Stereo Matching with Nonparametric Smoothness Priors in Feature Space

Brandon M. Smith¹, Li Zhang¹, and Hailin Jin²

¹ University of Wisconsin – Madison ² Adobe Systems Incorporated

Motivation

State-of-the-art two-view stereo methods 9 out of top 10 employ image segmentation

Stereo	Evalu	Evaluation • Datasets • Code • Submit														
Middlebury Stereo Evaluation - Version 2																
Error Threshold = 1				Sort by	nonocc			Sort	by all			Sort by disc				
Error Threshold 💌					/		V					V				
Algorithm	Algorithm Avg.		<u>Tsukuba</u> ground truth			<u>Venus</u> ground truth			Teddy ground truth			<u>Cones</u> ground truth			Average percent of bad pixels (explanation)	
	Ra	ank V	<u>nonocc</u>	all V	<u>disc</u>	<u>nonocc</u>	all V	<u>disc</u>	<u>nonocc</u>	all	<u>disc</u>	<u>nonocc</u>	all V	<u>disc</u>		
AdaptingBP [17	1 3	3.8	<u>1.11</u> 8	1.37 5	5.799	<u>0.10</u> 1	0.21 3	1.44 2	<u>4.22</u> 3	7.06 3	11.84	<u>2.48</u> 1	7.92 5	7.32 <mark>2</mark>		4.23
CoopRegion [4	1] 3	3.8	<u>0.87</u> 1	1.16 1	4.61 1	<u>0.11</u> 2	0.21 2	1.54 4	<u>5.16</u> 9	8.31 5	13.07	<u>2.79</u> 5	7.18 2	8.01 7		4.41
DoubleBP [35]	1 6	5.1	<u>0.88</u>	1.29 <mark>2</mark>	4.76 <mark>3</mark>	<u>0.13</u> 5	0.45 10	1.87 <mark>7</mark>	<u>3.53</u> 2	8.30 <mark>4</mark>	9.63 1	<u>2.90</u> 6	8.78 14	7.79 <mark>4</mark>		4.19
OutlierConf [42	<u>n</u> 6	5.9	<u>0.88</u> 2	1.437	4.74 <mark>2</mark>	<u>0.18</u> 9	0.26 <mark>6</mark>	2.40 11	<u>5.01</u> 6	9.127	12.8 <mark>6</mark>	<u>2.78</u> 4	8.57 10	6.99 t		4.60
SubPixDoubleBP	<u>[30]</u> 8	8.2	<u>1.24</u> 15	1.76 <mark>16</mark>	5.98 <mark>10</mark>	<u>0.12</u> 4	0.46 11	1.746	<u>3.45</u> 1	8.38 <mark>6</mark>	10.0 <mark>2</mark>	<u>2.93</u> 8	8.73 <mark>13</mark>	7.91 <mark>6</mark>		4.39
<u>WarpMat [55]</u>	9	9.5	<u>1.16</u> 9	1.35 4	6.04 11	<u>0.18</u> 10	0.24 5	2.44 12	<u>5.02</u> 7	9.30 <mark>8</mark>	13.0 <mark>9</mark>	<u>3.49</u> 13	8.47 9	9.01 17		4.98
Undr+OvrSeq [4	<u>.81</u> 1	2.4	<u>1.89</u> 31	2.22 29	7.22 <mark>26</mark>	<u>0.11</u> 3	0.22 4	1.34 1	<u>6.51</u> 14	9.98 <mark>9</mark>	16.4 14	<u>2.92</u> 7	8.00 <mark>6</mark>	7.90 <mark>5</mark>		5.39
GC+SeqmBorder	<u>[57]</u> 1	3.3	<u>1.47</u> 25	1.82 18	7.86 29	<u>0.19</u> 11	0.31 7	2.44 12	<u>4.25</u> 4	5.55 1	10.93	<u>4.99</u> 36	5.78 1	8.66 12		4.52
AdaptOvrSeqBP [<u>331</u> 1	3.8	<u>1.69</u> 28	2.04 26	5.64 <mark>8</mark>	<u>0.14</u> 6	0.20 1	1.47 3	<u>7.04</u> 20	11.1 11	16.4 <mark>16</mark>	<u>3.60</u> 16	8.96 <mark>16</mark>	8.84 14		5.59
SymBP+occ [7	1 1	5.4	<u>0.97</u> 6	1.75 15	5.09 <mark>6</mark>	<u>0.16</u> 7	0.33 8	2.19 <mark>9</mark>	<u>6.47</u> 13	10.7 10	17.0 20	<u>4.79</u> 33	10.7 30	10.9 28		5.92

•

Motivation

Image segmentation problems

Segmentation artifacts in video: temporal instability

1 of 5 input views

2nd-order smoothness method *with segmentation* [Woodford et al. CVPR '08]

Inspiration: Adaptive Support Weight

Yoon & Kweon, Locally adapt. support-weight approach for vis. corr. search, CVPR '05

Close-up views of matching window

Intensity-encoded weights

Inspiration: Adaptive Support Weight

Can we incorporate this idea into a global inference algorithm?

Close-up views of matching window

Large, weighted smoothness nbrhood

Inspiration: Sparse Neighborhoods

O. Veksler, Stereo Correspondence by Dynamic Programming on a Tree, CVPR '05

Our Approach

Global inference using large, sparse smoothness neighborhoods

Large, weighted smoothness nbrhood

algorithm

Most important edges

Given a stereo image pair, I_1 and I_2 ,

compute disparity maps, $\,D_{\!1}^{}\,$ and $\,D_{\!2}^{}\,$

by minimizing:

 $\Phi(D_1, D_2) = \Phi_{ph}(D_1, D_2) + \Phi_{sm}(D_1) + \Phi_{sm}(D_2)$

Energy Minimization Function

 $\Phi(D_{1}, D_{2}) = \Phi_{ph}(D_{1}, D_{2}) + \Phi_{sm}(D_{1}) + \Phi_{sm}(D_{2})$

Previous global methods:

- 1st-order smoothness priors
- 2nd-order smoothness priors

Another approach:

• Kernel density estimation

Large neighborhood

$\Phi_{\rm sm}$ is dense, expensive to minimize $\Phi_{\rm sm}(D_2)$

Solution: use a sparse approximation

Large neighborhood

Sparse

Graph

 $\Phi_{\rm sm}$ is dense being to minimize

Solution: use a sparse graph approximation

 $\Phi_{\rm sm}\left(D\right) = \sum_{p \in I} \sum_{q \in \mathcal{N}_p} w_{p,q} \min\left(\lambda |d_p - d_q|, \tau\right)$

Sparse Graph Approximation

Graph Edges On Real Images

Connection to Image Segmentation

C. Zahn. Graph-theoretic methods for detecting and describing gestalt clusters. IEEE Trans. on Computing, 1971.

Results on Stereo Images

Ground truth

3.41% bad pixels

4.82% bad pixels

25.06% bad pixels

Results on Stereo Images

Left input image

Ground truth depth

3.29% bad pixels

Our results (tailored parameters)

2.48% bad pixels

Klaus et al. '06 results

4.21% bad pixels

Multi-view graph cuts [Kolmogrov & Zabih '02] (tailored parameters)

Results on Videos

UW-Madison Computer Graphics and Vision Group

- $w_{p,q}$ generalizes to any feature vector (not just x, y, r, g, b) \longrightarrow explore other feature vectors
- Automatic parameter estimation (scale in kernel function)
- Better handle View-dependent brightness inconsistencies