So far focused on 3D modeling

- Multi-Frame Structure from Motion:
- Multi-View Stereo
Today

- Recognition
Today

- Recognition
Recognition problems

- What is it?
 - Object detection

- Who is it?
 - Recognizing identity

- What are they doing?
 - Activities

- All of these are **classification** problems
 - Choose one class from a list of possible candidates
How do human do recognition?

• We don’t completely know yet
• But we have some experimental observations.
Observation 1:
Observation 1:

The “Margaret Thatcher Illusion”, by Peter Thompson
Observation 1:

The “Margaret Thatcher Illusion”, by Peter Thompson

- http://www.wjh.harvard.edu/~lombrozo/home/illusions/thatcher.html#bottom
- Human process up-side-down images separately
Observation 2:

Jim Carrey Kevin Costner

• High frequency information is not enough
Observation 3:
Observation 3:

• Negative contrast is difficult
Observation 4:

- Image Warping is OK
The list goes on

Face detection

• How to tell if a face is present?
One simple method: skin detection

- Skin pixels have a distinctive range of colors
 - Corresponds to region(s) in RGB color space
 - for visualization, only R and G components are shown above

Skin classifier
- A pixel $X = (R,G,B)$ is skin if it is in the skin region
- But how to find this region?
Skin detection

• **Learn** the skin region from examples
 • Manually label pixels in one or more “training images” as skin or not skin
 • Plot the training data in RGB space
 – skin pixels shown in orange, non-skin pixels shown in blue
 – some skin pixels may be outside the region, non-skin pixels inside. Why?

Skin classifier

• Given $X = (R,G,B)$: how to determine if it is skin or not?
Skin classification techniques

Skin classifier

• Given $X = (R,G,B)$: how to determine if it is skin or not?
• Nearest neighbor
 – find labeled pixel closest to X
 – choose the label for that pixel
• Data modeling
 – fit a model (curve, surface, or volume) to each class
• Probabilistic data modeling
 – fit a probability model to each class
Probability

- Basic probability
 - X is a random variable
 - $P(X)$ is the probability that X achieves a certain value

- Conditional probability: $P(X \mid Y)$
 - probability of X given that we already know Y

- $0 \leq P(X) \leq 1$

- $\int_{-\infty}^{\infty} P(X) \, dX = 1$ or $\sum P(X) = 1$
 - continuous X
 - discrete X

- $P(X \mid Y)$
 - probability of X given that we already know Y
Probabilistic skin classification

Now we can model uncertainty

- Each pixel has a probability of being skin or not skin
 - \(P(\sim \text{skin}|R) = 1 - P(\text{skin}|R) \)

Skin classifier

- Given \(X = (R,G,B) \): how to determine if it is skin or not?
 - Choose interpretation of highest probability
 - Set \(X \) to be a skin pixel if and only if \(R_1 < X \leq R_2 \)

Where do we get \(P(\text{skin}|R) \) and \(P(\sim \text{skin}|R) \)?
Learning conditional PDF’s

- We can calculate $P(R | \text{skin})$ from a set of training images
 - It is simply a histogram over the pixels in the training images
 - each bin R_i contains the proportion of skin pixels with color R_i

This doesn’t work as well in higher-dimensional spaces. Why not?

Approach: fit parametric PDF functions

- common choice is rotated Gaussian
 - center $c = \bar{X}$
 - covariance $\sum_{X} (X - \bar{X})(X - \bar{X})^T$

 » orientation, size defined by eigenvecs, eigenvals
Learning conditional PDF’s

- We can calculate $P(R \mid \text{skin})$ from a set of training images
 - It is simply a histogram over the pixels in the training images
 - each bin R_i contains the proportion of skin pixels with color R_i

But this isn’t quite what we want

- Why not? How to determine if a pixel is skin?
- We want $P(\text{skin} \mid R)$ not $P(R \mid \text{skin})$
- How can we get it?
Bayes rule

\[P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} \]

