Last lecture

» Passive Stereo
« Spacetime Stereo




Today

« Structure from Motion:
Given pixel correspondences,
how to compute 3D structure and camera motion?

Slides stolen from Prof Yungyu Chuang



Epipolar geometry &
fundamental matrix



The epipolar geometry

< epipolar line
for x

e

What if only C,C’,x are known?



The epipolar geometry

epipolar geometry demo
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C,C’ x,x’ and X are coplanar


http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

The epipolar geometry

baseline

All points on &t projecton land I’



The epipolar geometry

baseline

Family of planes © and lines | and I’ intersect at e and ¢’



The epipolar geometry

epipolar pole epipolar geometry demo
= Intersection of baseline with image plane
= projection of projection center in other image

baseline

epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image


http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

The fundamental matrix F

C ¢
x oc KX /X'OC K'R(X-T)
p= K'IX oc X p'= K'_l X' oC R(X-T)

The equation of the epipolar plane through X is

(X-T) (Txp)=0 =» (R'p') (Txp)=0



The fundamental matrix F

(R'p") (Txp)=0
Txp=Sp

S=| T, 0 -T
T, T, 0

= (R'p)'(Sp)=0
= (p"|R)(Sp)=0
- p'TEb =0  essential matrix




The fundamental matrix F




The fundamental matrix F

T
p" Ep=0
Let M and M’ be the Intrinsic matrices, then

p= K—IX pv: Kv—l x'

m (K''x")'EK 'x)=0
= x"|K'TEK 'k=0

- x'T|Ex =0 fundamental matrix




The fundamental matrix F




The fundamental matrix F

The fundamental matrix is the algebraic representation
of epipolar geometry

The fundamental matrix satisfies the condition that for
any pair of corresponding points x<Xx’ in the two images

xTFx=0  (x"I=0)



N
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The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0
for all x-x’

. Transpose: if F is fundamental matrix for (P,P’), then FT

Is fundamental matrix for (P’,P)

Epipolar lines: I’=Fx & I=Fx’

Epipoles: on all epipolar lines, thus e’TFx=0, VX
—=e’TF=0, similarly Fe=0

F has 7 d.o.f. , I.e. 3x3-1(homogeneous)-1(rank2)

F maps from a point x to a line I’=Fx (not invertible)



The fundamental matrix F

ud
|

e |t can be used for
- Simplifies matching
- Allows to detect wrong matches



Estimation of F — 8-point algorithm

* The fundamental matrix F is defined by

x' 'Fx =0

for any pair of matches x and X’ in two 1mages.

fll f12 f13
o Letx=(uyv,1)Tand x’=(U’V’,1)T, F=|f, f, f,
_f31 f32 f33_

each match gives a linear equation

uu'f,, +wu' f,+u' f,+uv' f, +w'f, +Vv' f,+uf, +vf, +f,=0



8-point algorithm

uu’- vu’~ u’ - uv, vy, v, u v, I
uu,” v,u,” u,” uVv, V,v,© Vv,” u, Vv, 1
uu’~ vu’ ' u’~ uv,’  vyv’'o v’ o u v, |1

* |n reality, instead of solving Af =0, we seek f to

minimizeHAf

 least eigenvector of A" A
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8-point algorithm

* To enforce that F is of rank 2, F is replaced by F’ that
minimizes ||F —F'|subject to det F'=0.

« |t is achieved by SVD. Let F = UXV, where

o, 0 0] o, 0 O]
>=0 o, O/let =10 o, 0
0 0 o, 0 0 0

then F'= X'V lis the solution.



8-point algorithm

% Build the constraint matrix
A=1[x2(1,:)".*x1(1,:)" x2(1,:)".*x1(2,:)" x2(1,:)" ...
x2(2,:).*x1(1,:) x2(2,:).*x1(2,:)" x2(2,:)" ...
x1(1,:)’ x1(2,:)’ ones(npts,1) J;

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)";

% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';



8-point algorithm

* Pros: itis linear, easy to implement and fast
» Cons: susceptible to noise



Problem with 8-point algorithm
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Normalized 8-point algorithm

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]

(0,500) (700,500) -, _ LD (1,1)
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(0,0) (700,0) -1,-1) (1,-1)



Normalized 8-point algorithm

'

1. Transform input by X, = Tx., X = TX,
2. Call 8-point on X, X . to obtain

3. F=T'"FT

X' 'Fx =0

/

AL Trgu-T —1A
T T|RT '&[= 0

K



Normalized 8-point algorithm

[X1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);
[x2( ) x1(1,:) x2(1,:)'.*x1(2,:)" x2(1,:)" ...
x2(2,:).*x1(1,:)" x2(2,:)".*x1(2,:)' x2(2,:)" ...
x1(1,:)’ x1(2,:)’ ones(npts,1) |,

