Automatic Photo Quality Assessment

Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision – 2008 Fall

Estimating the photorealism of images:

Distinguishing paintings from photographs

Florin Cutzu, Riad Hammoud, Alex Leykin
Department of Computer Science
Indiana University
Bloomington, IN 47408

Presenter: Yupu Zhang yupu@cs.wisc.edu

Outline

- Introduction
- Distinguishing Features
- Proposed Classifiers
- Classifier Performance
- Psychophysical Experiments

Introduction

Photorealism

 a style of painting in which an image is created in such exact detail that it looks like a photograph

Introduction

- Class Definition
 - Photograph (degree of photorealism is high)
 - color photographs of 3D real-world scenes
 - Painting (degree of photorealism is low)
 - conventional canvas paintings, frescoes and murals
- Goal
 - Automatically differentiate photographs from paintings without constraints on the image content

Distinguishing Features

- Three sets of features for discriminating paintings from photographs:
 - 1. Visual features
 - 2. Spatial-color feature
 - 3. Texture-based feature

Visual features (1)

- If we convert a color picture to gray-scale
 - edges in photos are still clear
 - most of the edges in paintings are eliminated
- Color edges vs intensity edges
 - Paintings: color edges, due to color changes
 - Photos: intensity edges, resulting from intensity changes
- Quantify: Eg

$$E_g = rac{\# ext{ pixels: intensity, not color edge}}{ ext{total number of edge pixels}} \qquad rac{ ext{Pain}}{ ext{sma}}$$

Paintings will have smaller Eg

Visual features (2)

- Color changes to a larger extent from pixel to pixel in paintings than in photos
- Spatial variation of color : R
 - For each pixel and its 5x5 neighborhood, calculate the local variation of color around the pixel
 - R is the average of the variations taken over all pixels
 - Paintings have larger R

Visual features (3)(4)

- Number of unique colors : U
 - Paintings have a larger color palette than photos
 - U = # of unique colors / # of pixels
- Pixel saturation : \$
 - Paintings contain a larger percentage of highly saturated pixels
 - RGB => HSV
 - Create a saturation histogram, using 20 bins
 - S is the ratio between the highest bin and the lowest bin

Spatial-color feature

- RGB (3D) => RGBXY (5D)
 - X and Y are the two spatial coordinates
- Calculate a 5x5 covariance matrix of the RGBXY space
- The singular value could represent the variability of the image pixels in both color space and "location space"
 - paintings should have a larger singular value

Texture-based feature

Observation

- In photos texture elements tend to be repetitive
- In paintings it's difficult to maintain texture uniformly

Method

- Gabor filter: extract textures from images
- Calculate the mean and the standard deviation of the result of the filter over all pixels
 - Photos tend to have larger values at horizontal and vertical orientations
 - Paintings should have larger values at diagonal orientations

Proposed Classifiers

- Individual classifier:
 - {Eg, U, R, S} space
 - a combination of four thresholds
 - RGBXY space
 - singular value
 - Gabor space
 - means and standard deviations
- Implementation
 - Neural network
 - Training

Proposed Classifiers

- Combine all three classifiers
 - the "committees" of neural networks
- How?
 - individual classifier gives a score between 0 and 1
 - 0 perfect painting, 1 perfect photo
 - take the average of the three scores
 - <= 0.5 => painting
 - > 0.5 => photo

Classifier Performance

• C₁ {Eg, U, R, S}

C₂ RGBXY

• C₃ Gabor

C committee

Classifier	P hit rate $(\mu \pm \sigma)$	Ph: hit rate $(\mu \pm \sigma)$
C_1	72±5%	71±4%
C_2	81±3%	81±3%
C_3	79±5%	78±4%
C	94±3%	92±2%

Classifier Performance

0 perfect painting, 1 perfect photo

Classifier Performance

paintings classified as photos

photos classified as paintings

Psychophysical Experiments

- The mistakes made by the classifiers seems to reflect the degree of perceptual photorealism of the image
- How to verify this?
 - psychophysical experiment
 - human testers read
 - scrambled image patches
 - content independent
 - give scores [0, 10]
 - 0 perfect painting
 - 10 perfect photo
 - calculate the correlation coefficient between human ratings and classifier outputs
 - result: 0.865

Studying Aesthetics in Photographic Images Using a Computational Approach

Presenter: Guoliang Jin

What they did

Established significant correlation between various visual properties of photographic images and their aesthetics ratings.