- In terms of our problem:
 - what we measure (likelihood)
 - domain knowledge (prior)
 - what we want (posterior)

\[P(\text{skin}|R) = \frac{P(R|\text{skin})P(\text{skin})}{P(R)} \]

Normalization term

\[P(R) = P(R|\text{skin})P(\text{skin}) + P(R|\sim\text{skin})P(\sim\text{skin}) \]

The prior: \(P(\text{skin}) \)

- Could use domain knowledge
 - \(P(\text{skin}) \) may be larger if we know the image contains a person
 - for a portrait, \(P(\text{skin}) \) may be higher for pixels in the center
- Could learn the prior from the training set. How?
 - \(P(\text{skin}) \) may be proportion of skin pixels in training set
Bayesian estimation

- **Bayesian estimation**
 - Goal is to choose the label (skin or ~skin) that maximizes the posterior
 - this is called **Maximum A Posteriori (MAP) estimation**
- Suppose the prior is uniform: $P(\text{skin}) = P(\sim \text{skin}) = 0.5$
 - in this case $P(\text{skin}|R) = cP(R|\text{skin}), \quad P(\sim \text{skin}|R) = cP(R|\sim \text{skin})$
 - maximizing the posterior is equivalent to maximizing the likelihood
 - $P(\text{skin}|R) > P(\sim \text{skin}|R)$ if and only if $P(R|\text{skin}) > P(R|\sim \text{skin})$
 - this is called **Maximum Likelihood (ML) estimation**
Skin detection results

Figure 25.3. The figure shows a variety of images together with the output of the skin detector of Jones and Rehg applied to the image. Pixels marked black are skin pixels, and white are background. Notice that this process is relatively effective, and could certainly be used to focus attention on, say, faces and hands. Figure from “Statistical color models with application to skin detection,” M.J. Jones and J. Rehg, Proc. Computer Vision and Pattern Recognition, 1999 © 1999, IEEE
General classification

• This same procedure applies in more general circumstances
 • More than two classes
 • More than one dimension

Example: face detection
• Here, X is an image region
 – dimension = # pixels
 – each face can be thought of as a point in a high dimensional space

Linear subspaces

- Classification can be expensive
 - Must either search (e.g., nearest neighbors) or store large PDF's

Suppose the data points are arranged as above
- Idea—fit a line, classifier measures distance to line

\[\mathbf{x} \rightarrow ((\mathbf{x} - \overline{x}) \cdot \mathbf{v_1}, (\mathbf{x} - \overline{x}) \cdot \mathbf{v_2}) \]

What does the \(\mathbf{v_2} \) coordinate measure?
- distance to line
- use it for classification—near 0 for orange pts

What does the \(\mathbf{v_1} \) coordinate measure?
- position along line
- use it to specify which orange point it is
Dimensionality reduction

How to find v_1 and v_2?
- PCA

- We can represent the orange points with *only* their v_1 coordinates
 - since v_2 coordinates are all essentially 0
- This makes it much cheaper to store and compare points
- A bigger deal for higher dimensional problems
Principal component analysis

- Suppose each data point is N-dimensional
 - Same procedure applies:
 \[
 \text{var}(v) = \sum_x \|(x - \bar{x})^T \cdot v\| \\
 = v^T A v \quad \text{where } A = \sum_x (x - \bar{x})(x - \bar{x})^T
 \]

- The eigenvectors of \(A \) define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors \(x \)
 - eigenvector with smallest eigenvalue has least variation

- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a “linear subspace”
 » represent points on a line, plane, or “hyper-plane”
 - these eigenvectors are known as the **principal components**
The space of faces

• An image is a point in a high dimensional space
 • An N x M image is a point in \mathbb{R}^{NM}
 • We can define vectors in this space as we did in the 2D case
Dimensionality reduction

