## Light Field Video Stabilization

ICCV 2009, Kyoto



Brandon M. Smith University of Wisconsin, Madison



Li Zhang



Hailin Jin **Adobe Systems Incorporated** 



Aseem Agarwala





## Motivation





Liu et al., SIGGRAPH 2009

### Video Stabilization: Professional Solutions







steadicam



camera dolly

### Use special hardware to avoid camera shake

- Expensive
- Cumbersome

### Video Stabilization: Consumer Solutions

#### 2D-transformation based methods

Burt & Anandan, *Image Stabilization by*Registration to a Reference Mosaic.

DARPA Image Understanding Workshop,

1994

Hansen et al., Real-Time Scene Stabilization and Mosaic Construction. DARPA Image Understanding Workshop, 1994

Lee et al., Video Stabilization Using Robust Feature Trajectories. ICCV 2009

- Distant scenes
- Rotational camera motion



sensor stabilization



optical stabilization

- Limited DOF
- Small baseline

### Video Stabilization: State-of-the-Art





Liu et al., SIGGRAPH 2009

#### Works well if structure from motion is successful

- Background has enough visual features
- Small dynamic targets

# Video Stabilization Challenges





- Violent shake
- Nearby dynamic targets
- Few background visual features

## New Approach



Panasonic HD Stereo Camcorder



Viewplus Profusion 25C

### **Existing applications**

- New-view synthesis [Levoy & Hanrahan SIGGRAPH '96, Gortler et al. SIGGRAPH '96]
- Synthetic aperture [Wilburn et al., SIGGRAPH 2005]
- Noise Removal [Zhang et al., CVPR 2009]

#### **New application**

Video Stabilization

## Why Does a Camera Array Help?

Stabilization as image based rendering [Buehler et al. CVPR 2001]



Synthesize a video along a virtual smooth camera path

#### More input views at each time instant

- Easier to work with dynamic scenes
- Better handling of parallax

## A Straightforward Method: Overview

1. Match features (e.g., using SIFT interest points)



2. Estimate input camera path using structure from motion



Generate smooth virtual camera path (e.g., path filtering)



4. New view synthesis



# A Straightforward Approach: Result





## A Straightforward Approach: Problems



- Match features (e.g., using SIFT interest points)
  - Scenes often have few features
  - Poor distributions are possible
- 2. Structure from motion
  - Large or nearby dynamic targets are common
  - Feature matches may not persist

### How to Avoid Structure from Motion?



### Spacetime optimization:

Maximize smoothness of virtual video as function of  $\{R_f, t_f\}_{f=1...F}$ 

#### Advantage:

Do not need to compute 3D input camera path

### How to Define the Smoothness of a Video?



Virtual Camera

$$E(\{R,t\}_{f=1,...,F}) = \sum_{f=2}^{F-1} \sum_{j \in \phi_f} w_{f,j} \left| \left| q_{f,j} - \frac{1}{2} \left( q_{f-1,jprev} + q_{f+1,jnext} \right) \right| \right|^2 + E_{reg}$$

# Salient Features



Carigin Eldger Werps

# **Matching Features**





Optical Flow [Bruhn et al. 2005]

## Algorithm Outline

1. Compute depth map for each time instant [Smith et al. 2009]



2. Compute optical flow for each time instant [Bruhn et al. 2005]



3. Detect Canny edges, use flow to match edges over time



4. Run spacetime optimization to find  $\{R,t\}_{f=1,...,F}$ 

$$E(\{R,t\}_{f=1,...,F}) = \sum_{f=2}^{F-1} \sum_{j \in \phi_f} w_{f,j} \left| \left| q_{f,j} - \frac{1}{2} \left( q_{f-1,j_{prev}} + q_{f+1,j_{next}} \right) \right| \right|^2 + E_{reg}$$

5. New view synthesis



# New View Synthesis



# Results

## **Summary of Contributions**

- Use an array for stabilization
- Stabilization without structure from motion
- Can handle challenging cases:
  - Nearby, dynamic targets
  - Large scene depth variation
  - Violent camera shake

### Limitations and Future Work

- Increase algorithm efficiency
- Use fewer cameras (two instead of five)
- Motion deblurring with camera arrays
- Better handle image periphery problems
- Evaluate a range of camera baselines