Light Field

Modeling a desktop

Image Based Rendering

Fast Realistic Rendering without 3D models

Start from Ray Tracing

Rendering is about computing color along each ray

Sampling Rays

Sampling Rays by Taking Pictures

Rendering as Ray Resampling

Ray space

- How to parameterize the ray space
- How to sample and resample rays

Two Plane Parameterization

Stanford Camera Array

Light Field Rendering

Very Fast

Light Field Rendering

4D interpolation

- Move to desired new focal surface
- Create a new 4D space with new focal surface
- Recove ray with Reparameterization
- $(u, v, s, t) => (u, v, f, g)_F$

- Recover ray r
- Resample from ray (s', t', f, g) and (s", t", f, g)
- Interpolation, reconstruction with filter, ..., etc

- Change the shape of focal surface
- Gives focus on 3D object rather than planes

Variable Apertures

- Also can generate variable aperture
- Aperture
 - Control amount of light
 - Control depth of fields
- Aperture Filter:
 - Control how many cameras are used to resample a required ray
 - Larger apertures produce images with narrow range of focus

Aperture Filters

Variable Apertures

Variable Apertures

Stanford multi-camera array

640 480 pixels30 fps 128 cameras

- synchronized timing
- continuous streaming
- flexible arrangement

Ways to use large camera arrays

widely spaced

- light field capture

tightly packed

- high-performance imaging
- intermediate spacing

synthetic aperture photography

Intermediate camera spacing: synthetic aperture photography

Example using 45 cameras [Vaish CVPR 2004]

Tiled camera array

Can we match the image quality of a cinema camera?

- world's largest video camera
- no parallax for distant objects
- poor lenses limit image quality
- seamless mosaicing isn't hard

Tiled panoramic image (before geometric or color calibration)

Tiled panoramic image (after calibration and blending)

Tiled camera array

Can we match the image quality of a cinema camera?

- world's largest video camera
- no parallax for distant objects
- poor lenses limit image quality
- seamless mosaicing isn't hard
- per-camera exposure metering
- HDR within and between tiles

same exposure in all cameras

individually metered

checkerboard of exposures

High-performance photography as multi-dimensional sampling

- spatial resolution
- field of view
- frame rate
- dynamic range
- bits of precision
- depth of field
- focus setting
- color sensitivity

Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan Stanford University

What's wrong with conventional cameras?

Capture the light field inside a camera

Conventional versus light field camera

Conventional versus light field camera

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

Light Field in a Single Exposure

Light Field in a Single Exposure

Light field inside a camera body

Digitally stopping-down

• stopping down = summing only the central portion of each microlens

Digital refocusing

• refocusing = summing windows extracted from several microlenses

Example of digital refocusing

Refocusing portraits

Action photography

Extending the depth of field

main lens at f/4

main lens at f/22

Scene-dependent focal plane

Depth from focus problem

Interactive solution [Agarwala 2004]

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

© 2005 Marc Levoy

A digital refocusing theorem

• an f/N light field camera, with P P pixels under each microlens, can produce views as sharp as an f/(N P) conventional camera

• these views can be focused anywhere within the depth of field of the f/(N-P) camera

Prior work

- integral photography
 - microlens array + film
 - application is autostereoscopic effect
- [Adelson 1992]
 - proposed this camera
 - built an optical bench prototype using relay lenses
 - application was stereo vision, not photography

Digitally moving the observer

• moving the observer = moving the window we extract from the microlenses

Example of moving the observer

Moving backward and forward

Implications

- cuts the unwanted link between exposure (due to the aperture) and depth of field
- trades off (excess) spatial resolution for ability to refocus and adjust the perspective
- sensor pixels should be made even smaller, subject to the diffraction limit

```
36mm 24mm 2.5\mu pixels = 266 megapixels
```

20K 13K pixels

4000 2666 pixels 20 20 rays per pixel

Application in microscope

