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Motivation and Overview

Synthesizing a digital face that is indistinguishable from a real one has long been an elusive goal for the
graphics community. Driven by the need to replace actors in difficult stunts, recent efforts have focused on
capturing digital replicas of real actors. Thanks to hardware and software innovations this approach has
yielded digital faces of unprecedented realism.

Digital Cloning describes the process of capturing an actor’s performance and optionally their likeness in a
digital model. The captured performance can be used as a virtual stunt double, or mapped to a physically
distinct character such as a child or animal. Although photo-real virtual stunt doubles are now commonly
used in brief and distant movie shots, project demands are gradually increasing the duration and scale of
virtual actor effects. Performance cloning to drive a distinct character enabled Polar Express and is
frequently considered on other projects.

Despite these successes, Digital Cloning remains a challenging problem, in large part because human
observers are particularly sensitive to the realism and subtleties of human faces. Recent virtual actors are
able to fool most observers for only a few seconds, and some observers feel that cloned performances do
not map naturally to distinct geometric models.

In this course we will present the diverse techniques that comprise the current state of the art in digital face
cloning. Topics will include motion capture (marker based and dense), lighting capture, skin simulation,
cross mapping algorithms, derivation of facial models from data, and audience perception of realism. Given
the wealth of research on digital face cloning and its widespread applications, this area would benefit from
a Siggraph course.

Instructors will include experts from both the entertainment industry and academic research. The course
will inform the graphics community about the latest advances in this rapidly developing field and outline
some of the remaining challenges in digitally cloning the human face. We hope that the course will help in
defining new approaches for creating photorealistic digital faces.

Course attendees should have a background in computer graphics and mathematics in order to fully
understand all the presentations.

The course is organized in two main sections. The first section spans the morning and focus on the
technologies for capturing and modeling a digital face. The second section spans most of the afternoon and
present case studies. These studies describe recent successful attempt from the industry at digitizing
realistic faces. We will conclude the course with a discussion on the open issues in digital face cloning.

The course schedule, speaker bios, and table of contents follow.
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§:30 Introduction and Overview
Fred Pighin
9:00 Face Scanning and Dense Motion Capture Technologies
Li Zhang
10:00 Break
10:15 Reflectance Modeling and Capture
Paul Debevec and J.P. Lewis
11:15 Facial Parameterization and Cross-Mapping
J.P. Lewis and Fred Pighin
12:15 Lunch
1:30 Case Study: Face Cloning at ILM
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3:00 Case study: Leaping the Uncanny Valley with Data
(Face Cloning in the Matrix sequels}
George Borshukov
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Siggraph 2005 course notes - Digital Face Cloning

Introduction

Freceric Pighin J.P. Lewis

University of Southern California

Overview

By far the most challenging aspect of a photoreal actor is the creation of a digital face that can stand up
to close scrutiny. The human face is an extremely complex biomechanical system that is very difficult to
model. Human skin has unique reflectance properties that are challenging to simulate accurately. Moreover
the face can convey subtle emotions through minute motions. We do not know the control mechanism of
these motions. All these issues combine to make the human face one of the most challenging object to model
using computer graphics.

In recent years, a novel approach to synthesizing realistic faces has appeared. Driven by the need to
replace actors in difficult stunts, recent efforts have focused on capturing digital replicas of real actors. This
approach, calleBigital Face Cloning attempts to create a digital face by replicating in parts the face of a real-
performer. Digital face cloning describes the process of capturing an actor’s performance and optionally their
likeness in a digital model. With this technique, the human face is no longer considered as a biomechanical
system but as a real object that can be digitized to produce a synthetic replica. This replication process has
been made possible through a set of recently developed technologies that allow the recording of a performer’s
face. Forinstance, a face scanner can be used to to recover the geometry and some of the reflectance properties
of the face. The motion of a face can be recorded using a motion capture system. Hundreds of points on
the face can be tracked and mapped onto a virtual character whose facial motions will mimic those of the
performer.

Advances in software technology have also been instrumental for cloning digital faces.

One of the most promising technology for replicating the motion of the human face is dense motion capture
technology. Traditionally motion capture systems are limited to at most a few hundred markers on a human
face. At this resolution, many of the small scale details (e.g. wrinkles) of the face might be missed. Dense
motion capture allows the tracking of tens of thousands of facial locations. Generally the output of dense
motion capture is a sequence of detailed face meshes. The meshes can then be registered so that facial features
are in topological correspondence throughout the sequence. The end result is high-fidelity three-dimensional
representation of the actor’s performance.

Equally important is the ability to render faces realistically. Human skin is particularly difficult to render.
This difficulty has two origins. First, human skin is somewhat transparent and exhibit multiple scattering
effects. Simulating this phenomena requires considering skin as a volumetric object. Second, the skin’s
reflectance varies in space but also in time. Through the contraction and dilatation of blood vessels the
reflectance of the skin varies as the face changes facial expression. To make things worse, the appearance of
the face is also determined by wrinkles, pores, follicles, and other surface details whose size is often less than
a millimeter. Given these challenges recent research has focussed on digitally capturing these properties with
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measuring devices. The purpose of these devices is to measure a particular performer’s skin BRDF.

In the rest of this course, we will describe in more details the state of the art in facial geometry, motion, and
BRDF acquisition. A critical issue in face cloning is the ability to remap motion captured on one performer
into a digital character. This issue, called cross-mapping will be discussed in the course.

Finally and most importantly, we will present a few practical examples of successful digital face cloning
systems that have been used in production.

In the rest of this introduction, we provide a brief historical overview of the field and we discuss some
major issues related to digital face cloning.

History

The idea of creating artificial humans greatly predates computer graphics. It has haunted popular imagination
well before computers were invented. For instance, in Jewish folklore the Golem is an artificially created
human supernaturally endowed with life. More recently Mary Shelley’s Frankenstein is a classic of gothic
literature.

From a computer graphics point of view, we can look at the progression of digital face cloning from two
perspectives. First, the film industry has long tried to include synthetic actors in movies. This has been
motivated primarily by the need to replace actors in difficult stunts, but other purposes are becoming more
common, including the reproduction of persons that are no longer living. Second, we will survey university
research on this problem and consider cloning techniques that may be adopted in the future.

