
Light Field Video Stabilization

Brandon M. Smith Li Zhang
University of Wisconsin–Madison

Hailin Jin Aseem Agarwala
Adobe Systems Incorporated

http://pages.cs.wisc.edu/~lizhang/projects/lfstable/

Abstract

We describe a method for producing a smooth, stabilized
video from the shaky input of a hand-held light field video cam-
era — specifically, a small camera array. Traditional stabiliza-
tion techniques dampen shake with 2D warps, and thus have
limited ability to stabilize a significantly shaky camera motion
through a 3D scene. Other recent stabilization techniques syn-
thesize novel views as they would have been seen along a vir-
tual, smooth 3D camera path, but are limited to static scenes.
We show that video camera arrays enable much more power-
ful video stabilization, since they allow changes in viewpoint
for a single time instant. Furthermore, we point out that the
straightforward approach to light field video stabilization re-
quires computing structure-from-motion, which can be brittle
for typical consumer-level video of general dynamic scenes.
We present a more robust approach that avoids input cam-
era path reconstruction. Instead, we employ a spacetime op-
timization that directly computes a sequence of relative poses
between the virtual camera and the camera array, while min-
imizing acceleration of salient visual features in the virtual
image plane. We validate our novel method by comparing it
to state-of-the-art stabilization software, such as Apple iMovie
and 2d3 SteadyMove Pro, on a number of challenging scenes.

1. Introduction
Videos shot with a hand-held conventional video camera

often appear remarkably shaky. Camera shake is one of the
biggest components of the large quality difference between
home movies and professional videos. Recently, novel cam-
era designs such as light field cameras [5, 31, 26, 14, 30] have
been used to significantly improve the solution of a number
of computer vision problems, such as reducing image blur and
increasing the signal-to-noise ratio, at the cost of additional
hardware complexities. In this paper, we show that stabiliza-
tion of hand-held videos can be greatly improved by leverag-
ing the information in a multi-view video stream, such as the
output of a small hand-held video camera array shown in Fig-
ure 1(a).

The potential benefit of multiple viewpoints for video sta-
bilization is easy to see. Video stabilization can be viewed as
an image-based rendering problem [9]: given a sequence of

(a) ProFUSION-25C (b) Stabilization goal
Figure 1. The camera array shown in (a) is capable of capturing 25
synchronized VGA videos at 25 frames per second [4]. We demon-
strate how to exploit such a light field camera for high-quality video
stabilization using image-based rendering techniques. For efficiency
reasons, we used only the four corner cameras and the center camera
in this paper.

input images captured along an unsteady camera path, gener-
ate a new image sequence that appears as if it were captured
along a new and smooth virtual camera path, as illustrated in
Figure 1(b). This problem can be challenging to solve if only
a single video captured by a conventional camcorder is avail-
able, due to parallax and occlusion effects between the actual
and desired viewpoints. In contrast, a light field video camera
provides multiple viewpoints for each time instant that can be
used to interpolate or even extrapolate novel viewpoints using
view synthesis methods. Therefore, light field cameras allow
us to significantly widen the operating range of video stabi-
lization and create superior results.

While this idea is intuitive, we found that the obvious ap-
proach to implementing such a method is brittle. A straight-
forward implementation consists of three major steps: (1) ex-
tract image features (e.g., SIFT features [20]) in each frame for
each video and match the features across views and over time;
(2) estimate the input 3D camera path and a sparse 3D scene
geometry by running a structure-from-motion algorithm on the
matched features [17]; and (3) generate a desired camera path
and synthesize images along the path. This pipeline can work
for videos that are friendly to structure-from-motion algo-
rithms. Conditions for success include the presence of enough
distinct image features, minimal motion blur and noise, and
scenes composed mostly of rigid background with only small
dynamic scene elements whose motion can be filtered as out-
liers. However, many home videos that we would like to sta-



bilize are not captured under such conditions, and thus this
pipeline often fails at the structure-from-motion stage.