• The set of faces is a “subspace” of the set of images
 • Suppose it is K dimensional
 • We can find the best subspace using PCA
 • This is like fitting a “hyper-plane” to the set of faces
 – spanned by vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_K \)
 – any face \(\mathbf{x} \approx \bar{x} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K \)
Eigenfaces

- PCA extracts the eigenvectors of A
 - Gives a set of vectors v_1, v_2, v_3, \ldots
 - Each one of these vectors is a direction in face space
 - what do these look like?
Projecting onto the eigenfaces

- The eigenfaces v_1, \ldots, v_K span the space of faces.
 - A face is converted to eigenface coordinates by
 \[
 x \rightarrow \left((x - \bar{x}) \cdot v_1, (x - \bar{x}) \cdot v_2, \ldots, (x - \bar{x}) \cdot v_K \right)
 \]
 \[
 = a_1 v_1 + a_2 v_2 + \ldots + a_K v_K
 \]
 \[
 \approx \bar{x} + a_1 v_1 + a_2 v_2 + \ldots + a_K v_K
 \]
Recognition with eigenfaces

- Algorithm
 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
 2. Given a new image (to be recognized) \(\mathbf{x} \), calculate K coefficients
 \[
 \mathbf{x} \rightarrow (a_1, a_2, \ldots, a_K)
 \]
 3. Detect if \(\mathbf{x} \) is a face
 \[
 ||\mathbf{x} - (\bar{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K)|| < \text{threshold}
 \]
 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space
Choosing the dimension K

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance “in the direction” of that eigenface
 - ignore eigenfaces with low variance
Issues: dimensionality reduction

- What if your space isn’t flat?
 - PCA may not help

Nonlinear methods
LLE, MDS, etc.
Issues: data modeling

- Generative methods
 - model the “shape” of each class
 - histograms, PCA,
 - mixtures of Gaussians
 - ...

- Discriminative methods
 - model boundaries between classes
 - perceptrons, neural networks
 - support vector machines (SVM’s)
Generative vs. Discriminative

Generative Approach
model individual classes, priors

Discriminative Approach
model posterior directly

from Chris Bishop
Issues: speed

• Case study: Viola Jones face detector
• Exploits three key strategies:
 • simple, super-efficient features
 • image pyramids
 • pruning (cascaded classifiers)
Viola/Jones: features

“Rectangle filters”

Differences between sums of pixels in adjacent rectangles

\[h_t(x) = \begin{cases}
 +1 & \text{if } f_t(x) > \theta_t \\
 -1 & \text{otherwise}
\end{cases} \]

\[Y(x) = \sum \alpha_t h_t(x) \]

Detection = \begin{cases}
 \text{face}, & \text{if } Y(x) > 0 \\
 \text{non-face}, & \text{otherwise}
\end{cases}

60,000 \times 100 = 6,000,000

Unique Features

Select 200 by Adaboost

Robust Realtime Face Detection, IJCV 2004, Viola and Jonce
Integral Image (aka. summed area table)

- Define the Integral Image

\[I'(x, y) = \sum_{x' \leq x} \sum_{y' \leq y} I(x', y') \]

- Any rectangular sum can be computed in constant time:

\[D = 1 + 4 - (2 + 3) \]
\[= A + (A + B + C + D) - (A + C + A + B) \]
\[= D \]

- Rectangle features can be computed as differences between rectangles
Viola/Jones: handling scale

50,000 Locations/Scales
Cascaded Classifier

- first classifier: 100% detection, 50% false positives.
- second classifier: 100% detection, 40% false positives
 - (20% cumulative)
 - using data from previous stage.
- third classifier: 100% detection, 10% false positive rate
 - (2% cumulative)

- Put cheaper classifiers up front
Viola/Jones results:

Run-time: 15fps (384x288 pixel image on a 700 Mhz Pentium III)
Application

Smart cameras: auto focus, red eye removal, auto color correction
Application

Lexus LS600 Driver Monitor System