Film industry

The emergence of believable computer graphics (CG) actors remains a significant challenge in our field, and
a successful demonstration of photoreal actors would be considered a milestone.
In fact considerable albeit gradual progress towards this goal has already occurred, and a singular “break-
through” appearance of virtual actors is perhaps unlikely. CG humans have appeared in moviestsiece
world (1976), and CG stunt doubles have made distant and brief appearances in films in the 1990s including
Terminator 2(1991),Jurrasic Park(1993, body only) anditanic (1997). In recent years these stunt doubles
have had somewhat larger and longer (though still brief) appearances, and have taken the form of recogniz-
able actors in films such &pace Cowboy2000) andEnemy at the Gatg2001). The current state of the art
is represented by digital stuntpeopleSpiderman Il The Matrix: Revolutiongwith a more-than-10-second
full-screen shot of two virtual clones), angmony Snickefwith a number of CG shots of a baby inter-
cut with the real baby). The corresponding technical developments, including implementations of lighting
capture, subsurface scattering, and dense motion capture, are outlined in Siggraph sketches [19, 9, 2].
Although the progress in the last decade has been substantial, there is even further to go. Current tech-
nology can produce only brief cloned shots at considerable cost, and although the results are remarkable
examples of computer graphics, they do not actually deceive a majority of observers for more than a few
seconds. Moreover, several large scale film industry attempts to produce a CG "lead” character have been
attempted and subsequently abandoned. These include a proposed reff&drafredible Mr. Limpein
1998, and Disney’s Gemini Man attempt in 2000.

Academia

Facial animation has long been a very active research area. We do not pretend to cover all relevant research
in this section but provide a broad historical overview of the field. More details studies can be found in other
sections of the course notes.

We can tentatively date the beginnings of research on digital face cloning with the use of photographs
for face modeling. One of the earliest efforts in this field was the pioneering system developed by Fred
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Parke [14, 15] who made use of two orthogonal photographs and patterns painted on a performer’s face to
recover 3D facial geometry. Later Pighin et al. [16] extended this technique to an arbitrary number of images
and texture extraction. With the advent of range scanning researchers have explored the use of facial scan
to automatically model faces. The resulting range and color data can be fitted with a structured face mesh,
augmented with a physically based model of skin and muscles [11, 10, 20, 22]. Haber et al. [7] propose a
similar system using an improved facial model.

The idea of recovering facial geometry from images led naturally to motion estimation from video. An
early system by Lance Williams [23] tracks the 2D face motion of a performer from a single video stream.
Later, Brian Guenter et al. [6] extend this approach to 3D recovery from multiple video streams. Other re-
searchers have explored marker-less tracking techniques, often relying on more sophisticated models such as
blend shape (linear) models [17, 1], bi-linear models [21], or physically-based models [20]. In this perspec-
tive, a promising new research direction is the recovery of dense geometry from video. The UCAP system [3]
used five hi-def cameras to recover the facial geometry and texture at every frame (requiring manual assis-
tance, but no structured light), whereas the system developed by Li Zhang et al. [24] uses six video cameras
and two structured light projectors to recover the facial geometry completely automatically.

To enable rendering from a different point of view and with a different lightning environment, researchers
have explored how to capture the reflectance property of a face. For instance Marschner et al. [13] measured
the human skin BRDF using a small number of images under different lighting conditions and re-used these
measurements to realistically render a performance driven face [12]. In a more data-driven approach, De-
bevec et al. [4] used an image-based technique to render human faces in arbitrary lighting environments by
recombining a large set of basis images from different lighting directions. Finally, Tim Hawkins et al. [8]
extended this work by capturing the performer in a variety of expressions to build a blend shape model that
includes reflectance information.

Main issues

The process of digital face cloning can be broken into two main steps. First, duringctiveing stepthe

face of the performer is recorded. This recording can take several aspects depending on how the recorded
data will be used. To build an accurate replica, the geometry, the reflectance, and the motion of the performer
all need to be recorded.

Second, during theynthesis steghe recorded data is reused to create a digital sequence. In the simplest
case, only a specific performance needs to be captured and synthesized. In such a case there is usually
no much need to modify the recorded data. In more complex cases, the data might need to be extensively
modified. For instance, this may be because the data is remapped onto a different character, or because the
character is placed in a different lighting environment, or maybe the motion has to be modified.

In an abstract sense, the data collected represent a set of samples from a space of facial properties. For
instance, a face scan might be considered as a sample from a space of facial expressions, a recorded motion
would belong to a space of motions. During the second step, these samples are then used to reconstruct
portions of that space. In this perspective, the synthesis step can be seen as a resampling problem where the
original samples are altered to meet the needs of a production. How this resampling is done is key to the
process of digital face cloning. In general, this raises the issue of figuring out how the recorded properties of
the face behave between the samples.

For example let us consider the space of facial expressions for a performer: we might have scanned his face
in a neutral expression and in a angry expression. To generate an intermediate expression between these two
sampled expressions we have to make some assumptions about how the face behave between the samples.
These assumptions form what we will calleppresentatiorior the data. For instance, a BRDF representation
of the skin might be used to resample reflectance data, or frequency decomposition might be used to modify
facial motions. Another interesting example is a blend shape model. In this case resampling is done using
correspondences between facial features (i.e., domain knowledge) and linear interpolation.
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Many representations or resampling techniques can be used to modify the data. Some of them are very
simple such as nearest neighbor, where the closest (according to some appropriate distance metrics) is se-
lected, others can be quite complex and for instance involve physically-based modeling. In general, there
seems to be a wide spectrum of representations starting withieéhk representation@oint sampling, lin-
ear interpolation) up to thstrong representationbiomechanics, physics-based models). Choosing the best
representation depends on many factors. This decision mainly reflects a tradeoff between how many samples
need to be recorded versus how complex the representation is. If the reconstructed space is densely sam-
pled then a weak representation is more appropriate since the behavior between the samples can usually be
modeled using some simple approximation (e.g. linear approximation). If on the other hand there are few
samples to work with then a stronger (or richer) representation might be needed in order to model complex
behavior between the samples. Often weak representations are limited to interpolating the samples so that the
reconstructed space lies within the convex hull of the samples — whereas with a strong representation, using
the same samples, it might be possible to extrapolate from the samples and cover a much wider portion of the
space.

As we have discussed the use of weak models often relies on a dense set of samples. Depending on the
properties of the face that is modeled obtaining sufficient sample data might be more or less tractable. For
instance, it is relatively easy to take photographs of a face using different camera positions (e.g. for view
interpolation) but it is significantly more difficult to densely sample the set of potential face motions. It also
depends on the extend of the portion of the space that needs to be reconstructed. Obviously the smaller that
extent is the easier it is to sample that portion of the space. Finally, the properties of the face that vary little
or in smooth ways usually require much fewer samples to be modeled compared to other properties that are
less smooth.

The representation issue is not only relevant to the synthesis step but also to the data gathering step. Data
gathering sometimes necessarily makes use of a representation. For instance in model-based tracking, a
representation of the face is used to track facial motion from a video stream. The representation itself might
be based on some initial data (or prior in a Bayesian framework). The representation used for data gathering
might not be appropriate for synthesis, in this case a different representation is needed. This raises the
guestion of whether the same representation can be used for analysis and synthesis. One of the interesting
issues is the parameterization of the data. Often during synthesis we are interested in choosing parameters
that have an intuitive meaning so that they can be manipulated easily by an animator. On the other hand, for
analysis, a good set of parameters is sometime selected according to different criteria such as orthogonality.
This issue arises for instance in the parameterization of a blend shape model.