In this paper, we propose a novel method to exploit multi-
view video streams for stabilization that does not require re-
constructing the actual 3D camera motion over a long video se-
quence. Instead, we directly compute the desired virtual cam-
era path relative to the input camera array using a spacetime
optimization. The objective of the optimization encourages the
salient image features in the input video to move smoothly in
the output, stabilized video. The image features are projected
into the output virtual viewpoint using their depth informa-
tion, which is computed from the multi-view images captured
at the same time instant; the smoothness of the features in the
virtual viewpoint is measured using their acceleration in the
image plane. By avoiding structure-from-motion, our method
can handle videos shot under conditions that are challenging
for the straightforward approach.

We have tested our method on a number of challenging
video sequences, and compared our results with state-of-the-
art stabilization software such as Apple iMovie ’09 [2] and
2d3 SteadyMove Pro [1] that operate on single-view videos,
as shown in Section 4.These experiments show that our solu-
tion can effectively remove severe camera shake for complex
dynamic scenes that include nearby moving targets and large
depth variations—issues that challenge existing video stabi-
lization techniques. We present the details of our method in
Section 3 after briefly reviewing related work in the next sec-
tion.

2. Related Work
Video stabilization appeared in the early nineties when it

was jointly studied with image mosaicing and registration
[11, 16, 23, 25]. At that time, image motions were commonly
represented using 2D models (translational, affine, and projec-
tive) due to their simplicity and ease of estimation. The lat-
est effort along this line is the work of [15], in which a video
is temporally segmented into clips and each clip is processed
separately. However, 2D models may lead to gross motion es-
timation errors and rendering artifacts if the camera translates
and the scene is not planar or distant.

To overcome limitations of 2D motion models, researchers
proposed techniques based on 3D camera motion estimation
[18, 24]. However, these approaches only compensate for cam-
era shake introduced by camera rotations. As a result, videos
with jitter in the translational component of the camera trajec-
tory would not be fully stabilized.

Removing translational jitter requires the ability to render
an image from a different vantage point. For videos of a static
scene obtained from a moving camera, the images at differ-
ent time instants can be viewed as images taken from differ-
ent viewpoints. Therefore, one can use image-based render-
ing techniques (a.k.a. view synthesis) [19] to generate an im-
age at any location with any orientation, as pointed out in [9];

research following this idea includes [13, 7]. The quality of
view synthesis depends on the quality of depth estimation
(either sparse or dense). For dynamic scenes, accurate depth
is difficult to recover from images at different time instants,
however. Finally, these view synthesis techniques require re-
constructing the 3D trajectory of the input camera path us-
ing structure-from-motion. Along with the problems already
mentioned, structure-from-motion can also be confounded by
degenerate camera motions (e.g., pure camera rotations) and
videos whose static content is planar (e.g., a video of a person
in front of a wall). Both cases are common in consumer-level
video.

Light field cameras, also known as plenoptic cameras [5,
31, 26, 14, 30], capture multiple images of the scene from dif-
ferent viewpoints at the same time instant and thus enable the
possibility to apply image-based rendering to dynamic scenes.
While light field cameras have different designs, the main dif-
ference among them for our purposes is their effective base-
line. A hand-held array has more appreciable baseline than
other models and therefore better serves the purpose of new
view synthesis for light field video stabilization.

Other hardware solutions exist for stabilization: Optical sta-
bilization uses a floating lens element to compensate for pitch
and yaw (but no in-plane rotation), and mechanical stabiliza-
tion uses a moving CCD to compensate for in-plane transla-
tion. Our approach handles general camera motion and can
achieve more significant stabilization because our baseline is
larger than the amount of jitter optical/mechanical devices can
compensate for, and we can even extrapolate beyond our base-
line.

3. Light Field Video Stabilization
In this section, we define the problem of light field video

stabilization and present our solution. Light field video stabi-
lization takes as input a set of shaky1 videos from multiple
viewpoints captured by a handheld camera array, such as the
one shown in Figure 1, and produces a stable single-view video
as output.

To simplify this problem, we assume the camera array is
synchronized, and the internal camera parameters and their rel-
ative poses are pre-calibrated and remain fixed for the duration
of video capture. This assumption is valid for the ProFUSION-
25C camera array used in our experiments. For flexible camera
arrays [28, 32], online calibration procedures will need to be
developed.