[U,D,V] = svd(A);
F = reshape(V(:,9),3,3)’

[U,D,V] = svd(F):
F = U*diag([D(1,1) D(2,2) O])*V/";

% Denormalise
F=T2*"F*T1;



Normalization

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)
newp(1,:) = pts(1,:)-
newp(2,:) = pts(2,:)-

" % Centroid
c(1); % Shift origin to centroid.
c(2);

meandist = mean(sqrt(newp(1,:).*2 + newp(2,:).2));
scale = sqgrt(2)/meandist;

=[scale 0 -scale*c(1)

0 scale -scale*c(2)

0 0 T 1
newpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until I'(#inliers,#samples)>95% or too many times

compute F based on all inliers



Results (ground truth)

m Ground truth with standard stereo calibration




Results (8-point algorithm)

m 8-point algorithm




Results (normalized 8-point algorithm)

B Normalized 8-point algorithm




FromFtoR, T

x"' Fx =0
X' M""EM 'x=0
E=M'"'"FM If we know camera parameters
E=R[T],

Hartley and Zisserman, Multiple View Geometry, 2" edition, pp 259



Application: View morphing




Application: View morphing




Main trick

 Prewarp with a
homography to rectify
Images

« So that the two views are
parallel

* Because linear
interpolation works when
views are parallel

Figure 4. View Morphing in Three Steps. (1) Original images Zp
and 7, are prewarped to form parallel views Ty and Z1. (2) Z. is
produced by morphing (interpolating) the prewarped images. (3) 7.
1s postwarped to form Z..



Problem with morphing

* Without rectification

- S—
— —
—
-
Figure 2: A Shape-Distorting Morph. Linearly interpolating two perspective views of a clock (far left and far right) causes a geometric bending

effect in the in-between images. The dashed line shows the linear path of one feature during the course of the transformation. This example
is indicative of the types of distortions that can arise with image morphing techniques.



_—

Figure 10: Image Morphing Versus View Morphing. Top: image morph between two views of a helicopter toy causes the in-between images

to contract and bend. Bottom: view morph between the same two views results in a physically consistent morph. In this example the image
morph also results in an extraneous hole between the blade and the stick. Holes can appear in view morphs as well.

! 4 »
! 4 »




Figure 6: View Morphing Procedure: A set of features (yvellow lines) is selected in original images 7, and 7, . Using these features, the images
are automatlcall}r prewarped to produce In. and 7;. The prewarped images are morphed to create a sequence of in-between images, the middle

of which, 7.5, is shown at top-center. To5 is interactively postwarped by selecting a quadrilateral region (marked red) and specitying its
desired configuration, Qo 5, in Zn 5. The postwarps for other in-between images are determined by interpolating the quadrilaterals (bottom).



Iy To.25 To.s To.7s 1

Figure 7: Facial View Morphs. Top: morph between two views of the same person. Bottom: morph between views of two different people.
In each case. view morphing captures the change in facial pose between original images Ty and 7. conveying a natural 3D rotation.



Video demo




Triangulation

* Problem: Given some points in correspondence
across two or more images (taken from calibrated
cameras), {(u;,v;)}, compute the 3D location X

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

40



Triangulation

 Method I: intersect viewing rays in 3D, minimize:

arg m}én Y IC; + sV, = X|
J
e Xis the unknown 3D point
* C;is the optical center of camera |
* V,is the viewing ray for pixel (u;,v;)
* s;is unknown distance along V;

« Advantage: geometrically intuitive \;f

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

41



Triangulation

 Method IlI: solve linear equations in X
« advantage: very simple

- mooX; + mo1Y; + mo24; + Mmo3
moX; + mo1Y; +mooZ; + 1

v = m10X; T mM11Y; + mM12Z4; +— mM13
mooX; + m21Y; + mo2Z; + 1

e Method Ill: non-linear minimization

« advantage: most accurate (image plane error)

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

42



Structure from motion



Structure from motion

\Unknown

\ camera
\ viewpoints

Zgié'
structure from motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self

calibration technique and called automatic camera tracking or
matchmoving.




Applications

« For computer vision, multiple-view shape
reconstruction, novel view synthesis and autonomous

vehicle navigation.

* For film production, seamless insertion of CGl into
live-action backgrounds



Structure from motion

2D feature L R imizati eomet
—| 3D estimation »| optimization | 8 ry

tracking (bundle adjust) fitting

SFM pipeline



Structure from motion

« Step 1: Track Features
» Detect good features, Shi & Tomasi, SIFT
» Find correspondences between frames

— Lucas & Kanade-style motion estimation
—window-based correlation
— SIFT matching




Structure from Motion

« Step 2: Estimate Motion and Structure
« Simplified projection model, e.g., [Tomasi 92]
« 2or 3views at a time [Hartley 00]



Structure from Motion

« Step 3: Refine estimates
« “Bundle adjustment” in photogrammetry
* Other iterative methods
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Structure from Motion

« Step 4: Recover surfaces (image-based triangulation,
silhouettes, stereo...)