The synthesis step dictates what kind of samples need to be collected during the capture step. However,
given a particular sample space, it is often unclear which specific samples need to be recorded. If the sampling
process is expensive (e.g. motion capture) the issue of how many samples need to be recorded and which to
record becomes critical. Unfortunately, often there are no rules to answer these questions. More likely, it is a
trial and error process that can be guided by some study of the human face. For instance, even though work
in psychology [5] stresses the role of six basic expressions, most blend shape systems use a significant larger
number of expressions (e.g. 946 for Gollum in the Lord of the Rings [18]).
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Modeling and Digitizing Human Facial Reflectance

Paul Debevec

USC Institute for Creative Technologies

This section of the course describes techniques for modeling and digitizing the
reflectance properties of faces and using these properties to create realistic renderings
of faces under new lighting conditions, from new viewing angles, and with different
expressions and motion.

Facial reflectance is a complex interaction of light and tissue, and like most aspects of
face modeling, is important to reproduce accurately. The complexities present several
challenges for modeling, capturing, and rendering. Although skin reflectance generally
has a diffuse component and a specular component, the components do not conform
precisely to commonly used reflectance models. These components vary spatially
across the face: changes in skin thickness and pigmentation alter the diffuse component,
and the specular component varies with the characteristics of surface roughness and
oiliness. The breadth and shape of the specular reflection further depend on wrinkles,
pores, and follicles with important details present at fractions of a millimeter. Facial
reflectance also varies with time, as facial motion alters the blood concentrations under
the skin, and the shape of specular reflections changes as the skin expands and
contracts. Furthermore, skin is significantly translucent, and light falling on one area of
the face may scatter beneath the surface and shine out from a nearby area, typically
picking up the color of the skin's pigment and blood. The skin is also just one part of the
face - other parts such as the eyes, mouth, and hair can pose even greater challenges
and are equally important to represent faithfully.

Today, there is no complete system for capturing a digital model of a person that models
all of these effects. However, a number of techniques have made important inroads into
these problems. These reflectance modeling processes span a range from fitting
mathematical models to sparse reflectance measurements to capturing comprehensive
image datasets of how a face transforms incident light into radiant illumination. Different
techniques address different parts of the facial modeling problem: some techniques aim
to create a digital model that can be driven by animation, while others aim to capture a
person actually acting in a way that their performance can be inserted into a virtual
scene. Following is an annotated bibliography of some of the relevant published work
done to address these problems so far:

¢ Image-based BRDF Measurement Including Human Skin. Stephen R.
Marschner, Stephen H. Westin, Eric P. F. Lafortune, Kenneth E. Torrance,
Donald P. Greenberg. Eurographics Rendering Workshop 1999. 1999.

This paper measured an aggregate skin BRDF (bidirectional reflectance
distribution function) by photographing a person's forehead under different
lighting and viewing directions. The authors fitted the data to the Lafortune
reflectance model.

e Acquiring the Reflectance Field of a Human Face. Paul Debevec, Tim Hawkins,

Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, Mark Sagar. Proceedings
of ACM SIGGRAPH 2000. pp. 145-156, 2000.
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e Animatable Facial Reflectance Fields. Tim Hawkins, Andreas Wenger, Chris
Tchou, Andrew Gardner, Fredrik Goransson, Paul Debevec. 2004 Eurographics
Symposium on Rendering. 2004.

The first paper acquired reflectance field datasets of a person's face as
illuminated by a dense sampling of incident illumination directions, and showed
that realistic renderings of the face could be made under novel illumination
environments directly from the data. The authors also showed renderings made
from novel viewpoints by using a reflectance model to transform the reflectance
data. The latter paper acquired face datasets under variable illumination,
expression, pose, and viewpoint, and analyzed them to create a morphable face
model that could be rendered three-dimensionally under novel illumination
environments and animation.

o Reflection from Layered Surfaces Due to Subsurface Scattering Pat Hanrahan,
Wolfgang Krueger. Proceedings of SIGGRAPH 93. pp. 165-174, 1993.

¢ A Practical Model for Subsurface Light Transport. Henrik Wann Jensen, Stephen
R. Marschner, Marc Levoy, Pat Hanrahan. Proceedings of ACM SIGGRAPH
2001. pp. 511-518, 2001.

These publications introduced techniques for simulating the tranlucency of the
skin using stochastic rendering techniques, making it possible for computer
renderings of 3D models to exhibit this important aspect of skin reflectance. The
latter publication showed how subsurface scattering characteristics could be
measured from a real subject and simulated efficiently using realistic
approximations to the complete scatting functions.

e Light Scattering From Human Hair Fibers. Stephen R. Marschner, Henrik Wann
Jensen, Mike Cammarano, Steve Worley, Pat Hanrahan. ACM Transactions on
Graphics. 22(3), pp. 780-791, 2003.

As an example of facial reflectance beyond skin, this paper measured and
modeled an improved characterization of the reflectance of hair. In particular, the
paper modeled how the cellular structure of human hair strands yields two
different specular highlights: one the color of the light, and one the color of the
hair.

e Andreas Wenger, Andrew Gardner, Chris Tchou, Jonas Unger, Tim Hawkins,
and Paul Debevec. Performance Relighting and Reflectance Transformation
with Time-Multiplexed Illumination. Proc. SIGGRAPH 2005.

This work presents a technique for capturing a spatially-varying model of a
person's reflectance in real time. Using rapidly changing lighting from different
directions, the moving subject is illuminated by a series of rapidly changing
lighting conditions. From this data, the person's live performance is realistically
rendered under novel illumination conditions.
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Siggraph 2005 course notes - Digital Face Cloning

Cross-mapping
J.P. Lewis Fecéric Pighin

University of Southern California

Introduction

When done correctly, a digitally recorded facial performance is an accurate measurement of the performer’s
motions. As such it reflects all the idiosyncrasies of the performer. However, often the digital character that
needs to be animated is not a digital replica of the performer. In this case, the decision to use performance
capture might be motivated by cost issues, the desire to use a favorite actor regardless of the intended charac-
ter, or the desire to portray an older, younger, or otherwise altered version of the actor. The many incarnations
of Tom Hanks inPolar Expressllustrate several of these scenarios.

In this scenario, the recorded (source) performance has to be adapted to the target character. In this section
of the course, we examine different techniques for transferring or cross-mapping a recorded facial perfor-
mance onto a digital face. We have grouped these techniques in several categories mostly as a function of
whether they use a blendshape system for the source and/or the target face.