We have explored two approaches to the light field video
stabilization problem. The first is a straightforward extension
of Buehler et al. [9] to multi-view videos and to metric image-
based rendering. We have found this extension to be less robust
than desired in practice because it requires solving a structure-
from-motion problem, which is very difficult for general dy-

1Here the word “shake” is used to refer to camera jitter, not motion blur;
removing blur is another research problem beyond the scope of this paper.



namic scenes that may include an arbitrary number of mov-
ing targets. Our second approach exploits multi-view video
streams in a novel way to eliminate the need of recovering
the 3D camera path from the input videos. We briefly describe
our first approach as a baseline method, which motivates our
second approach.

3.1. A Straightforward Approach
The following basic steps outline our straightforward ap-

proach to generate a stabilized output video given a set of
shaky, multi-view input video streams.

1. Matching Features We extract SIFT features [20] for
each video in each frame and match the features across
views and over time.

2. Estimating Input Camera Motion At each time in-
stant, given the matched features across different views
we compute their 3D positions using triangulation [17].
We only keep features whose reprojection errors are less
than 2 pixels for at least 3 cameras. Using the 3D fea-
ture points in each frame, we then estimate the rigid
camera motion between each pair of consecutive frames.
RANSAC [17] is used to filter out moving targets in the
scene. Finally, given the initial estimation of 3D feature
positions and the camera motion, we use bundle adjust-
ment [17] to refine the estimation. In the bundle adjust-
ment, we force each set of matched features to share the
same unique 3D position.

3. Generating Virtual Camera Path From the input cam-
era path, we generate a desired virtual camera path. As
stated in [9], this step can be done in several different
ways, e.g., by filtering the input path to remove jitter,
or by computing a piecewise linear/smooth path that ap-
proximates the input path.

4. New View Synthesis We use multi-view stereo [29] to
compute dense depth maps for each camera at each time
instant. Using these depth maps, we synthesize an out-
put image sequence from the desired virtual camera view-
point.

All four steps above are well studied in computer vision and
graphics. However, we have found that building such a system
that works robustly in general cases is very difficult. Specifi-
cally, the weakest links are feature matching and 3D camera
motion estimation. These two steps work best if a scene has
many matchable features. This assumption is valid for friendly
scenes such as the one shown in Figure 2; however, in many
scenes, we often do not have an adequate number of good fea-
tures to track.

Furthermore, for dynamic scenes, features must be auto-
matically removed from moving targets in order to recover the
3D camera motion relative to rigid portions of the scene. This
removal can be done using RANSAC; however, it is only ro-
bust if the moving targets occupy a small portion of the scene.

It is very challenging to recover the 3D camera motion in cases
involving moving targets that are close to the camera. Fig-
ure 4(c) shows such a case.

Finally, to perform view synthesis, we need to compute the
relative pose between the camera array and the virtual camera
at each time instant from their absolute paths in 3D space. As a
result, any noise in the estimation of the input 3D camera path
will lead to errors in the relative poses between the camera
array and the virtual camera. This happens regardless of the
smoothness of the virtual camera path itself. With erroneous
relative poses, new view synthesis may generate an unstable
output video.

3.2. A Novel Robust Approach
We now present a novel approach to light field video stabi-

lization. Our key observation is that, given dense depth maps,
we only need to know the relative poses between the virtual
camera and the camera array in order to synthesize the output
video; the motion of the camera array itself in 3D space is not
explicitly required. Based on this observation, our basic idea is
to search for a sequence of virtual camera poses with respect
to the camera array that will yield a smooth synthesized output
video.

To achieve this goal, we cast light field video stabiliza-
tion as a space-time optimization problem, where the unknown
variables are the virtual camera poses at each time instant (with
respect to the camera array), and the objective function is the
smoothness of the output video. Let F be the number of frames
in the input videos over time and {Rf , tf}Ff=1 be the set of
rotations and translations of the virtual camera we are search-
ing for. We next describe how to relate these variables to the
smoothness of the output video.

3.2.1 Salient Features in Output Videos

We measure the smoothness of the output video based on the
motion of salient visual features in the virtual viewpoint. We
choose to use intensity edges as salient features because the
human visual system is known to be sensitive to edge motion.
In addition, an image usually has many more edge features
than corner features, therefore addressing the issue of inade-
quate number of features in the straightforward approach.