Example : Photo Tourism

Photo Tourism

Exploring photo collections in 3D




Factorization methods



Problem statement

= f_imm:

lﬁﬂ

a :E
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ther projection models

perspective weak perspective

increasing focal length —

increasing distance from camera -




SFM under orthographic projection

orthographic
2D image projection 3D scene Image

point matrix point offset

N
q=1lp +t

. 2x]  2x33x] 2x1
* Trick
» Choose scene origin to be centroid of 3D points
« Choose image origins to be centroid of 2D points

» Allows us to drop the camera translation:

q=1lp



factorization (Tomasi & Kanade)

projection of n features in one image:

a0 @ - @l=TT[ p» - .l

2xn 2x3 3xn
projection of n features in m images
90 42 " iy I1,
Ll e N
: : : : Ixn
A D2 7 Qn | _Hm_
2mxn 2mx3
W measurement M motion S shape

Key Observation: rank(W) <=3




Factorization

known

@Z M S solve for
mxn 2mx3 3xn

e Factorization Technique
- W is at most rank 3 (assuming no noise)
- We can use singular value decomposition to factor W:

W =M'S'

2mxn 2mx3 3xn

- S’ differs from S by a linear transformation A:
W =M'S'=(MA")(AS)

- Solve for A by enforcing metric constraints on M



Metric constraints

 Orthographic Camera 1 0
T _
« Rows of IT are orthonormal: [T = [0 1}

« Enforcing “Metric” Constraints
 Compute A such that rows of M have these properties

'
MA=M
Trick (not in original Tomasi/Kanade paper, but in followup work)

e (Constraints are linear in AAT :

Ll) ﬂ LTI =T, A7 A) =TT, GIT]  where G = AAT

* Solve for G first by writing equations for every II. in M
 Then G=AA! by SVD



Results

L

(] F_u__—,uwwm :&




Extensions to factorization methods

« Paraperspective [Poelman & Kanade, PAMI 97]
« Sequential Factorization [Morita & Kanade, PAMI 97]

« Factorization under perspective [Christy & Horaud,
PAMI 96] [Sturm & Triggs, ECCV 96]

» Factorization with Uncertainty [Anandan & Irani, |[JCV
2002]



Bundle adjustment



Structure from motion

@’Lj — g(KaRjatjvxz)
How many points do we need to match?

2 frames:
(R,t): 5 dof + 3n point locations <
4n point measurements =
n>5
« kframes:
6(k-1)-1+3n < 2kn
 always want to use many more

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

62



Bundle Adjustment

uij

f(K,R,t],XZ)
g(K,Rj,tj,Xi

p—

U’ij

« What makes this non-linear minimization hard?
* many more parameters: potentially slow
« poorer conditioning (high correlation)
« potentially lots of outliers

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision



Lots of parameters: sparsity

a’t] — f(K,R],t],XZ)
@’Lj — g(KaRjatjvxz)
* Only a few entries in Jacobian are non-zero
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Richard Szeliski CSE 576 (Spring 2005): Computer

Vision



Robust error models

* Qutlier rejection

« use robust penalty applied
to each set of joint

Gdussian -I'og likelinbod

Robystified -log likeliRood ——— 1

measurements

2 = N W s 0 & =~ o
| I E— | | I E— |

» for extremely bad data, use random sampling [RANSAC,
Fischler & Bolles, CACM’81]

Z“@_QP <\/(uz — ;)% + (v; — 1702)

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

10
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Structure from motion: limitations

« Very difficult to reliably estimate metric
structure and motion unless:

* large (x or y) rotation or
 large field of view and depth variation

« Camera calibration important for Euclidean
reconstructions

* Need good feature tracker
* Lens distortion

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

67



Issues in SFM

« Track lifetime

* Nonlinear lens distortion

* Prior knowledge and scene constraints
« Multiple motions



Track lifetime

every 50th frame of a 800-frame sequence



Track lifetime

N
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400 [ .

Frame number

600 |- n

ll“'l_.

0 500 1000 1500 2000 2500 3000 3500
Track index

800

lifetime of 3192 tracks from the previous sequence



Track lifetime

= | E
0 20 40 60 80 100 120

track length histogram



Nonlinear lens distortion

-
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Nonlinear lens distortion

effect of lens distortion



Prior knowledge and scene constraints

add a constraint that several lines are parallel



Prior knowledge and scene constraints

add a constraint that it is a turntable sequence



Applications of Structure from Motion



Jurassic park




PhotoSynth

“What if your photo collection was an entry point into the world,

http://labs.live.com/photosynth/



http://labs.live.com/photosynth/
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