Cross-mapping techniques

Blendshape animation is one of the most widespread facial animation techniques. Thus, it is not surprising
that many techniques consider the cross-mapping problem in the context of a blendshape system. If we have a
set of blendshapes for the performer and one for the target character that correspond to the same expressions,
then once the performance is mapped onto the source blendshapes, it can be mapped onto the target character
by simply reusing the same weights [10].

Blendshape mapping. It is also possible to accomplish blendshape mapping when the source and target
models have blendshapes with differing functions. The slides accompanying this session point out that,
provided a skilled user can produbk“corresponding” poses of the source and target models, a matrix that
converts the weights from source to target representations can be found with a linear system solve. This
assumes of course that linearity is adequate — which is also an assumption of the underlying blendshape
representation. More importantly, however, it assumes that animation of the source model is obtainable. In the
case of performance driven animation however, the source modeiatiéixactly represent the performance
unless the model itself is obtained directly from that performance (e.g. by principal component analysis of
dense capture). Thus, transferring the performance onto the source model is at issue (and, to the extent that
this mapping can be solved, why not omit the source and map the performance directly to the target?).

Choe and Ko [3] invented a very effective technique for transferring a recorded performance onto a digital
character. In this framework, the target face is animated as a set of blendshapes. The goal of the algorithm
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is to find for each frame of the performance the corresponding blending weights. To do this, they first create

a corresponding set of blend shapes (or actuation basis) for the source face. Once this is done, the blending
weights can simply be transfered from the source blendshapes to the target blendshapes. The main advantage
of their approach is that it refines the source blendshapes as a function of the recorded performance. In this
sense, it is tolerant to approximate modeling.

This technique starts by manually assigning a location (corresponding point) on the source model for each
recorded marker. From these correspondences, a transformation (rigid transformation and scaling) is com-
puted that maps the performance coordinate system onto the model coordinate system. This transformation
takes care of the difference in orientation and scale between the performance and source models. It is esti-
mated on the first frame and applied to all the frames of the performance. The following procedure is then
applied for each frame. If a frame in the animation is considered as a vector, it can be written as a linear
combination of the corresponding points in the blendshapes where the weights are the blending weights.
This provides a set of linear equations where the blending weights are the unknowns. Augmented with a
convexity constraint (i.e. all weights have to be non-negative and sum up to one), this system can be solved
using quadratic programming. Their approach assumes that the source blendshapes can exactly represent
the performance, which is generally not true of manually sculpted blendshape models. To address this is-
sue, a geometric correction is performed by solving the same system for the position of the corresponding
points. These two steps (blend weight estimation and geometric correction) are iterated until convergence.
Finally, the displacement of the corresponding points are propagated to the model vertices using radial basis
functions [2].

This work is presented in a muscle actuation framework where each blendshape corresponds to the actua-
tion of a muscle or muscle group. However, it should equally apply to sets of blendshapes constructed with
different philosophies.

Direct mapping to target blendshapes. The previous technique requires a set of blendshapes for the source
face. Other researchers have investigated direct mappings between the source motions and the target blend-
shapes. For instance Buck et al. [1] developed a system for mapping 2D facial motion onto cartoon drawings.
The input motion is estimated from video by tracking a sparse set of features whose configuration provides a
simplified facial expression.

Their system is build on top of a library of cartoon drawings that represent key poses for different facial
areas of the target character (e.g. mouth, forehead). These key drawings are blended together, much like a
set of blendshapes, to create an animation. Their mapping algorithm relies on associating each key drawing
with a particular configuration of the tracked features. This association is then generalized using a scattered
data interpolation algorithm. The interpolation is performed using a partition of the space of potential feature
configuration (i.e. simplified facial expression). The partition they use is a 2D Delaunay triangulation. To
map a frame of input motion, first the triangle that contains that frame is determined; second the barycentric
coordinates within the triangles are computed; finally these coordinates are used as blending weights to
compute the combination of key drawings. To provide a 2D parameterization of the input space, a Principal
Component Analysis is performed on some test data. The two first principal components (maximum variance)
determine the reduced dimensionality space.

Tim Hawkins et al. [8] use the same technique to animate facial reflectance fields with a higher dimensional
space.

Chuang and Bregler [4] described another approach to mapping a performance directly to a differing target
model. The source in their technique is video, but similar thinking could be applied in mapping from three-
dimensional motion capture. Important feature points on the video frames are tracked using the Eigenpoints
technique in which the weights of an eigenimage fit are applied in parallel to vectors of two dimensional
points associated with each of the basis image [6]. The tracked feature points in a new image frame can (after
a coarse affine registration) be approximated as a linear combination of basis feature vectors, and similar
basis shapes can be sculpted for the target model.
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With this background, they present two ideas that lead to a robust cross-mapping. First, they show how
to choose a basis from among the source frames. After experimenting with several plausible approaches it
was found that the best basis (least error in representing the source performance) resulted from taking the
source frame point vectors that result in the smallest and largest projection on the leading eigenvectors of
the source performance principal component model. Secondly, they point out that reusing the source weights
on a target model does not work well when the basis is large and does not exactly represent the source
performance. In this situation errors in representing a novel source frame can sometimes be reduced with large
counterbalanced positive and negative weights, which results in a poor shape when the weights are reused
on the target. Instead, they require the weights to be non-negative. This prevents the previously described
situation because negative weights are not available, and results in demonstrably better cross-mapping even
though the error in representing the source is somewhat higher.

Geometric mapping. Using a blend shape system is not the only way to drive a synthetic face through
performance capture. For instance, good results can also be achieved using radial basis functions [9]. Noh
and Neumann [12] propose a different approach, called “Expression Cloning”, that does not rely on blend
shapes. Their technique assumes that the source performance is given as an animated mesh (i.e. the topology
and motion curves for every vertex). Their goal is to transfer the deformations of the source mesh onto the
target mesh.

The first step of the algorithm is to find geometric correspondences between the source and target mod-
els. This is done by computing a sparse set of correspondences that are propagated to the rest of the mesh
using scattered data interpolation (radial basis functions). The sparse correspondences are determined either
manually or using some face-specific heuristics.

Once the two models are brought into dense correspondence the motion vectors (offsets from the initial or
rest expression) can be transferred. This transfer is performed by assigning a local coordinate system to each
vertex in the source and target models. These coordinates systems are determined by the normal of the mesh
at that vertex. Transferring a motion vector can then be done by changing local coordinate systems. The
motion can also be locally scaled by using the ratio of locally defined bounding boxes in the two models. An
additional procedure takes care of the special case of the lip contact line and prevents any spurious interactions
between the two lips.

Expression/Style learning. Wang et. al. [11] describe an ambitious machine-learning based system for
cross-mapping. A data reduction manifold learning technique (local linear embedding, LLE) is first used

to derive a mapping from animated expression geometry over time to a one dimensional manifold (curve)
embedded in a low-dimensional (e.g. 3D) space. They then establish correspondences between curves for a
given expression over different individuals (this includes different monotonic reparameterizations of cumu-
lative length along the curve). Once the correspondences are established, the registered curves are averaged
to produce a mean manifold for the particular expression. Evolution of the expression over time now corre-
sponds to movement along this curve.