Specifically, we first use Canny edge detection [12] to ob-
tain a set of edge pixels as feature points in each input video at
each time instant. Since edge points often cannot be matched
as conveniently as SIFT features, we compute the 3D loca-
tions of these edge feature points by computing dense depth
maps for each entire image using multi-view stereo [29]. (The
computed depth maps will also be used later in the view syn-
thesis stage.) As a result, for each frame f , we have a set of 3D
feature points Xf = {Xf,j}

Nf

j=1, where Nf is the number of
feature points at frame f .Nf in general varies among different
frames.



We remark that Xf is computed with respect to a reference
camera in the array. As a result, given the relative pose se-
quence {Rf , tf}Ff=1 for the virtual camera with respect to the
same reference camera, we can compute the location of the
feature point j in the virtual camera at frame f , uf,j , as

uf,j = K (RfXf,j + tf ) (1)

where K is the intrinsic matrix for the virtual camera and “=”
holds in a homogeneous coordinate sense. Since all the cam-
eras in the array have roughly the same internal parameters,
we use those of the reference camera for the virtual camera.

3.2.2 Minimizing Feature Motion Acceleration
We evaluate the smoothness of feature motion using accel-
eration. To compute acceleration, we match features in each
frame to both the previous frame and the next frame. Again,
since edge points often cannot be matched conveniently, we
match edge points between neighboring frames by computing
optical flows between them. Specifically, if feature point j at
frame f is warped to the next frame using optical flow and has
a nearest feature point jnext that is within a distance threshold
∆, we treat j and jnext as a match. The threshold ∆ is set to 1
pixel in our experiments. We used Bruhn et al. [8] for the op-
tical flow computation, although other state-of-the-art optical
flow methods reviewed in [6] may also be used.

For the feature j at frame f , we use jprev and jnext to repre-
sent its corresponding feature indices in frame f−1 and frame
f + 1, respectively. Note that not all features have matches in
both previous and next frames. Let φf be the set of feature
points at frame f that have matching features both in frame
f − 1 and in frame f + 1. We also note that while Bruhn et al.
[8] is one of the start-of-the-art optical flow methods, outlier
matches occasionally still exist in φf . Another major source of
outlier matches we have found occurs near object boundaries
where depth changes rapidly—whether an edge pixel is as-
signed to the foreground or the background is not always con-
sistent in the edge detection process. To address this issue, we
do not use edge pixels that have significantly different depth
values compared with their matches in adjacent frames. In our
experiments, matched edge pixels differing by more than two
depth levels were ignored.

Based on the matched features, we use the sum of squared
acceleration for each feature point over all frames to measure
the smoothness of the output video. We write this as

Eacc

(
{Rf , tf}Ff=1

)
=

F−1∑
f=2

∑
j∈φf

wf,j · ρ
(
uf,j − 1

2

(
uf−1,jprev + uf+1,jnext

))
,

(2)
where the subscript acc stands for acceleration, uf−1,jprev ,
uf,j , and uf+1,jnext are the locations of a triple of matched
features (jprev, j, jnext) in frames f−1, f , f+1, respectively,

computed using Eq. (1) with their corresponding pose param-
eters and 3D positions, ρ is an error metric function, and wf,j
is the weight.

In our current implementation, we use the Blake-Zisserman
robust cost function [17] for ρ, where

ρ(δ) = − log(exp(−‖δ‖2) + ε). (3)

This robust function helps to reduce the influence of outliers
in feature matching. Without this robust function, the outliers
usually deviate dramatically from normal matches and can
confound the result, even if they are few in number. We set
the weight wf,j to be the magnitude of the image intensity
gradient, which forces the objective function to favor points
on more dominant edges. Additional weighting schemes are
discussed in Section 5.

We must emphasize that our simple feature matching is
only used to compute the acceleration of feature motion over a
sliding window of three consecutive frames; it is not sought to
track features persistently over a long period of time. We have
found it to be sufficient for our purposes and robust in all the
challenging sequences we have experimented with, as shown
in Section 4.