- using a community-based database and ratings
- extracting certain visual properties
- build a classifier that can qualitatively distinguish between pictures of high and low aesthetic value

Community-based Photo Ratings

Data Source: Photo.net

- A large online photo sharing community
- Primarily intended for photography enthusiasts
- More than 400, 000 registered members
- Photographers share photos, and rate and comment on photos taken by peers

The rating system in *Photo.net*

Photo peer-rated in terms of two qualities, namely *aesthetics* and *originality*

- In the range of one to seven, with a higher number indicating better rating
- Pro: photos are rated by a relatively diverse group which ensures generality in the ratings
- Con: the acquired data was fairly noisy

How they use *Photo.net*

Download pictures and associated metadata

- average aesthetics score between 1.0 and 7.0
- average originality score between 1.0 and 7.0
- number of times viewed by members
- number of peer ratings

Aesthetics and Originality

Correlation between the aesthetics and originality ratings for 3581 photographs.

Visual Feature Extraction

- Choice of features was principled, based on
 - 1. rules of thumb in photography
 - 2. common intuition
 - 3. observed trends in ratings
- They extracted 56 visual features for each image

refer them as candidate features

denote them as $F = \{fi | 1 \le i \le 56\}$

Visual Feature Extraction (Cont.)

- The RGB data of each image is converted to HSV color space, producing two-dimensional matrices IH, IS, and IV, each of dimension X × Y color tones and saturation play important roles, and hence working in the HSV color space makes computation more convenient
- The image is also transformed into the LUV space, since in this space locally Euclidean distances model the perceived color change well, so it will be easy to use a fast segmentation method based on clustering

Visual Feature Extraction (Cont.)

- Exposure of Light and Colorfulness {f₁, f₂}
- Saturation and Hue {f₃, f₄}
- The Rule of Thirds {f₅ ~ f₇}
- Familiarity Measure {f₈ ~ f₉}
- Wavelet-based Texture {f₁₀ ~ f₂₁}
- Size and Aspect Ratio {f₂₂, f₂₃}
- Region Composition {f₂₄ ~ f₅₂}
- Low Depth of Field Indicators {f₅₃ ~ f₅₅}
- Shape Convexity {f₅₆}

Feature Selection

To discover features that show correlation with community-based aesthetics scores

- Use a one-dimensional support vector machine (SVM)
- SVMs are essentially powerful binary classifiers that project the data space into higher dimensions where the two classes of points are linearly separable
- Two classes: high containing samples with aesthetics scores greater than 5.8, and low with scores less than 4.2
- The top 15 among the 56 features in terms of model accuracy are obtained

Feature Selection, Classification, and Regression

- A classifier that can separate low from high
- Use SVM as well as the classification and regression trees (CART) algorithm
- Filter-based methods and wrapper-based methods are two broad techniques for feature selection
- Stop at 15 iterations (i.e. 15 features) and use this set to build the SVM-based classifier
- Use the recursive partitioning (RPART) implementation to build a two-class classification tree model for the same set of 1664 data samples
- Perform linear regression on polynomial terms of the features values to see if it is possible to directly predict the aesthetics scores in the 1 to 7 range from the feature vector

Measure the quality of regression

residual sum-of-squares error

$$R_{res}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i} - \hat{Y}_{i})^{2}$$

- worst case \overline{Y} is chosen every time without using the regression model, yielding $R_{res}^2 = \sigma^2$ (variance of Y).
- if the independent variables explain something about Y, it must be that $R_{res}^2 \leq \sigma^2$

Experimental Results

- The top 15 classification rates achieved by $\{f_{31}, f_{1}, f_{6}, f_{15}, f_{9}, f_{8}, f_{32}, f_{10}, f_{55}, f_{3}, f_{36}, f_{16}, f_{54}, f_{48}, f_{22}\}$, with accuracy over 54%.
- The maximum classification rate achieved by any single feature was f_{31} with 59.3%.
- They act as weak classifiers and hence show some correlation with the aesthetics.

• The combined filter and wrapper method for feature selection yielded the following set of 15 features: $\{f_{31}, f_1, f_{54}, f_{28}, f_{43}, f_{25}, f_{22}, f_{17}, f_{15}, f_{20}, f_{2}, f_{9}, f_{21}, f_{23}, f_{6}\}$. The accuracy achieved with 15 features is 70.12%, with precision of detecting *high* class being 68.08%, and *low* class being 72.31%.

Variation of accuracy with the minimum number of unique ratings per picture

Variation of SVM accuracy with inter-class gap δ .

Decision tree obtained using CART and the 56 visual features (partial view)

- The variance σ^2 of the aesthetics score over the 3581 samples is 0.69.
- With 5 polynomial terms for each of the 56, achieves a residual sum-of-squares $R_{res}^2 = 0.5020$
- Randomly permuted the aesthetics scores (breaking the correspondence with the features) and performed the same regression. This time, R_{res}^2 is 0.65, clearly showing that the reduction in expected error was not merely by the over-fitting of a complex model.

Conclusion

 Despite the inherent noise in data, our SVMbased classifier is robust enough to produce good accuracy using only 15 visual features in separating high and low rated photographs.