Next a mapping from the curve back to the facial geometry is constructed. First a mapping from points on
the expression curve back to the actor’'s changing facial geometry is obtained using an approximating variant
of radial basis scattered interpolation. This mapping conflates the different “styles” of facial expressions
of different people. Lastly, using the bilinear decomposition approach introduced in graphics by Chuang
et. al. [5], the changing expression geometry is factored into components of facial expression and individual
identity (thus, for a particular facial expression there is a linear model of how various individuals effect that
frozen expression, and for any individual the evolution of the expression over time is also a linear combination
of models).

Although the system deals with each facial expression in isolation, it hints at future advances in deriving
useful higher level models from data.



SIGGRAPH 2005 Course #9 Digital Face Cloning 12

Unexplored issues

Expression vs. motion cross-mapping. The different techniques we have described treat the cross-mapping
issue as a geometric problem where each frame from the recorded performance is deformed to match the tar-
get character. Unfortunately, this might not respect the dynamics of the target character. To go beyond a
straight per frame cross-mapping requires an approach that takes timing into account. There are basically
two ways this can be tackled: using a physical approach or a data-driven approach.

A physically-based animation system could provide physical constraints for the target face. The cross-
mapping algorithm would have to satisfy two types of constraints: matching the source performance but also
respecting the physics of the target face. By weighting these constraints an animator could control how much
of the source performer versus how much of the target character appears in the final animation.

Any data-driven approach must be carefully designed to minimize the “curse of dimensionality” issues
introduced by additional dimensions of timing and expression. One approach might involve building a (small)
database of motions for the target character. The performer could then act these same motions to create a
corresponding source database. Using machine learning or interpolation techniques these matching motions
could provide a time-dependent mapping from the source motion space to the target motion space.

Facial puppeteering. The human face can express a wide gamut of emotions and expressions that can vary

widely both in intensity and meaning. The issue of cross-mapping raises the more general issue of using
the human face as an animation input device not only for animating digital faces but any expressive digital

object (e.g. a pen character does not have a face). This immediately raises the issue of “mapping” the facial
expressions of the performer onto meaningful poses of the target character. Dontcheva et al. [7] tackles this
issue in the context of mapping body gesture onto articulated character animations.
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|mplementing a skin BSSRDF (or severdl...)

Christophe Hery
Industrial Light + Magic

I ntroduction

In the seminal paper from 2001: A Practical Model for Subsurface Light Transport
([Jensen *01]), Henrik Wann Jensen et al employed the concept of a BSSRDF (a bidi-
rectional surface scattering distribution function) as a means to overcome the limita-
tions of BRDFs.

The following year, in A Rapid Hierarchical Rendering Technique for Translucent
Materials ([Jensen *02]), Jensen and Buhler presented a caching method to accelerate
the computation of the BSSRDF.

We will try here to give pointers about how to implement such systems, as well as
how to use them in production.

1 BSSRDF 101

Skin is a multi-layered medium, in which photons tend to penetrate and scatter around
many many times before bouncing back out. Certain wavelengths are attenuated dif-
ferently according to the thickness. The path the photons take is highly complex and
depends on the nature of the substrates as well as their energy. But one thing is al-
most certain: they rarely leave through the location where they entered, which is why
a BSSRDF - a model for transport of light through the surface - is needed.

The full BSSRDF system presented by Jensen et al. consists of two terms: a single
scattering component, which through path tracing gives us an approximate solution for
the cases where light bounced only once inside the skin, and a multiple scattering com-
ponent, through a statistical dipole point source diffusion approximation. The beauty
of this model is that it can be implemented in a simple ray-tracer, and with the use of
some trickery, in a Z-buffer renderer.

We are now going to go over the papers and extract the relevant information for
shader writers, so please have your Proceedings handy.

1.1 Singlescattering

We are trying to consider the different paths photons could take such that they would
exit towards the camera at the shaded point after one unique bounce inside the skin.
Since we know the camera viewpoint | at the shaded surface position P, we can com-
pute the refracted outgoing direction To. So let’s select some samples Psamp along To

14
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Figure 1: For single scattering, we march along the refracted outgoing ray T, and
project towards L.

(we’ll figure out the density and the placement of those samples later), and let’s try to
find out how the light could have bounced back at those positions.

On the way in, the light should have refracted at the surface boundary. As men-
tioned in [Jensen ’01], this is a hard problem for arbitrary geometry, and we make the
approximation that the light did not refract. With this simplification, we can now find
for each Psamp Where the light first entered by simply tracing towards the light source.

In fact, we will not really trace towards the source position. Given the distances
involved, we can consider the light to be uniform in direction and in color/intensity
over the surface. So we simply trace along L (the incident light direction at P) and
multiply our result globally with CI (light energy received at P).

At this stage, we have: the distance the light traveled on the way in (s;), and the
distance the light traveled going out (s;). Prime signs here indicate, where appropriate,
the refracted values. For instance, s;, is the distance along the refracted outgoing ray,
To, and it is a given, since we originally explicitly placed our sample Psamp along To
from P (in other words, Psamp = P + ToSp).

The outscattered radiance for the single term, Lo, depends on the scattering co-
efficients, the phase function between the refracted directions, and some exponential
falloff terms on s and s{,. But we do not know s/, the refracted distance before the
bounce. The trick here is to use Snell’s law to derive s| froms;.

The other thing we are missing is the phase function. What is it? Simply stated,
the phase function between two vectors ¥, and V, is a way to describe the amount of
light scattered from the direction ¥V, into the direction V. Knowing fully that we are
not simulating, in CG, the light interactions one photon at a time, this phase becomes
a probability density function (PDF), and for skin, it has been shown (for instance in
[Pharr ’01]) that the Henyey-Greenstein model is adequate.

15
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Finally, we can try to make the solution converge faster. A naive implementation
would have all Psamp uniformly selected along To. But this would require many many
samples.