3.2.3 Regularizing Virtual Camera Motion
Eq. (2) itself imposes no restriction on the placement of the
virtual camera other than encouraging it to minimize the ac-
celeration of feature point motion. In practice, this lack of re-
striction on R and t sometimes yields a virtual camera motion
that deviates significantly from the actual camera path. Indeed,
for a long sequence this objective function may favor moving
the virtual camera position far away from the scene, which
does minimize the acceleration of the feature points (they are
very close together and move slowly in the image plane when
the virtual camera is distant), but the result is hardly what we
want.

To address this issue, we add an additional set of terms to
restrict the virtual camera path. Specifically, we penalize trans-
lation tf from being too large and Rf from deviating too much
from the identity matrix. Mathematically, the penalty is written
as

Ereg

(
{Rf , tf}Ff=1

)
=

F∑
f=1

Wf ·
(
‖tf‖2α + ‖Rf − I‖2β

)
(4)

where the subscript reg stands for regularization, Wf =∑
j∈φf

wf,j is a weight used to balance Eacc and Ereg, ‖ · ‖2α

and ‖ · ‖2β are weighted L2 vector and matrix norms, respec-

tively. For a vector v, we use ‖v‖2α =
3∑
i=1

αiv
2
i ; for a matrix

M, we use ‖M‖2β =
3∑
i=1

3∑
j=1

βijm
2
ij . We can choose to weight



each component of the translation and rotation uniformly, or
use component-specific weights. The latter is useful, for exam-
ple, if we want to penalize translations in the z-direction more
than the x- and y-directions, or if we want to restrict vertical
rotations more than horizontal rotations.

In addition to serving as a regularization term, the weights
in Eq. (4), namely α and β, control how far the virtual cam-
era can deviate from the array. One can adjust the weights to
balance two conflicting goals: On one hand one wants them to
be small to maximize the ability of the cost function to stabi-
lize large camera shake; On the other hand, one wants them
to be large so that the virtual camera viewpoints stay close to
the camera array, which avoids large cracks at depth discon-
tinuities and large missing border regions in the synthesized
result. In our experiments, we set them manually to α ≈ 3
and β ≈ 3, in particular. We remark that it is possible to set
the weights automatically with respect to a single parameter
based on the maximally acceptable number of unknown pixels
in the result, which might be more intuitive for a user.

3.2.4 The Overall Objective Function
The final cost function that we minimize is then

E = Eacc + Ereg, (5)

whereEacc andEreg are defined in Eq. (2) and Eq. (4), respec-
tively. Each rotation in the objective function is parameterized
with three variables using the Rodrigues rotation formula [17].
To minimize Eq. (5), we implemented the Levenberg-
Marquardt (LM) nonlinear least squares method [27] in Mat-
lab, starting with zero translations and identity rotations. The
LM method iterates until the change in the cost function is
less than a fraction ε of the current cost. In our experiments, ε
is chosen to be 0.001. The result of this minimization is a set
of camera rotations and translations that, when applied to the
3D feature points in the scene, minimize the acceleration of
the 2D reprojected versions of these 3D points.

3.2.5 Property of This Objective Function
Now we discuss an interesting property of the objective func-
tion in Eq. (5). Unlike the conventional video stabilization
approach that stabilizes cameras with respect to static back-
grounds, our objective function is a balance between a static
background and moving targets. For example, if a person
jumps upward in the video, the virtual camera will try to fol-
low her moving direction. The exact balance depends on the
salient feature distribution in the image content. This formu-
lation makes our approach robust to complex dynamic scenes
where multiple moving targets are close to the camera and oc-
clude most of the static background. It is worth mentioning
that if a user prefers to indicate which targets (or background)
the camera should be stabilized to, she can guide the solution
by manually modulating the weight wf,j . However, all of the

Figure 2. A single frame from a shaky video of a remote control toy
moving on top of a highly textured surface. We use this simple, rel-
atively easy video to validate the objective function, Eq. (2), in our
novel approach (Section 3.2) and ensure that it produces qualitatively
similar results to the straightforward approach (Section 3.1). Please
see Section 4.1 for details.

results in this paper are obtained automatically without any
user interaction.

3.3. New View Synthesis
Once we have the virtual camera poses and the depth maps

for all input images, we are ready to synthesize the output
video. View synthesis is a well studied area in computer graph-
ics and is not the focus of this paper. We describe our current
implementation below and give references to more advanced
techniques.

