
So far focused on 3D modeling
• Multi-Frame Structure from Motion: 
• Multi-View Stereo

Unknown
camera
viewpoints
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Recognition problems
• What is it?

• Object detection

• Who is it?
• Recognizing identity

• What are they doing?
• Activities

• All of these are classification problems
• Choose one class from a list of possible candidates



How do human do recognition? 
• We don’t completely know yet
• But we have some experimental observations.



Observation 1:



Observation 1:

The “Margaret Thatcher Illusion”, by Peter Thompson



Observation 1:

The “Margaret Thatcher Illusion”, by Peter Thompson

• http://www.wjh.harvard.edu/~lombrozo/home/illusions/thatcher.html#bottom
• Human process up-side-down images seperately

http://www.wjh.harvard.edu/~lombrozo/home/illusions/thatcher.html#bottom


Observation 2:

Jim Carrey Kevin Costner

• High frequency information is not enough



Observation 3:



Observation 3:

• Negative contrast is difficult



Observation 4:

• Image Warping is OK



The list goes on
• Face Recognition by Humans: Nineteen Results All 

Computer Vision Researchers Should Know About 
http://web.mit.edu/bcs/sinha/papers/19results_sinha_
etal.pdf

http://web.mit.edu/bcs/sinha/papers/19results_sinha_etal.pdf
http://web.mit.edu/bcs/sinha/papers/19results_sinha_etal.pdf


Face detection

• How to tell if a face is present?



One simple method:  skin detection

• Skin pixels have a distinctive range of colors
• Corresponds to region(s) in RGB color space

– for visualization, only R and G components are shown above 

skin

Skin classifier
• A pixel X = (R,G,B) is skin if it is in the skin region
• But how to find this region?



Skin detection

• Learn the skin region from examples
• Manually label pixels in one or more “training images” as skin or not skin
• Plot the training data in RGB space

– skin pixels shown in orange, non-skin pixels shown in blue
– some skin pixels may be outside the region, non-skin pixels inside.  Why?

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?



Skin classification techniques

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?
• Nearest neighbor

– find labeled pixel closest to X
– choose the label for that pixel

• Data modeling
– fit a model (curve, surface, or volume) to each class

• Probabilistic data modeling
– fit a probability model to each class



Probability
• Basic probability

• X is a random variable
• P(X) is the probability that X achieves a certain value

•

• or 

• Conditional probability:   P(X | Y)

– probability of X given that we already know Y

continuous X discrete X

called a PDF
-probability distribution/density function
-a 2D PDF is a surface, 3D PDF is a volume



Probabilistic skin classification

• Now we can model uncertainty
• Each pixel has a probability of being skin or not skin

–

Skin classifier
• Given X = (R,G,B):  how to determine if it is skin or not?
• Choose interpretation of highest probability

– set X to be a skin pixel if and only if 

Where do we get                    and                        ? 



Learning conditional PDF’s

• We can calculate P(R | skin) from a set of training images
• It is simply a histogram over the pixels in the training images

– each bin Ri contains the proportion of skin pixels with color Ri

This doesn’t work as well in higher-dimensional spaces.  Why not?

Approach:  fit parametric PDF functions 
• common choice is rotated Gaussian 

– center 
– covariance

» orientation, size defined by eigenvecs, eigenvals



Learning conditional PDF’s

• We can calculate P(R | skin) from a set of training images
• It is simply a histogram over the pixels in the training images

– each bin Ri contains the proportion of skin pixels with color Ri

But this isn’t quite what we want
• Why not?  How to determine if a pixel is skin?
• We want P(skin | R) not P(R | skin)
• How can we get it?



Bayes rule

• In terms of our problem:
what we measure

(likelihood)
domain knowledge

(prior)

what we want
(posterior)

normalization term

The prior:  P(skin)
• Could use domain knowledge

– P(skin) may be larger if we know the image contains a person
– for a portrait, P(skin) may be higher for pixels in the center

• Could learn the prior from the training set.  How?
– P(skin) may be proportion of skin pixels in training set



Bayesian estimation

• Bayesian estimation
• Goal is to choose the label (skin or ~skin) that maximizes the posterior

– this is called Maximum A Posteriori (MAP) estimation

likelihood posterior (unnormalized)

0.5• Suppose the prior is uniform:  P(skin) = P(~skin) = 

= minimize probability of misclassification

– in this case                                          ,
– maximizing the posterior is equivalent to maximizing the likelihood

» if and only if  
– this is called Maximum Likelihood (ML) estimation



Skin detection results



• This same procedure applies in more general circumstances
• More than two classes
• More than one dimension