Let’s look at L

Lok, ) = ZOITPE B o dogtaor, (4, ).

tc
This expression can clearly be rewritten as the product of the exponential falloff in s],
with another function:

0Os(Xo)F (&Y - &) e~ 9% (%) je00 (%)

Lo(Xo, @) = [L;(x;, @) Oic

If we now pick the samples according to the PDF
X ~ ge” %%,

the integration in L can be approximated by a simple summation. This is called im-
portance sampling. By choosing

g _~ log(random())
o~ O-t ’
we respect our PDF, and we can sum up all contributions without explicitly computing
the falloff term in s,
In pseudo shading language code, this becomes:

float singlescatter = 0;
vector To = normalize(refract(I,N,oneovereta));

for (i=0; i<nbrsamp; i+=1)
{
float sp_o = -log(random())/sigma_t;
point Psamp = P + To * sp_o;
point (Pi,Ni) = trace(Psamp, L);
float si = length(Psamp - Pi);
float LdotNi = L.Ni;
float sp_i = si * LdotNi
/ sqrt (1 - oneoveretaxoneovereta * (1 - LdotNi*LdotNi));
vector Ri, Ti; float Kri, Kti;
fresnel (-L, Ni, oneovereta, Kri, Kti, Ri, Ti);
Kti = 1-Kri;
Ti = normalize(Ti);
float g2 = gxg;
float phase = (1-g2) / pow(1+2*g*Ti.To+g2,1.5);
singlescatter += exp(-sp_ixsigma_t) / sigma_tc * phase * Kti;
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¥
singlescatter *= Cl * PI * sigma_s / nbrsamp;

There is also a fresnel outgoing factor, but since it is to be applied for both the
single and the diffusion terms, we are omitting it in this section.

It is that simple (in fact it is made simpler here, because we only deal with one
wavelength)!

Lastly, note the trace call. It returns the position, the normal and potentially the
textured diffuse color of the intersection of the ray going from Psamp in the L direction.
We will come back to it in section 3.

1.2 Diffusion scattering

We are trying to accumulate the observed profile of illumination over all positions
on the surface. The dipole of point sources is a virtual construction to simulate the
light attenuation on skin reported by medical scientists (the derivation of this model is
beyond the scope of our discussion). The value we are summing up, at each sample, is
the diffuse reflectance:
o @~ Oirdr =0 dy

Ry(r) = E[Zr (0 dr +1) d—rg, +2v(0ydv+1) T]
Its expression mainly depends on the distance r from the shaded point to the sam-
ple, and also (directly and indirectly) on the scattering coefficients. The problem is
once again the distribution of those samples. In fact, in [Jensen ’02], a two-pass pre-
distribution technique was shown (and we will come back to it in section 4). For now,
let’s assume that we want to place those samples at their appropriate locations during
shading time. They need to lie on the surface and be located around P. The g, e
terms are likely going to dominate the computation of R ; (both in times and in values).
So we should try to put in a lot of effort in order to make them converge faster. Again
we turn to the importance sampling theory, and we choose a PDF

X ~ gpe X,

Why do we have a ¢ coefficient this time (where our PDF for single scattering had a
simple g; multiplicator)? Well, we need to integrate in polar coordinates (whereas for
single scattering we were marching along T, in 1D), and a condition for a valid PDF
is that its integral over the full domain comes to 1 (meaning that we have 100% chance
to find a sample in the infinite range). This PDF corresponds to the cumulative density
function (CDF)

R
P(R) = / oze % "rdr = 1— e %R(14 g, R)
0

By the change of variable u = o;R, we get

P(u)=1-e"%(1+u),

17
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and through a numerical inversion of P(u), we get a table of precomputed positions,
that we can insert in the shader (we provide a C program in the Appendix that warps a
uniform Poisson distribution into the one we want).

Again let’s deal with the pseudo-code for one wavelength.

float diffusionscatter = 0;

uniform float scattdiffdistl[maxSamples] = { /* X table */ };
uniform float scattdiffdist2[maxSamples] = { /* Y table */ };

/* create a local frame of reference for the distribution */
vector local = N;

vector up = vector "world"(0,1,0);
if (abs(local.up) > 0.9)
up = vector "world"(1,0,0);

vector basel = normalize(local”up);
vector base2 = local"basel;

for (i=0; i<nbrsamp; i+=1)

{
point Psamp = P + 1/sigma_tr *
(basel * scattdiffdist1[i] + base2 * scattdiffdist2[i]);
point (Pi,Ni) = trace(Psamp, -local);
/* make sure we are on the surface */
float r = distance(P, Pi);
float zr = sqrt(3.0%(1.0-alpha_prime)) / sigma_tr;
float zv = A * zr;
float dr = sqrt(r*r+zr*zr); /* distance to positive light */
float dv = sqrt(r*r+zv*zv); /* distance to negative light */
float sigma_tr_dr = sigma_tr*dr;
float sigma_tr_dv = sigma_tr*dv;
float Rd = (sigma_tr_dr+1.0) * exp(-sigma_tr_dr) * zr/(dr"3)
+ (sigma_tr_dv+1.0) * exp(-sigma_tr_dv) * zv/(dv"3);
scattdiff += L.Ni * Rd / (sigma_tr*sigma_tr * exp(-sigma_tr*r));
/* importance sampling weighting */
}

scattdiff *= Cl1 * (1-Fdr) * alpha_prime / nbrsamp;

Please be aware that, in this example, the distribution was done on the tangent plane
at P. Depending on the chosen tracing approach to reproject the samples on the actual
geometry, this might not be the best solution.

18
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2 Texture mapping and reparameterization

So far we have considered a shader that depends on some scattering coefficients. In
reality, we need to texture them over our geometry. Painting them directly is non-
trivial, and especially non-intuitive. In production, we tend to start from photographs
of our live characters or maquettes. The question is: can we extract the variation of the
relevant parameters from regular diffuse texture maps?

We are going to make some simplifications to make this conversion. First, we will
assume that the influence of the single scattering is negligible compared to the diffusion
term ([Jensen *02] provides a justification for skin materials). So let’s assume that our
diffuse texture map is the result of the diffusion scattering events under a uniform
incident illumination, and try to solve for the scattering parameters which produce
these colors.

In this case, we can approximate our BSSRDF as a BRDF:

!
Ry = %(1+e—gA\/3(1—a’))e—\/3(1—a’)’

which only depends on a’ and A (indirectly n). This is also equal, by construction, to
our diffuse map Cmap. SO We now have one equation with two unknowns: a’ and n.
If we fix n (at 1.3 for skin), we can get a’ as a function of Crnap(= Ry). In truth, we
cannot do this analytically, but we can build yet another table numerically.

We used the following code in Matlab to produce the table:

clear;
eta = 1.3;
Fdr = -1.440/(eta.”2) + 0.710/eta + 0.668 + 0.0636*eta;
A= (1+ Fdr)/(1 - Fdr);
alpha = 0:.01:1;
c = alpha.*(1l+exp(-4/3*A*sqrt(3*(1-alpha))))
.* exp(-sqrt(3*(1-alpha)));
C=0:.001:2;
ALPHA = interpil(c,alpha,C);

And, in the shader, we can lookup those values in the following manner:

uniform float alpha_1_3[2001] = { /* put matlab table here */ };
float alpha_prime = alpha_1_3[floor(diffcolor*2000.0)];

Because a’ is the reduced transport albedo, namely the ratio:

/
’r_ Os

Ot 0l
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this does not resolve directly into the scattering coefficients.