At each frame, we first (forward) warp all input depth maps
to the virtual viewpoint and fuse the warped depth maps using
an approach similar to [22]. We then use the fused depth map
to (inverse) warp all images in the camera array to the virtual
viewpoint. Pixel intensities are combined by averaging; more
advanced view-dependent combinations [10] can also be used
to improve results.

Cracks may form at object boundaries if the virtual camera
translation is outside the coverage area of cameras in the array.
These cracks are filled in using a simple weighted average of
surrounding pixel intensities, although more advanced inpaint-
ing techniques can also be used [33]. During image warping,
missing pixels often exist near image boundaries. A simple
approach that we employ to avoid this distracting artifact is to
crop each frame just enough to remove these missing pixels.
This simple approach is also used in commercial software such
as Apple iMovie ’09 [2] and 2d3 SteadyMove Pro [1] which
we compare against. Recent work on motion inpainting [21]
can be used instead to improve the visual quality of stabilized
videos.

4. Experimental Results
We now discuss the results of our method on a variety

of scenes, as well as comparisons to state-of-the-art meth-
ods, namely Apple iMovie ’09 [2] and 2d3 SteadyMove Pro
[1]. Overall, we find that our method works significantly bet-



(a) (b) (c)
Figure 3. Light field video stabilization on a static scene. (a) A single frame from a shaky video of a static scene with large depth variation and
significant camera shake. (b) A frame in the original video overlayed with green lines representing point trajectories traced over time. (c) The
corresponding frame in the stabilized video, in which the point trajectories are significantly smoother. Please see Section 4.2 for details. Best
viewed electronically.

ter than competing methods on challenging videos (e.g., with
high magnitude camera shake, significant scene motion, or dy-
namic elements very close to the camera), and as well or sub-
tly better on easier cases. Please see our supplemental video
at http://pages.cs.wisc.edu/~lizhang/projects/lfstable/ for a
clearer demonstration of our results.

4.1. Validating the Objective Function Eq. (2)
Our first experiment compares the straightforward ap-

proach in Section 3.1 to the novel approach in Section 3.2 for
a simple scene for which structure-from-motion successfully
computes the 3D input camera path. A selected frame from
this video is shown in Figure 2. The goal of this experiment
is to validate that minimizing feature acceleration in the im-
age plane generates similar results to the straightforward ap-
proach, which explicitly smooths the input 3D camera path.
Our results show that the two methods produce qualitatively
similar results.

4.2. A Static Scene
Our second experiment is a video of a static scene with

significant depth variation (Figure 3(a)). Since the scene is
highly non-planar, large camera shake results in parallax be-
tween the input and output viewpoints, which is challeng-
ing for 2D warping methods. Our result is very success-
ful, iMovie performs poorly, and SteadyMove Pro performs
slightly worse than ours. Figure 3(b,c) visualizes the stabiliza-
tion quality by tracing a subset of feature points through time;
the traces are much smoother for our result. Recent research
methods [7, 9, 13] have shown excellent results for video stabi-
lization of static scenes, and would likely work well for this se-
quence. However, none of them will work for dynamic scenes,
which we consider next.

4.3. Dynamic Scenes
Our first dynamic scene is of a single person juggling (Fig-

ure 4 (a)). The camera shake is small for this input, so all

three methods (iMovie, SteadyMove Pro, and ours) work well.
However, our result is slightly more stable, especially near the
ceiling areas. The second dynamic scene, of a person play-
ing a video game with a Wii Remote (Figure 4 (b)), is more
challenging; iMovie is not effective, and SteadyMove Pro only
works for the first half of the sequence while the camera is still
far away from the subject. As the camera moves closer, notice-
able shaking is still present in the background. Our result, on
the other hand, is more stable.

Our final dynamic scene consists of a crowd of people (Fig-
ure 4 (c)). Due to the close proximity of the subjects relative
to the camera, a large amount of dynamic activity, and sig-
nificant camera shake, both iMovie and SteadyMove Pro are
not successful on this video. Our method works well on this
challenging scene, as shown in Figure 4(i).

