
What have we leaned so far?
• Camera structure
• Eye structure

Project 1: High Dynamic Range Imaging



What have we learned so far?
• Image Filtering
• Image Warping
• Camera Projection Model

Project 2: Panoramic Image Stitching



What have we learned so far?
• Projective Geometry
• Single View Modeling
• Shading Model

Project 3: Photometric Stereo



Today
• 3D modeling from two images – Stereo





Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923



Inventor: Sir Charles Wheatstone, 1802 - 1875  
http://en.wikipedia.org/wiki/Sir_Charles_Wheatstone 



Inventor: Sir Charles Wheatstone, 1802 - 1875  
http://en.wikipedia.org/wiki/Wheatstone_bridge 



Stereograms online
• UCR stereographs

• http://www.cmp.ucr.edu/site/exhibitions/stereo/
• The Art of Stereo Photography

• http://www.photostuff.co.uk/stereo.htm
• History of Stereo Photography

• http://www.rpi.edu/~ruiz/stereo_history/text/historystereog.html
• Double Exposure

• http://home.centurytel.net/s3dcor/index.html
• Stereo Photography

• http://www.shortcourses.com/book01/chapter09.htm
• 3D Photography links

• http://www.studyweb.com/links/5243.html
• National Stereoscopic Association

• http://204.248.144.203/3dLibrary/welcome.html
• Books on Stereo Photography

• http://userwww.sfsu.edu/~hl/3d.biblio.html

A free pair of red-blue stereo glasses can be ordered from Rainbow Symphony Inc
• http://www.rainbowsymphony.com/freestuff.html

http://www.cmp.ucr.edu/site/exhibitions/stereo/
http://www.photostuff.co.uk/stereo.htm
http://www.rpi.edu/~ruiz/stereo_history/text/historystereog.html
http://home.centurytel.net/s3dcor/index.html
http://www.shortcourses.com/book01/chapter09.htm
http://www.studyweb.com/links/5243.html
http://204.248.144.203/3dLibrary/welcome.html
http://userwww.sfsu.edu/~hl/3d.biblio.html
http://www.rainbowsymphony.com/freestuff.html
http://www.rainbowsymphony.com/freestuff.html
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Fuji 3D printing



Stereo

scene point

optical center

image plane



Stereo

Basic Principle:  Triangulation
• Gives reconstruction as intersection of two rays
• Requires 

– calibration
– point correspondence



Stereo correspondence
• Determine Pixel Correspondence

• Pairs of points that correspond to same scene point

Epipolar Constraint
• Reduces correspondence problem to 1D search along conjugate

epipolar lines
• Java demo:  http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

epipolar plane
epipolar lineepipolar line

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


Epipolar Line Example

courtesy of Marc Pollefeys



Stereo image rectification



Stereo image rectification

• reproject image planes onto a common
• plane parallel to the line between optical 

centers
• pixel motion is horizontal after this transformation
• two homographies (3x3 transform), one for each 

input image reprojection
C. Loop and Z. Zhang. Computing Rectifying Homographies for 
Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 
1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Epipolar Line Example

courtesy of Marc Pollefeys



Epipolar Line Example

courtesy of Marc Pollefeys



Stereo matching algorithms

• Match Pixels in Conjugate Epipolar Lines
• Assume brightness constancy
• This is a tough problem
• Numerous approaches

– A good survey and evaluation:  
http://www.middlebury.edu/stereo/

http://www.middlebury.edu/stereo/


Basic stereo algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows



Basic stereo algorithm
• For each pixel

• For each disparity

– For each pixel in window
» Compute difference

• Find disparity with minimum SSD



Reverse order of loops
• For each disparity

• For each pixel

– For each pixel in window
» Compute difference

• Find disparity with minimum SSD at each pixel



Incremental computation
• Given SSD of a window, at some disparity

Image 1

Image 2



Incremental computation
• Want: SSD at next location

Image 1

Image 2



Incremental computation
• Subtract contributions from leftmost column, add 

contributions from rightmost column

Image 1

Image 2
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Selecting window size
• Small window: more detail, but more noise
• Large window: more robustness, less detail
• Example:



Selecting window size

3 pixel window 20 pixel window

Why?



Non-square windows
• Compromise: have a large window, but higher weight 

near the center
• Example: Gaussian
• Example: Shifted windows (computation cost?)



Problems with window matching
• No guarantee that the matching is one-to-one
• Hard to balance window size and smoothness



A global approach
• Finding correspondence between a pair of epipolar 

lines for all pixels simultaneously



A global approach

left

right

left

right

left

right

Define an evaluation score for each configuration, 
choose the best matching configuration



A global approach
• How to define the evaluation score? 

• How about the sum of corresponding pixel difference?



Ordering constraint
• Order of matching features usually the same

in both images
• But not always: occlusion



Dynamic programming
• Treat pixel correspondence as graph problem

Left image
pixels

Right image pixels

1 2 3 4
1

2

3

4



Dynamic programming
• Find min-cost path through graph

Left image
pixels

Right image pixels

1 2 3 4
1

2

3

4

1

3
4

1

22
3
4



Dynamic Programming Results



Energy minimization
• Another global approach to improve quality of 

correspondences
• Assumption: disparities vary (mostly) smoothly
• Minimize energy function:

Edata+λEsmoothness

• Edata: how well does disparity match data
• Esmoothness: how well does disparity match

that of neighbors – regularization



Stereo as energy minimization
• Matching Cost Formulated as Energy

• “data” term penalizing bad matches

• “neighborhood term” encouraging spatial smoothness
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Energy minimization