Even though o is given for some specific materials in [Jensen *01], it is still a very
non-intuitive parameter, hence we replace our tuning factor with the diffuse mean free
path Id =1/0;,. Itturnsout that g;, and o are all that is needed to control the diffusion
scattering. For the single scattering, we can get:

, 1
O = —— v
1d\/3(1—a’)
and
o.=a'g.

Lastly, it is worth mentioning that, ideally, the color inversion should be done at ev-
ery sample for diffusion scattering, so that we get the correct R ; on those positions. For
single scattering, the dependence on the inversion during the ray marching is embedded
in the o;. denominator and g; term in the exponential.

3 BSSRDF through Z-buffers

If we can manage to trace only along the light direction, we can achieve a projection
towards L by some simple operations on the shadow buffers, of the kind:

uniform matrix shadCamSpace, shadNdcSpace;

textureinfo(shadMap, "viewingmatrix", shadCamSpace) ;

textureinfo(shadMap, "projectionmatrix", shadNdcSpace);

uniform matrix shadInvSpace = 1/shadCamSpace;

point Pi = transform(shadCamSpace, Psamp);

point tmpPsamp = transform(shadNdcSpace, Psamp);

float shadNdcS = (1.0+xcomp(tmpPsamp)) * 0.5;

float shadNdcT (1.0-ycomp (tmpPsamp)) * 0.5;

float zmap = texture(shadMap,
shadNdcS, shadNdcT, shadNdcS, shadNdcT,
shadNdcS, shadNdcT, shadNdcS, shadNdcT,
"samples", 1);

if (comp(shadNdcSpace, 3, 3) == 1) /* orthographic */

setzcomp(Pi, zmap);
else

Pi *= zmap/zcomp (Pi);
Pi = transform(shadInvSpace, Pi);

To access any other values at P; (like N;), if we produced an image of those values
from the point of view of the light (for instance through a secondary display output),
we simply lookup the texture, as in:
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color CNi = texture(shadCNMap,
shadNdcS, shadNdcT, shadNdcS, shadNdcT,
shadNdcS, shadNdcT, shadNdcS, shadNdcT,
"samples", 1);

normal Ni;

setxcomp(Ni, comp(CNi,0));

setycomp(Ni, comp(CNi,1));

setzcomp(Ni, comp(CNi,2));

Ni = ntransform(shadInvSpace, Ni);

Of course, if we want to emulate the soft shadows cast from a non-point light
source, we can super-sample our shadNdcS and shadNdcT lookup coordinates or any
relevant tracing value in the shader.

This overall tracing method drops right in for single scattering (the trace is indeed
along L), but it is more complex to make it work for diffusion scattering.

Let’s think about it for a minute. We need to place some samples on the surface
according to a specific distribution. Our assumption was that we would first position
them on the tangent plane at P, then project them (along —N) to the surface. With our
Z-buffers, all we have is light projections. So what if we distributed our samples in
shadow space, then projected along —L? The surface distribution would definitely be
skewed. Our importance sampling mechanism would not converge as fast as expected
(it would still be faster than a simple uniform distribution though). In fact, by doing it
this way, it is almost as if we would be building implicitly the L - N product. We should
then just "correct” the final result by omitting this factor.

In our pseudo-code from section 3, we just change:

e vector local = Ninto vector local = L,
o the trace with the method exposed above,

o the last line of the loop into scattdiff += Rd / (sigma_tr*sigma_tr *
exp(-sigma tr*r));

In practice, this twist on the theory works really well.

Ideally, we need 3 distributions (one per wavelength), ie 3 sets of fake trace Z-
buffer projections. Not only is it a slow process (after all, texture is one of the most
expensive operators in the shading language), but doing it that way creates a separation
of the color channels, hence a very distracting color grain. The remedy is to do only
one distribution with the minimum ¢;, (the wavelength that scatters the most).

Finally, since we use the shadow buffers as a way to represent the surface of our
skin, we should not include in them any other geometry, like clothing or anything
casting shadows from an environment (more on that later at paragraph 5.1). For the
same reason, the resolution of the Z-buffers matters a great deal.
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4 BSSRDF through a point cloud cache

As we said before (in section 1.2), the diffusion scattering term largely dominates the
BSSRDF in the case of human skin rendering, to the point where we should think about
dropping single scatter altogether from our model of skin. Single scatter can be made to
produce good results though. One can balance it, tweak it, blur it, contain it with some
area maps, so that its appearance is pleasing. However, from its very nature of being
a directional term, the transitions of the illumination (especially the transitions from
back lighting to front lighting) are very hard. For other materials with more isotropic
scattering properties (scattering eccentricity closer to 0), such as marble, it becomes
more critical to keep this term. In any case, when we speak about a skin BSSRDF from
this section on, we will only consider the diffusion scattering.

Since the BSSRDF computation is fairly expensive, it is worth looking at accelera-
tion methods. One observation we can make is that, no matter the pattern of distribu-
tions of the dipole samples, they are likely going to be extremely close from one shaded
point to the next, yet we do indeed recompute their positions for each P. So one idea
here would be to pre-distribute the samples on the surface, this time uniformly, then
”gather” them during the scattering loop. This is what [Jensen *02] demonstrates.

There are several approaches one can take for this pre-distribution phase. One can
build fancy Xsi scripts or mel commands that could achieve, through particle repulsion
algorithms, a stabilized semi-Poisson set on the surface. One can implement a stand-
alone Turk method ([Turk 1992]) as suggested in [Jensen *02]. Or one can take advan-
tage of a specific rendering engine. For example, in the case of Pixar’s Photorealistic
Renderman, one can derive the positions directly from the micro-polygon grids through
adso (alaMattPharr’shttp://graphics.stanford. edu/~mmp/code/dumpgrids.c),
or more directly with the native bake3d() shadeop. All in all, there are certainly many
more ways to obtain a similar point cloud representation of the geometry.

So let’s assume that we managed to pre-generate this distribution, and that it is
stored in a file for which we know the format. The relevant information for each sample
should be its location, the normal, the coverage area it represents - in other words its
local sampling density (this is necessary in the cases for which our distribution is not
exactly uniform) - and, if possible, the diffuse texture at that position.

The first thing to do will be to compute the diffuse irradiance at each point, and
store it back in the data structure. Again there are several ways to do this (in fact, if we
opted to do the distribution through Matt Pharr’s method or with bake3d(), the value
can already be present in the file, and we can step over this stage).

