each feature in one image, look at all the other features in the other image(s)

• Hashing
 – compute a short descriptor from each feature vector, or hash longer descriptors (randomly)

• Nearest neighbor techniques
 – kd-trees and their variants
What about outliers?
Feature-space outlier rejection

• Let’s not match all features, but only these that have “similar enough” matches?
• How can we do it?
 – SSD(patch1,patch2) < threshold
 – How to set threshold?
Feature-space outlier rejection

• A better way [Lowe, 1999]:
 – 1-NN: SSD of the closest match
 – 2-NN: SSD of the second-closest match
 – Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 – That is, is our best match so much better than the rest?
Feature-space outlier rejection

Can we now compute H from the blue points?

– No! Still too many outliers…
– What can we do?
Matching features

What do we do about the “bad” matches?
Random Sample Consensus

Select one match, count inliers
RAndom SAmple Consensus

Select one match, count inliers
Least squares fit

Find “average” translation vector
RANSAC for estimating homography

- **RANSAC loop:**
 1. Select four feature pairs (at random)
 2. Compute homography H (exact)
 3. Compute *inliers* where $SSD(p_i', H p_i) < \varepsilon$
 4. Record the largest set of inliers so far
 5. Re-compute least-squares H estimate on the largest set of the inliers
RANSAC in general

• RANSAC = Random Sample Consensus
• an algorithm for robust fitting of models in the presence of many data outliers
• Compare to robust statistics

• Given N data points x_i, assume that majority of them are generated from a model with parameters Θ, try to recover Θ.
RANSAC algorithm

Run k times:

1. draw n samples randomly
2. fit parameters Θ with these n samples
3. for each of other $N-n$ points, calculate its distance to the fitted model, count the number of inlier points, c

Output Θ with the largest c

How many times?

How big? Smaller is better

How to define?

Depends on the problem.
How to determine k

\(n \): number of samples drawn each iteration

\(p \): probability of real inliers

\(P \): probability of at least 1 success after k trials

\[P = 1 - \left(1 - p^n \right)^k \]

\(n \) samples are all inliers

\(a \) failure

failure after \(k \) trials

\[k = \frac{\log(1 - P)}{\log(1 - p^n)} \] for \(P=0.99 \)

\[
\begin{array}{|c|c|c|}
\hline
n & p & k \\
3 & 0.5 & 35 \\
6 & 0.6 & 97 \\
6 & 0.5 & 293 \\
\hline
\end{array}
\]
Example: line fitting
Example: line fitting

\[n = 2 \]
Model fitting
Measure distances
Count inliers

\[c = 3 \]
Another trial

\[c = 3 \]
The best model

\[c = 15 \]
Applications
Automatic image stitching
Correspondence Results

Chum & Matas 2005
Object Recognition Results

Brown & Lowe 2005
Object Recognition Results

Nister & Stewenius 2006
Object Classification Results

Grauman & Darrell 2006, Dorko & Schmid 2004
Geometry Estimation Results

Snavely, Seitz, & Szeliski 2006
Object Tracking Results

Gordon & Lowe 2005
Robotics: Sony Aibo

SIFT is used for:
- Recognizing charging station
- Communicating with visual cards
- Teaching object recognition
- Soccer