The Design of High-Level Features for Photo Quality Assessment

Yan Ke, Xiaoou Tang, Feng Jing

Presented by Tuo Wang Computer Vision – Fall 2008

Anyone can take great photos

... if you can recognize the good ones.

Outline

- High and low quality photo
- Criteria between high and low quality photo
- Proposed feature
- Classifier
- Experiment dataset
- Results

High and low quality photo

- Images classification:
 - > photos or graphics
 - > taken indoors or outdoors
 - > city or landscape
 - photos or paintings
 - > real or rendered photo
 - **>** ...
- What makes a high quality photo?

Before design features to assess a photo's quality, we must determine the perceptual criteria that people use to judge photos.

What makes a high quality photo

- Three distinguishing factors between the high quality of photos and low quality of photos
 - Simplicity
 - > Realism
 - Basic photographic technique

Simplicity - Background out of focus

Simplicity - Color contrast

Simplicity - Lighting contrast

Realism - Color palette

Realism - Camera settings

Realism - Subject matter

Basic photographic technique -- Blur

Basic photographic technique -- Contrast and Brightness

What features can we extract

- Spatial Distribution of Edges
- Color Distribution
- Hue Count
- Blur
- Low Level Features

- Edge spatial distribution feature extractor:
 - 3*3 Laplacian filter
 - Resize Laplacian image size to 100*100
 - Normalize the image sum to 1
 - The quality of probe image: $q_l = d_s d_p$, where:

$$d_s = \sum_{x,y} |L(x,y) - M_s(x,y)| \quad d_p = \sum_{x,y} |L(x,y) - M_p(x,y)|$$

 M_p and M_s are the mean Laplacian image of the professional photos and snapshots

The amount of area that the edges occupy

$$P_x(i) = \sum_y L(i, y) \quad P_y(j) = \sum_x L(x, j)$$

 w_x and w_y be the width of 98% mass of the projections P_x and P_y respectively. So the bounding box: $w_x w_y$, the quality of the image q_a : 1- $w_x w_y$.

Features – Color Distribution

- Quantize the red, green, and blue channels into 16 values
- \triangleright A 4096 = 16³ bin histogram is created
- Normalize the histogram to unit length
- Use the L1 metric to calculate the distance between histograms
- > kNN on color histogram
- $> q_{cd} = n_p n_s$ = #professional_neighbors - #snap_neighbors

Features – Hue Count

||N|| = (# hues > threshold) $q_h = 20 - ||N||$

Features – Blur

• Model a blurred image I_b as the result of a Gaussian smoothing filter G_{σ} applied to an otherwise sharp image I_s ,

$$I_b = G_\sigma * I_s$$

$$F = FFT(I_b)$$

$$C = \{(u, v) \mid |F(u, v)| > \theta\}$$

$$q_f = \frac{||C||}{||I_b||} \sim \frac{1}{\sigma}$$

Low level features - Contrast

$$H(i) = H_r(i) + H_b(i) + H_g(i)$$

• q_{ct} : equal to the width of middle 98% mass of the histogram

Low level features – Average Brightness

• Average brightness: b

Classifier

- Naives Bayes
- Assume independence of the features

$$q_{all} = \frac{P(Prof \mid q_1 \dots q_n)}{P(Snap \mid q_1 \dots q_n)}$$
$$= \frac{P(q_1 \dots q_n \mid Prof)P(Prof)}{P(q_1 \dots q_n \mid Snap)P(Snap)}$$

$$q_{all} = \frac{P(q_1 \mid Prof) \dots P(q_n \mid Prof) P(Prof)}{P(q_1 \mid Snap) \dots P(q_n \mid Snap) P(Snap)}$$

Dataset – DPChallenge.com

- 60K photos
- 40K photographers
- 10/90 percentile

Results

 $recall = \frac{\#\ professional\ photos\ above\ threshold}{total\ \#\ professional\ photos}$

 $precision = \frac{\# \ professional \ photos \ above \ threshold}{\# \ photos \ above \ threshold}$

Results

Results

 The difference between high and low quality photos are exaggerated when using a smaller test set. The error rate decreases as well, which suggests the quality metrics match the perceptual criteria in judging photos

	Testing on top and bottom n%				
	10%	8%	6%	4%	2%
Error rate	28%	26%	24%	23%	19%

Web Retrieval Results

Web Retrieval Results

Reference

- Y. Ke, X. Tang, and F. Jing. The Design of High-Level Features for Photo Quality
 Assessment. Computer Vision and Pattern Recognition, 2006
- Yan Ke, Taking Great Pictures, http://www.cs.cmu.edu/~yke/photoqual/2007112 7_GreatPictures.pdf

The end

Thank you!