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Motivation

State-of-the-art two-view stereo methods
9 out of top 10 employ image segmentation
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Motivation

Image segmentation problems
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Motivation

Segmentation artifacts in video: temporal instability

1 of 5 input views 2nd-order smoothness 
method with segmentation
[Woodford et al. CVPR ’08]
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Inspiration: Adaptive Support Weight

Yoon & Kweon, Locally adapt. support-weight approach for vis. corr. search, CVPR ‘05

Intensity-encoded weightsClose-up views of matching window
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Inspiration: Adaptive Support Weight

Can we incorporate this idea into a global inference algorithm?

Large, weighted smoothness nbrhoodClose-up views of matching window
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Inspiration: Sparse Neighborhoods

O. Veksler, Stereo Correspondence by Dynamic Programming on a Tree, CVPR ‘05

Image close-up views Common  smoothness 
neighborhood structure

Sparse tree smoothness 
neighborhood structure

Minimum 
spanning tree

algorithm
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Our Approach

Minimum 
spanning tree

algorithm

Most important edgesLarge, weighted smoothness nbrhood

Global inference using large, sparse smoothness neighborhoods
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Problem Formulation

UW-Madison Computer Graphics and Vision Group

2sm1sm21ph21 ,, DDDDDD

by minimizing:

compute disparity maps,        and1D 2D

Given a stereo image pair,       and       ,   1I 2I
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Energy Minimization Function

2sm1sm21ph21 ,, DDDDDD
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Photo consistency term
[Kolmogorov & Zabih ECCV ‘02]

21ph , DD

Smoothness (regularization) terms

2sm1sm DD
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Spatial Smoothness Terms

21ph21 ,, DDDD 2sm1sm DD

• 2nd-order smoothness priors

Previous global methods:
• 1st-order smoothness priors

Another approach:
• Kernel density estimation

Large neighborhood 11
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Kernel Density Estimation
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21ph21 ,, DDDD 2sm1sm DD
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Kernel function 
for disparity
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Upperbound Approximation
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Kernel function 
for disparity

min( λ |dp dq|, τ)

Truncated linear 
difference function
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Optimization Challenge

21ph21 ,, DDDD 2sm1sm DDsm is dense, expensive to minimize

p,q
w

Nq pIp

D
sm

min( λ |dp dq|, τ)

Solution:  use a sparse approximation
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Sparse Graph Approximation

p,q
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Nq pIp

D
sm

min( λ |dp dq|, τ)

sm is dense, expensive to minimize

Solution:  use a sparse graph approximation

Dense
Graph

Sparse
Graph
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Sparse Graph Approximation

Dense
Graph

Sparse
Graph

1st Spanning Tree

Residual
Graph

2st Spanning Tree Nth Spanning Tree…
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Dense smoothness neighborhood

Minimum 
spanning tree

algorithm

Sparse smoothness neighborhood

Graph Edges On Real Images
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0% pixels connected 82% pixels connected 95% pixels connected 98% pixels connected 100% pixels connected

Connection to Image Segmentation

Kruskal’s minimum spanning tree algorithm

C. Zahn. Graph-theoretic methods for detecting and describing
gestalt clusters. IEEE Trans. on Computing, 1971.
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Results on Stereo Images
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Left input image

Ground truth

Multi-view graph cuts result
[Kolmogorov & Zabih, ‘02]

4.82% bad pixels

Our result

3.41% bad pixels 25.06% bad pixels

Second-order smoothness
[Woodford et al. ’08]
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2.48% bad pixels 4.21% bad pixels

Klaus et al. ‘06  results Multi-view graph cuts
[Kolmogrov & Zabih ‘02]

(tailored parameters)

Left input image Ground truth depth

Results on Stereo Images
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3.29% bad pixels

Our results
(tailored parameters)



Results on Videos
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Future Work

UW-Madison Computer Graphics and Vision Group22

• Automatic parameter estimation (scale in kernel 
function)

• generalizes to any feature vector (not just  
x,y,r,g,b)            explore other feature vectors

p,q
w

• Better handle View-dependent brightness 
inconsistencies 


