
Last lecture
• Passive Stereo
• Spacetime Stereo



Today
• Structure from Motion: 

Given pixel correspondences, 
how to compute 3D structure and camera motion?

Slides stolen from Prof Yungyu Chuang



Epipolar geometry & 
fundamental matrix



The epipolar geometry

What if only C,C’,x are known?



The epipolar geometry

C,C’,x,x’ and X are coplanar

epipolar geometry demo

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


The epipolar geometry

All points on π project on l and l’



The epipolar geometry

Family of planes π and lines l and l’ intersect at e and e’



The epipolar geometry

epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image

epipolar pole
= intersection of baseline with image plane 
= projection of projection center in other image

epipolar geometry demo

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


The fundamental matrix F

C C’
T=C’-C

Rp p’
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The fundamental matrix F
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The fundamental matrix F

C C’
T=C’-C

Rp p’

0' =Τ Epp



The fundamental matrix F

0' =Τ Epp

Let M and M’ be the intrinsic matrices, then

xKp 1−= ''' 1 xKp −=
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0' =Τ Fxx fundamental matrix



The fundamental matrix F

C C’
T=C’-C

Rp p’

0' =Τ Epp
0' =Τ Fxx



The fundamental matrix F

• The fundamental matrix is the algebraic representation 
of epipolar geometry

• The fundamental matrix satisfies the condition that for 
any pair of corresponding points x↔x’ in the two images

0Fxx'T = ( )0l'x'T =



F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 
for all x↔x’

1. Transpose: if F is fundamental matrix for (P,P’), then FT

is fundamental matrix for (P’,P)
2. Epipolar lines: l’=Fx & l=FTx’
3. Epipoles: on all epipolar lines, thus e’TFx=0, ∀x 

⇒e’TF=0, similarly Fe=0
4. F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
5. F maps from a point x to a line l’=Fx (not invertible)

The fundamental matrix F



The fundamental matrix F

• It can be used for 
– Simplifies matching
– Allows to detect wrong matches



Estimation of F — 8-point algorithm
• The fundamental matrix F is defined by

0=ΤFxx'
for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

fff
fff
fff

F

each match gives a linear equation

0'''''' 333231232221131211 =++++++++ fvfuffvfvvfuvfufvufuu



8-point algorithm
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• In reality, instead of solving            , we seek f to 
minimize         , least eigenvector of         . 

0=Af
Af AAΤ



8-point algorithm

• To enforce that F is of rank 2, F is replaced by F’ that 
minimizes              subject to                . 'FF − 0'det =F

• It is achieved by SVD. Let                , where 

, let 

then                    is the solution. 
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8-point algorithm
% Build the constraint matrix

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.

F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';



8-point algorithm
• Pros: it is linear, easy to implement and fast
• Cons: susceptible to noise
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Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!
Orders of magnitude difference
between column of data matrix
→ least-squares yields poor results



Normalized 8-point algorithm
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Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm
1. Transform input by                ,
2. Call 8-point on           to obtain
3.
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Normalized 8-point algorithm

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise
F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);



Normalization
function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')';   % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

T = [scale      0    -scale*c(1)
0     scale  -scale*c(2)
0         0            1      ];

newpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until Γ(#inliers,#samples)>95% or too many times

compute F based on all inliers



Results (ground truth)



Results (8-point algorithm)



Results (normalized 8-point algorithm)



From F to R, T

0' 1 =−Τ−Τ xEMM'x
0' =Τ Fxx

FMM'E Τ= If we know camera parameters

×= ][TRE
Hartley and Zisserman, Multiple View Geometry, 2nd edition, pp 259



Application: View morphing



Application: View morphing



Main trick

• Prewarp with a 
homography to rectify 
images

• So that the two views are 
parallel
• Because linear 

interpolation works when 
views are parallel



Problem with morphing

• Without rectification





prewarp prewarp

morph morph

homographies

input inputoutput





Video demo
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Triangulation

• Problem:  Given some points in correspondence
across two or more images (taken from calibrated 
cameras), {(uj,vj)}, compute the 3D location X



Richard Szeliski CSE 576 (Spring 2005): Computer 
Vision
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Triangulation
• Method I: intersect viewing rays in 3D, minimize:

• X is the unknown 3D point
• Cj is the optical center of camera j
• Vj is the viewing ray for pixel (uj,vj)
• sj is unknown distance along Vj

• Advantage: geometrically intuitive

Cj

Vj

X



Richard Szeliski CSE 576 (Spring 2005): Computer 
Vision
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Triangulation
• Method II: solve linear equations in X

• advantage: very simple

• Method III: non-linear minimization
• advantage: most accurate (image plane error)



Structure from motion



Structure from motion

structure from motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self 
calibration technique and called automatic camera tracking or 
matchmoving.

Unknown
camera
viewpoints



Applications
• For computer vision, multiple-view shape 

reconstruction, novel view synthesis and autonomous 
vehicle navigation.