4.4. Observations
The performance of our method depends on the success of

the constituent standard vision techniques, but is surprisingly
resilient to their pitfalls. The optical flow estimation and stereo
reconstruction algorithms are worth discussing in this context.
In the presence of large viewpoint shifts, poor lighting condi-
tions, weak scene texture, etc. the optical flow estimate may
not be accurate. One consequence of inaccurate flow in our
application is that few feature matches will be found within
affected regions. This phenomenon sometimes occurs on fast
moving objects (e.g., the arms in Figure 4), in which case the
corresponding regions will contribute less to the overall sta-
bilization. The resulting videos in this case, however, are of-
ten visually acceptable: fast moving foreground targets remain
moving fast. Similarly, not all failure cases in the stereo algo-
rithm are noticeable. For example, it is especially difficult to
recover accurate depth in uniform regions of the image. How-
ever, problems in these regions are easily disguised in the final
rendering precisely because they are uniform.

In all our experiments, the virtual viewpoint is almost al-
ways within the camera array region, and never farther than



(a) Juggling scene (b) Video game scene (c) Crowd scene

(d) Juggling – shaky (e) Video game – shaky (f) Crowd – shaky

(g) Juggling – stabilized (h) Video game – stabilized (i) Crowd – stabilized
Figure 4. Light field video stabilization on dynamic scenes. Each column shows one dynamic scene in our experiments. The top row shows a
frame in the original videos. The middle row shows a frame in the original video overlayed with green lines representing point trajectories traced
over time. The bottom row shows a frame in the stabilized video, in which the point trajectories are significantly smoother. These examples
demonstrate that our method is able to handle severe camera shake for complex dynamic scenes with large depth variation and nearby moving
targets. Please see Section 4.3 for details. Best viewed electronically.

twice the dimension of the array, due to our α and β weights.
As a result, our new view synthesis step only has to fill in small
gaps at depth discontinuities.

We have found that the accuracy of depth estimation does
not improve significantly with more than five cameras (which
is the number we used). However, despite using fewer cam-
eras, one weakness of our current method is its computation
cost. The depth maps are the main bottleneck, requiring about
10 minutes of computation time for each frame at 480 × 360
resolution, followed by the optical flow fields, which require
2-3 minutes for each pair of consecutive frames. The run time
of the LM optimization for Eq. (5) depends on the number

of frames and the number of feature points. On a typical
10-second video with about 1000 matched feature points per
frame, it completes in under one hour. However, we believe
this time can be reduced to several minutes if the optimization
is implemented in C++.

5. Future Work
There are a number of areas for future work. In our cur-

rent implementation, the weight wf,j is a scalar. Ideally, the
weight should account for the directionality of the edges, and
therefore take the form of an inverse covariance matrix which
measures the uncertainty of feature points. This type of uncer-



tainty has been used in structure-from-motion research [17].
In our current work, we have not considered the motion

blur issue in input videos. We sidestep this issue by taking
videos under good lighting conditions. In the future, we would
be interested in studying how motion deblurring may benefit
from having a camera array.

If the hand motion is too violent, the input videos do not
capture any image content that we wish to see. As a result, the
simple cropping will not work to create the output video. To
address this issue, we need either better dynamic scene recon-
struction methods or a hand-held array with wide field-of-view
lenses.

Finally, another area for future exploration is to evaluate the
range of camera baselines that still allow high-quality video
stabilization. Smaller baselines will allow smaller cameras, but
limit the range of viewpoints that can be synthesized.

6. Conclusion
Camera shake is a major detriment to the quality of

consumer-level video, and current stabilization techniques can
only go so far in improving the quality of camera motion in
hand-held shots. We have shown that a multi-viewpoint de-
vice has the capability to dramatically improve the appear-
ance of consumer-level video. The design of camera arrays
and other forms of light field cameras are advancing rapidly,
both in research and commercially. For example, FujiFilm re-
cently announced the consumer-level FinePix Real3D stereo
camera [3]. While the size of such a device for video stabi-
lization will be larger than a single-viewpoint camera, since
a reasonable baseline is necessary, the improvement in video
quality as well as the other benefits of capturing light fields
may well make small video camera arrays a significant design
point in the near future.

7. Acknowledgements
We are grateful to Adobe Systems Incorporated for support-

ing this work, Tuo Wang for contributing to the initial imple-
mentation of the straightforward approach described in Sec-
tion 3.1, Stefan Roth for generously sharing his implementa-
tion of the 2D-CLG optical flow estimation method by Bruhn
et al. [8], and the anonymous reviewers for their constructive
feedback.