General classification

H. Schneiderman and T.Kanade

Example:  face detection
• Here, X is an image region

– dimension = # pixels 
– each face can be thought

of as a point in a high
dimensional space

H. Schneiderman, T. Kanade. "A Statistical Method for 3D 
Object Detection Applied to Faces and Cars". IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR 2000) 
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf


Linear subspaces

• Classification can be expensive
• Must either search (e.g., nearest neighbors) or store large PDF’s

Suppose the data points are arranged as above
• Idea—fit a line, classifier measures distance to line

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

- position along line
- use it to specify which orange point it is



Dimensionality reduction

How to find v1 and v2 ?
- PCA

Dimensionality reduction
• We can represent the orange points with only their v1 coordinates

– since v2 coordinates are all essentially 0
• This makes it much cheaper to store and compare points
• A bigger deal for higher dimensional problems



Principal component analysis
• Suppose each data point is N-dimensional

• Same procedure applies:

• The eigenvectors of A define a new coordinate system
– eigenvector with largest eigenvalue captures the most variation among 

training vectors x
– eigenvector with smallest eigenvalue has least variation

• We can compress the data by only using the top few eigenvectors
– corresponds to choosing a “linear subspace”

» represent points on a line, plane, or “hyper-plane”
– these eigenvectors are known as the principal components



The space of faces

• An image is a point in a high dimensional space
• An N x M image is a point in RNM

• We can define vectors in this space as we did in the 2D case

+=



Dimensionality reduction

• The set of faces is a “subspace” of the set of images
• Suppose it is K dimensional
• We can find the best subspace using PCA
• This is like fitting a “hyper-plane” to the set of faces

– spanned by vectors v1, v2, ..., vK
– any face 



Eigenfaces
• PCA extracts the eigenvectors of A

• Gives a set of vectors v1, v2, v3, ...
• Each one of these vectors is a direction in face space

– what do these look like?



Projecting onto the eigenfaces
• The eigenfaces v1, ..., vK span the space of faces

• A face is converted to eigenface coordinates by



Recognition with eigenfaces
• Algorithm

1. Process the image database (set of images with labels)
• Run PCA—compute eigenfaces
• Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K coefficients

3. Detect if x is a face

4. If it is a face, who is it?
• Find closest labeled face in database

• nearest-neighbor in K-dimensional space



Choosing the dimension K

K NMi = 

eigenvalues

• How many eigenfaces to use?
• Look at the decay of the eigenvalues

• the eigenvalue tells you the amount of variance “in the 
direction” of that eigenface

• ignore eigenfaces with low variance



Issues:  dimensionality reduction
• What if your space isn’t flat?

• PCA may not help

Nonlinear methods
LLE, MDS, etc.



Issues:  data modeling
• Generative methods

• model the “shape” of each class

– histograms, PCA, 
– mixtures of Gaussians
– ...

• Discriminative methods
• model boundaries between classes

– perceptrons, neural networks
– support vector machines (SVM’s)



Generative vs. Discriminative 
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Generative Approach
model individual classes, priors

from Chris Bishop

Discriminative Approach
model posterior directly



Issues:  speed
• Case study:  Viola Jones face detector
• Exploits three key strategies:

• simple, super-efficient features
• image pyramids
• pruning (cascaded classifiers)



Viola/Jones:  features

“Rectangle filters”

Differences between 
sums of pixels in 
adjacent rectangles

{ht(x)  = +1   if ft(x) > θt
-1    otherwise

000,000,6100000,60 =×
Unique Features

{Detection = face,        if Y(x) > 0
non-face, otherwise

Y(x)=∑αtht(x)

Robust Realtime Face Dection, IJCV 2004, Viola and Jonce

Select 200 by Adaboost



Integral Image  (aka. summed area table)

• Define the Integral Image

• Any rectangular sum can be computed 
in constant time:

• Rectangle features can be computed as 
differences between rectangles 
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Viola/Jones:  handling scale

Smallest
Scale

Larger
Scale

50,000 Locations/Scales



Cascaded Classifier

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW

• first classifier: 100% detection, 50% false positives.
• second classifier:  100% detection, 40% false positives 
• (20% cumulative)

• using data from previous stage. 
• third classifier: 100% detection,10% false positive rate 
• (2% cumulative)

• Put cheaper classifiers up front



Viola/Jones results:  

Run-time:  15fps  (384x288 pixel image on a 700 Mhz Pentium III)



Application

Smart cameras: auto focus, red eye removal, auto color correction



Application

Lexus LS600 Driver Monitor System
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