• For film production, seamless insertion of CGI into 
live-action backgrounds



Structure from motion

2D feature
tracking 3D estimation optimization

(bundle adjust)
geometry 
fitting

SFM pipeline



Structure from motion

• Step 1:  Track Features
• Detect good features, Shi & Tomasi, SIFT
• Find correspondences between frames

– Lucas & Kanade-style motion estimation
– window-based correlation
– SIFT matching



Structure from Motion

• Step 2:  Estimate Motion and Structure
• Simplified projection model, e.g.,  [Tomasi 92]
• 2 or 3 views at a time  [Hartley 00]



Structure from Motion

• Step 3:  Refine estimates
• “Bundle adjustment” in photogrammetry
• Other iterative methods



Structure from Motion

• Step 4:  Recover surfaces (image-based triangulation, 
silhouettes, stereo…)

Good mesh



Example : Photo Tourism



Factorization methods



Problem statement



Other projection models



SFM under orthographic projection

2D image 
point

orthographic
projection
matrix

3D scene
point

image
offset

tΠpq +=
12× 32× 13× 12×• Trick

• Choose scene origin to be centroid of 3D points
• Choose image origins to be centroid of 2D points
• Allows us to drop the camera translation:

Πpq =



factorization (Tomasi & Kanade)
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Key Observation:  rank(W) <= 3



n33m2n2m
''

×××
= SMW

• Factorization Technique
– W is at most rank 3 (assuming no noise)
– We can use singular value decomposition to factor W:

Factorization

– S’ differs from S by a linear transformation A:

– Solve for A by enforcing metric constraints on M

))(('' ASMASMW 1−==

n33m2n2m ×××
= SMWknown solve for



Metric constraints

• Orthographic Camera
• Rows of Π are orthonormal:

• Enforcing “Metric” Constraints
• Compute A such that rows of M have these properties

MAM ='
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Trick (not in original Tomasi/Kanade paper, but in followup work)

• Constraints are linear in AAT :

• Solve for G first by writing equations for every Πi in M
• Then G = AAT by SVD
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Results



Extensions to factorization methods
• Paraperspective [Poelman & Kanade, PAMI 97]
• Sequential Factorization [Morita & Kanade, PAMI 97]
• Factorization under perspective [Christy & Horaud, 

PAMI 96] [Sturm & Triggs, ECCV 96]
• Factorization with Uncertainty [Anandan & Irani, IJCV 

2002]



Bundle adjustment
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Structure from motion

• How many points do we need to match?
• 2 frames:

(R,t): 5 dof + 3n point locations ≤
4n point measurements ⇒
n ≥ 5

• k frames:
6(k–1)-1 + 3n ≤ 2kn

• always want to use many more



Richard Szeliski CSE 576 (Spring 2005): Computer 
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Bundle Adjustment

• What makes this non-linear minimization hard?
• many more parameters: potentially slow
• poorer conditioning (high correlation)
• potentially lots of outliers



Richard Szeliski CSE 576 (Spring 2005): Computer 
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Lots of parameters: sparsity

• Only a few entries in Jacobian are non-zero



Richard Szeliski CSE 576 (Spring 2005): Computer 
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Robust error models
• Outlier rejection

• use robust penalty applied
to each set of joint
measurements

• for extremely bad data, use random sampling [RANSAC, 
Fischler & Bolles, CACM’81]
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Structure from motion: limitations
• Very difficult to reliably estimate metric

structure and motion unless:
• large (x or y) rotation or
• large field of view and depth variation

• Camera calibration important for Euclidean 
reconstructions

• Need good feature tracker
• Lens distortion



Issues in SFM
• Track lifetime
• Nonlinear lens distortion
• Prior knowledge and scene constraints
• Multiple motions



Track lifetime

every 50th frame of a 800-frame sequence



Track lifetime

lifetime of 3192 tracks from the previous sequence



Track lifetime

track length histogram



Nonlinear lens distortion



Nonlinear lens distortion

effect of lens distortion



Prior knowledge and scene constraints

add a constraint that several lines are parallel



Prior knowledge and scene constraints

add a constraint that it is a turntable sequence



Applications of Structure from Motion



Jurassic park



PhotoSynth

http://labs.live.com/photosynth/

http://labs.live.com/photosynth/

	Last lecture
	Today
	Epipolar geometry & �fundamental matrix
	The epipolar geometry
	The epipolar geometry
	The epipolar geometry
	The epipolar geometry
	The epipolar geometry
	Slide Number 9
	The fundamental matrix F
	Slide Number 11
	The fundamental matrix F
	Slide Number 13
	The fundamental matrix F
	Slide Number 15
	The fundamental matrix F
	Estimation of F — 8-point algorithm
	8-point algorithm
	8-point algorithm
	8-point algorithm
	8-point algorithm
	Problem with 8-point algorithm
	Normalized 8-point algorithm
	Normalized 8-point algorithm
	Normalized 8-point algorithm
	Normalization
	RANSAC
	Results (ground truth)
	Results (8-point algorithm)
	Results (normalized 8-point algorithm)
	From F to R, T
	Application: View morphing
	Application: View morphing
	Main trick
	Problem with morphing
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Video demo
	Triangulation
	Triangulation
	Triangulation
	Structure from motion
	Structure from motion
	Applications
	Structure from motion
	Structure from motion
	Structure from Motion
	Structure from Motion
	Structure from Motion
	Example : Photo Tourism
	Factorization methods
	Problem statement
	Other projection models
	SFM under orthographic projection
	factorization (Tomasi & Kanade)
	Factorization
	Metric constraints
	Results
	Extensions to factorization methods
	Bundle adjustment
	Structure from motion
	Bundle Adjustment
	Lots of parameters: sparsity
	Robust error models
	Structure from motion: limitations
	Issues in SFM
	Track lifetime
	Track lifetime
	Track lifetime
	Nonlinear lens distortion
	Nonlinear lens distortion
	Prior knowledge and scene constraints
	Prior knowledge and scene constraints
	Applications of Structure from Motion
	Jurassic park
	PhotoSynth

