What have we leaned so far?

- Camera structure
- Eye structure

Project 1: High Dynamic Range Imaging

What have we learned so far?

- Image Filtering
- Image Warping
- Camera Projection Model

Project 2: Panoramic Image Stitching

What have we learned so far?

- Projective Geometry
- Single View Modeling
- Shading Model

Project 3: Photometric Stereo

Today

• 3D modeling from two images – Stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Inventor: Sir Charles Wheatstone, 1802 - 1875

http://en.wikipedia.org/wiki/Sir_Charles_Wheatstone

Inventor: Sir Charles Wheatstone, 1802 - 1875

http://en.wikipedia.org/wiki/Wheatstone_bridge

Stereograms online

- UCR stereographs
 - http://www.cmp.ucr.edu/site/exhibitions/stereo/
- The Art of Stereo Photography
 - http://www.photostuff.co.uk/stereo.htm
- History of Stereo Photography
 - http://www.rpi.edu/~ruiz/stereo_history/text/historystereog.html
- Double Exposure
 - http://home.centurytel.net/s3dcor/index.html
- Stereo Photography
 - <u>http://www.shortcourses.com/book01/chapter09.htm</u>
- 3D Photography links
 - http://www.studyweb.com/links/5243.html
- National Stereoscopic Association
 - http://204.248.144.203/3dLibrary/welcome.html
- Books on Stereo Photography
 - http://userwww.sfsu.edu/~hl/3d.biblio.html

A free pair of red-blue stereo glasses can be ordered from Rainbow Symphony Inc

http://www.rainbowsymphony.com/freestuff.html

FUJIFILM, September 23, 2008

Fuji 3D printing

Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
 - calibration
 - point correspondence

Stereo correspondence

- Determine Pixel Correspondence
 - Pairs of points that correspond to same scene point

Epipolar Constraint

- Reduces correspondence problem to 1D search along conjugate epipolar lines
- Java demo: <u>http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html</u>

Epipolar Line Example

courtesy of Marc Pollefeys

Stereo image rectification

Stereo image rectification

- reproject image planes onto a common
- plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3x3 transform), one for each input image reprojection
- C. Loop and Z. Zhang. <u>Computing Rectifying Homographies for</u> <u>Stereo Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Epipolar Line Example

courtesy of Marc Pollefeys

Epipolar Line Example

courtesy of Marc Pollefeys

Stereo matching algorithms

- Match Pixels in Conjugate Epipolar Lines
 - Assume brightness constancy
 - This is a tough problem
 - Numerous approaches
 - A good survey and evaluation:

http://www.middlebury.edu/stereo/

Basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Basic stereo algorithm

- For each pixel
 - For each disparity
 - For each pixel in window
 - » Compute difference
 - Find disparity with minimum SSD

Reverse order of loops

- For each disparity
 - For each pixel
 - For each pixel in window
 - » Compute difference
- Find disparity with minimum SSD at each pixel

Incremental computation

• Given SSD of a window, at some disparity

Incremental computation

• Want: SSD at next location

Incremental computation

• Subtract contributions from leftmost column, add contributions from rightmost column

-			÷
0			÷
1	 		÷
0			÷
•			÷

Image 2

-			÷
0			÷
1			÷
J			÷
-			÷

Selecting window size

- Small window: more detail, but more noise
- Large window: more robustness, less detail
- Example:

Selecting window size

3 pixel window

20 pixel window

Why?

Non-square windows

- Compromise: have a large window, but higher weight near the center
- Example: Gaussian
- Example: Shifted windows (computation cost?)

Problems with window matching

- No guarantee that the matching is one-to-one
- Hard to balance window size and smoothness

A global approach

• Finding correspondence between a pair of epipolar lines for all pixels simultaneously

A global approach

Define an evaluation score for each configuration, choose the best matching configuration

A global approach

- How to define the evaluation score?
 - How about the sum of corresponding pixel difference?

Ordering constraint

- Order of matching features usually the same in both images
- But not always: occlusion

Dynamic programming

• Treat pixel correspondence as graph problem

Dynamic programming

• Find min-cost path through graph

Dynamic Programming Results

Energy minimization

- Another global approach to improve quality of correspondences
- Assumption: disparities vary (mostly) smoothly
- Minimize energy function:

 $E_{data} + \lambda E_{smoothness}$

- E_{data}: how well does disparity match data
- E_{smoothness}: how well does disparity match that of neighbors regularization