• Many local minimum
• Why?
• Gradient descent doesn’t work well

• In practice, disparities only piecewise smooth
• Design smoothness function that doesn’t penalize 

large jumps too much
• Example: V(α,β)=min(|α−β|, K)

– Non-convex
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Energy minimization
• Hard to find global minima of non-smooth functions

• Many local minima
• Provably NP-hard

• Practical algorithms look for approximate minima 
(e.g., simulated annealing)



Energy minimization via graph cuts

Labels 
(disparities)

d1

d2

d3

edge weight

edge weight
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• Graph Cost
• Matching cost between images
• Neighborhood matching term
• Goal:  figure out which labels are connected to which pixels 

d1

d2

d3

Energy minimization via graph cuts



Energy minimization via graph cuts

d1

d2

d3

• Graph Cut
• Delete enough edges so that

– each pixel is connected to exactly one label 
node 

• Cost of a cut:  sum of deleted edge weights
• Finding min cost cut equivalent to finding global minimum of 

energy function



Computing a multiway cut

• With 2 labels:  classical min-cut problem
• Solvable by standard flow algorithms

– polynomial time in theory, nearly linear in practice
• More than 2 terminals: NP-hard 

[Dahlhaus et al., STOC ‘92]
• Efficient approximation algorithms exist

• Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate 
Energy Minimization via Graph Cuts, International Conference on 
Computer Vision, September 1999.

• Within a factor of 2 of optimal
• Computes local minimum in a strong sense

– even very large moves will not improve the energy

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf


Move examples

Starting point

Red-blue swap move

Green expansion move



The swap move algorithm
1. Start with an arbitrary labeling
2. Cycle through every label pair (A,B) in some order

2.1 Find the lowest E labeling within a single AB-swap
2.2 Go there if it’s lower E than the current labeling

3. If E did not decrease in the cycle, we’re done     
Otherwise, go to step 2

Original graph

A

B

AB subgraph
(run min-cut on this graph)

B

A



The expansion move algorithm

1. Start with an arbitrary labeling
2. Cycle through every label A in some order

2.1 Find the lowest E labeling within a single A-
expansion

2.2 Go there if it’s lower E than the current labeling
3. If E did not decrease in the cycle, we’re done     Otherwise, go to 

step 2

Multi-way cut A sequence of binary optimization problems



Stereo results

ground truthscene

• Data from University of Tsukuba

http://cat.middlebury.edu/stereo/

http://cat.middlebury.edu/stereo/


Results with window correlation

normalized correlation
(best window size)

ground truth



Results with graph cuts

ground truthgraph cuts
(Potts model E,
expansion move algorithm)



Depth from disparity

f

x x’

baseline

z

C C’

X

f

input image (1 of 2)
[Szeliski & Kang ‘95]

depth map 3D rendering



Real-time stereo

• Used for robot navigation (and other tasks)
• Several software-based real-time stereo techniques have 

been developed (most based on simple discrete search)

Nomad robot searches for meteorites in Antartica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

http://www.frc.ri.cmu.edu/projects/meteorobot/index.html
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html


• Camera calibration errors
• Poor image resolution
• Occlusions
• Violations of brightness constancy (specular reflections)
• Large motions
• Low-contrast image regions

Stereo reconstruction pipeline
• Steps

• Calibrate cameras
• Rectify images
• Compute disparity
• Estimate depth

What will cause errors?



Spacetime Stereo

Li Zhang, Noah Snavely, Brian Curless, Steven Seitz
CVPR 2003, SIGGRAPH 2004



Stereo



Stereo

???



Marker-based Face Capture

The Polar Express, 2004

“The largest intractable problem with ‘The Polar Express’ is that the 
motion-capture technology used to create the human figures has 
resulted in a film filled with creepily unlifelike beings.” 

New York Times Review, Nov 2004



Stereo



Stereo

Frame-by-Frame Stereo 
W×H = 15×15 Window

A Pair of Videos 
640×480@60fps Each 

Inaccurate & Jittering



3D Surface

Spacetime Stereo



Spacetime Stereo

Time

3D Surface



Spacetime Stereo

Time

3D Surface



Spacetime Stereo

Time



Spacetime Stereo

Surface Motion

Time



Spacetime Stereo

Surface Motion

Time=0



Spacetime Stereo

Surface Motion

Time=1



Spacetime Stereo

Surface Motion

Time=2



Spacetime Stereo

Surface Motion

Time=3



Spacetime Stereo

Surface Motion

Time=4



Surface Motion

• Matching Volumetric Window

• Affine Window Deformation

Key ideas:

Spacetime Stereo

Time



Spacetime Stereo

Time



Spacetime Stereo

Time



Spacetime Stereo



Spacetime Stereo

A Pair of Videos 
640×480@60fps Each 

Spacetime Stereo      
W×H×T = 9×5×5 Window



Frame-by-Frame vs. Spacetime Stereo

Spacetime Stereo      
W×H×T = 9×5×5 Window

Frame-by-Frame           
W×H = 15×15 Window

Spatially More Accurate
Temporally More Stable



Video Projectors

Color Cameras

Black & White Cameras

Spacetime Face Capture System



System in Action



Input Videos (640×480, 60fps)



Spacetime Stereo Reconstruction



Creating a Face Database



Creating a Face Database

[Zhang et al. SIGGRAPH’04]

…



Application 1: Expression Synthesis

[Zhang et al. SIGGRAPH’04]

…

A New Expression:



Application 2: Facial Animation

[Zhang et al. SIGGRAPH’04]

…



Keyframe Animation
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