References
[1] 2d3 SteadyMove Pro, http://www.2d3.com/product/?v=5.
[2] Apple iMovie ’09, http://www.apple.com/ilife/imovie.
[3] Fujifilm finepix real3d system, http://www.fujifilm.com/photo

kina2008/list/#h2-15.
[4] ViewPLUS Inc. ProFUSION 25 5x5 camera array system,

http://www.viewplus.co.jp/products/profusion25/index-e.html.
[5] E. Adelson and J. Wang. Single lens stereo with a plenoptic camera. In

PAMI, 1992.
[6] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski.

A database and evaluation methodology for optical flow. In ICCV, 2007.
[7] P. Bhat, C. L. Zitnick, N. Snavely, and A. Agarwala. Using photographs

to enhance videos of a static scene. In Proceedings of Eurographics
Symposium on Rendering, 2007.

[8] A. Bruhn, J. Weickert, and C. Schnoerr. Lucas/kanade meets
horn/schunck: Combining local and global ptic flow methods. In IJCV,
2005.

[9] C. Buehler, M. Bosse, and L. McMillan. Non-metric image-based ren-
dering for video stabilization. In CVPR, 2001.

[10] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Unstruc-
tured lumigraph rendering. In SIGGRAPH, 2001.

[11] P. Burt and P. Anandan. Image stabilization by registration to a reference
mosaic. In DARPA Image Understanding Workshop, Monterrey, 1994.

[12] J. F. Canny. A computational approach to edge detection. PAMI, 1986.
[13] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based rendering

using image-based priors. In IJCV, 2005.
[14] T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Int-

wala. Spatio-angular resolution tradeoffs in integral photography. In
Rendering Techniques 2006: 17th Eurographics Workshop on Render-
ing.

[15] M. L. Gleicher and F. Liu. Re-cinematography: Improving the camer-
awork of casual video. ACM Transactions on Multimedia Computing,
Communications and Applications, 2008.

[16] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P. Burt. Real-time
scene stabilization and mosaic construction. In DARPA Image Under-
standing Workshop, Monterrey, 1994.

[17] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2nd edition.

[18] M. Irani, B. Rousso, and S. Peleg. Recovery of ego-motion using image
stabilization. In CVPR, 1994.

[19] S. B. Kang and H.-Y. Shum. A review of image-based rendering tech-
niques. In IEEE/SPIE Visual Communications and Image Processing,
2002.

[20] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
In IJCV, 2004.

[21] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum. Full-frame
video stabilization with motion inpainting. In PAMI, 2006.

[22] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, D. N.
R. Yang, and M. Pollefeys. Real-time visibility-based fusion of depth
maps. In ICCV, 2007.

[23] C. Morimoto and R. Chellappa. Automatic digital image stabilization.
In ICPR, 1996.

[24] C. Morimoto and R. Chellappa. Fast 3d stabilization and mosaic con-
struction. In CVPR, 1997.

[25] C. Morimoto and R. Chellappa. Evaluation of image stabilization al-
gorithms. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 1998.

[26] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan.
Light field photography with a hand-held plenoptic camera. Technical
Report CSTR 2005-02, Stanford University Computer Science, 2005.

[27] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Sci-
ence+Business Media, LLC, 2nd edition.

[28] Y. Nomura, L. Zhang, and S. Nayar. Scene Collages and Flexible Cam-
era Arrays. In Proceedings of Eurographics Symposium on Rendering,
June 2007.

[29] B. M. Smith, L. Zhang, and H. Jin. Stereo matching with nonparametric
smoothness priors in feature space. In CVPR, 2009.

[30] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin.
Dappled photography: mask enhanced cameras for heterodyned light
fields and coded aperture refocusing. ACM Trans. Graph., 2007.

[31] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy. High performance imaging
using large camera arrays. ACM Transactions on Graphics, 2005.

[32] C. Zhang and T. Chen. A self-reconfigurable camera array. In Proceed-
ings of Eurographics Symposium on Rendering, 2004.

[33] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski.
High-quality video view interpolation using a layered representation. In
SIGGRAPH, 2004.