Stereo as energy minimization

- Matching Cost Formulated as Energy
 - "data" term penalizing bad matches

$$D(x, y, d) = |\mathbf{I}(x, y) - \mathbf{J}(x + d, y)|$$

• "neighborhood term" encouraging spatial smoothness

 $V(d_1, d_2) = \text{cost of adjacent pixels with labels d1 and d2}$ $= \left| d_1 - d_2 \right| \quad \text{(or something similar)}$

$$E(\{d\}) = \sum_{(x,y)} D(x, y, d_{x,y}) + \sum_{neighbors\ (x1,y1), (x2,y2)} V(d_{x1,y1}, d_{x2,y2})$$

Energy minimization

$$E(\{d\}) = \sum_{(x,y)} D(x, y, d_{x,y}) + \sum_{neighbors\ (x1,y1), (x2,y2)} V(d_{x1,y1}, d_{x2,y2})$$

- Many local minimum
 - Why?
 - Gradient descent doesn't work well
- In practice, disparities only piecewise smooth
- Design smoothness function that doesn't penalize large jumps too much
 - Example: $V(\alpha,\beta)=min(|\alpha-\beta|, K)$
 - Non-convex

Energy minimization

- Hard to find global minima of non-smooth functions
 - Many local minima
 - Provably NP-hard
- Practical algorithms look for approximate minima (e.g., simulated annealing)

Energy minimization via graph cuts

Energy minimization via graph cuts

- Graph Cost
 - Matching cost between images
 - Neighborhood matching term
 - Goal: figure out which labels are connected to which pixels

Energy minimization via graph cuts

- Graph Cut
 - Delete enough edges so that
 - each pixel is connected to exactly one label node
 - Cost of a cut: sum of deleted edge weights
 - Finding min cost cut equivalent to finding global minimum of energy function

Computing a multiway cut

- With 2 labels: classical min-cut problem
 - Solvable by standard flow algorithms
 - -polynomial time in theory, nearly linear in practice
 - More than 2 terminals: NP-hard
 [Dahlhaus et al., STOC '92]
- Efficient approximation algorithms exist
 - Yuri Boykov, Olga Veksler and Ramin Zabih, <u>Fast Approximate</u> <u>Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.
 - Within a factor of 2 of optimal
 - Computes local minimum in a strong sense

- even very large moves will not improve the energy

Move examples

The swap move algorithm

- 1. Start with an arbitrary labeling
- 2. Cycle through every label pair (A,B) in some order

2.1 Find the lowest E labeling within a single AB-swap

2.2 Go there if it's lower E than the current labeling

3. If *E* did not decrease in the cycle, we're done

Otherwise, go to step 2

Original graph

AB subgraph (run min-cut on this graph)

The expansion move algorithm

- 1. Start with an arbitrary labeling
- 2. Cycle through every label A in some order
 - 2.1 Find the lowest *E* labeling within a single *A*-expansion
 - 2.2 Go there if it's lower *E* than the current labeling
- 3. If *E* did not decrease in the cycle, we're done Otherwise, go to step 2

Multi-way cut \rightarrow A sequence of binary optimization problems

Stereo results

• Data from University of Tsukuba

scene ground truth http://cat.middlebury.edu/stereo/

Results with window correlation

normalized correlation (best window size) ground truth

Results with graph cuts

graph cuts (Potts model *E*, expansion move algorithm) ground truth

Depth from disparity

input image (1 of 2)

depth map [Szeliski & Kang '95]

Ζ

3D rendering

$$disparity = x - x' = \frac{baseline * f}{z}$$

Real-time stereo

<u>Nomad robot</u> searches for meteorites in Antartica <u>http://www.frc.ri.cmu.edu/projects/meteorobot/index.html</u>

- Used for robot navigation (and other tasks)
 - Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Li Zhang, Noah Snavely, Brian Curless, Steven Seitz CVPR 2003, SIGGRAPH 2004

Stereo

Marker-based Face Capture

"The largest intractable problem with 'The Polar Express' is that the <u>motion-capture technology</u> used to create the human figures has <u>resulted</u> in a film filled with creepily <u>unlifelike beings</u>."

Stereo

Stereo

ALL STATES THE THE OWNER OF THE PARTY OF THE

Inaccurate & Jittering

Given Videos Left(x, y, t) and Right(x, y, t)

Spacetime Stereo

Spacetime Stereo

Frame-by-Frame vs. Spacetime Stereo

Spatially More Accurate Temporally More Stable

Spacetime Face Capture System

Video Projectors

System in Action

Input Videos (640×480, 60fps)

Black & White Top Left

Black & White Bottom Left

Color Left

Color Right

Black & White Top Right

Black & White Bottom Right

Spacetime Stereo Reconstruction

Creating a Face Database

Creating a Face Database

[Zhang et al. SIGGRAPH'04]

Application 1: Expression Synthesis

[Zhang et al. SIGGRAPH'04]

Application 2: Facial Animation

[Zhang et al. SIGGRAPH'04]

Keyframe Animation