One hacky approach is to read the file one sample at a time through a shader DSO,
then do an illuminance loop on the position and the normal just obtained, compute the

L - N, factor, and write the whole thing back. This is the code for such a scheme:

surface lightbake_srf
(
string inputScattCache = "";
string outputScattCache = "";
float doFlipNormals = 0.0;
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)
{
if (opencache(inputScattCache) == 1) {
float index = indexcache();
while(index >= 0.0) {
point cacheP = getPcache(index);
normal cacheN = getNcache(index);
cacheP = transform("world", "current", cacheP);
if (doFlipNormals == 1)
cacheN = ntransform("world", "current", -cacheN);
else
cacheN = ntransform("world", "current", cacheN);
illuminance(cacheP, cacheN, PI/2) {
float LdotN = L.cacheNlN;
if (LdotN > 0.0) {
accumcache(index, Cl1 * LdotN / length(L));
}
}
index = indexcache();
}
writecache (outputScattCache) ;
}
}

This is a pretty weird surface shader indeed: apart from the illuminance statement,
it uses only DSO calls to access our file format. The cache is opened and kept in as a
static member of the DSO at the opencache stage, so that we can look up any specific
position quickly. We are using an index as a kind of a pointer to the current sample, so
all information about it can be read and written correctly.

A word of caution here: the light shaders need to be modified to do their own
point sampling on the shadows; otherwise, the derivatives, as far as Renderman is
concerned, will come from the successive cacheP values (which can jump all over the
place, depending on how they are stored). Here is another trick. Instead of assigning the
lightbake shader to a random visible piece of geometry, we use an RiPoint primitive,
which has no derivatives by construction. The shadow calls are thus forced to point
sample the buffers, without any editing of the light code. Another side benefit is that
the overall computation is much faster this way.

To obtain the final beauty BSSRDF result, in yet another DSO, we read our cache
file and store the data in memory as an octree for quick lookup. Given a search radius
R, we can sum up the R contributions from each sample found in the proximity region
around P. This is the same R, computation as presented in section 1-b:

float Rd = (sigma_tr_dr+1.0) * exp(-sigma_tr_dr) * zr/(dr~3)
+ (sigma_tr_dv+1.0) * exp(-sigma_tr_dv) * zv/(dv"3);

10



SIGGRAPH 2005 Course #9 Digital Face Cloning

But we want to pre-multiply it by the correct precomputed radiance at each sample
and its coverage area. Also, if we have the color information in the file, we can re-
derive gy, zr and zv through the alpha inversion as mentioned in paragraph 2. Note
that the surface shader does not have to do any queries of the lights or any tracing
anymore; it just needs to call the DSO.

This scatter gathering stage can still be fairly slow, as the cache might contain
several thousands samples (to accurately represent the geometry and local details in
the illumination and textures), so we use a level-of-detail approach. We generate some
cached distribution at several densities. We search locally in the finer cache, and then,
as the exponential falloffs in R, tend towards 0, we look up in the more sparse files.
This way, we can minimize the number of returned sample positions. [Jensen *02]
describes a more formal data structure for this kind of optimization.

Alternatively, as recommended in Pixar’s documentation, the dipoles can be summed
on the point clouds themselves, through a utility like ptfilter -ssdiffusion. This is a
highly efficient solution, as one does not incur the cost of integration at shading time,
but its accuracy is as good as the density of the samples: as outlined in section 2, the
alpha inversion can only be resolved on those points, thus potentially producing lower
resolution texturing.

5 Extensions

5.1 Ambient occlusion, global illumination and cast shadows

Obviously the Z-buffer approach requires some sort of direct illumination, with some
actual light sources. At first this makes it seem impossible to get an ambient occlusion
(see last year’s notes) contribution to participate in the scattering. Even though one can
still do the ambient as a separate term in the shader, there is a sneaky way to merge
the two together. The idea is to compute the occlusion, not through a shadeop or a ray-
tracing pre-pass, but with a dome of lights. This method has recently been described
on the web at: http://www.andrew-whitehurst.net/amb occlude.html, SO we
are not going to cover it here.

Similarly, the skin position is assumed to be at the Z-buffer locations, so it does
not seem easy to get correct cast shadows on our subject (we would not want to make
the algorithm think that our surface is feet away from where it really is, right?). The
solution to that is to generate a separate “outer” shadow buffer for each light, and scale
the final result based on it.

On the other hand, there is no such limitation on the point cloud method of com-
puting the scattering. Because we light the samples as a pre-pass, we can use any
type of illumination algorithms on them, even any type of rendering engine, ahead of
accumulating the dipoles in the final render.

For instance, we discovered that indirect diffuse computations have an impact on
the look of the skin, and that they enhance the effects of the subsurface scattering. Ears
tend to be a tiny bit too dark if not backlit, unless one first simulates at least one bounce
of diffuse illumination.

11
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5.2 Concept of blocking geometries

Up to this point the shader hasn’t solved a small structural problem. It doesn’t take into
account the fact that inside the skin there are bones that are basically blocking some
of the scattering effect. This extension is critical for small creatures and/or highly
translucent materials, where one wants to give the impression of an obscuring entity
inside the medium.

With the Z-buffer approaches, this is pretty trivial. We just need to generate yet
another shadow buffer from the point of view of the scattering lights, a buffer of those
inner blocking geometries. Then we can point sample it during the loops to get a z;,¢
value. By comparing our projected zmap and original sample point zcomp(P;) with this
Zioner» We can decide if and how much the sample participates in the illumination. This
method is valid for both single and diffusion scattering.

If our BSSRDF is based on the point cloud approach, we can somehow simulate
this effect by distributing samples on the inner geometries, summing the diffusion scat-
tering they generate as seen from our skin shading point P, then subtracting this influ-
ence (or part of it) from our real surface diffusion scattering computation. This trick is
certainly non-physical, but it seems to produce a pleasing effect.

6 Summary

We presented a set of techniques for implementing a production ready sub-surface
scattering model in the shading language.
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makeScatAlphaTables.C:

/I utility to generate a table corresponding to the distribution:
/1 -exp(-r) * (1+r1)

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

static const int numSampleTables = 1;

static const int maxSamples = 128;

static float sampleX[numSampleTables][maxSamples];
static float sampleY[numSampleTables][maxSamples];

static void randomPoint (float &u, float &v)

{
do{
u = drand48() - 0.5;
v = drand48() - 0.5;
}while (u*u+v*v>0.25);

}

/I First use the best candidate algorithm from [Mitchell 1991]:
/I Spectrally Optimal Sampling for Distribution Ray Tracing
/I Don P. Mitchell, Siggraph Proceedings 1991
void initSampleTables()
¢ constintq=10;
for (int table = 0; table < numSampleTables; table++) {
randomPoint (sampleX[table][0], sampleY[table][0]);
for (inti=1; i< maxSamples; i++) {
float dmax = -1.0;

for (intc=0;c<i*q;c++){

float u, v;
randomPoint (u, v);

float dc = 2.0;
for (intj = 0; j <i; j++) {

float dj =
(sampleX[table][j] - u) * (sampleX[table][j] - u) +
(sampleY[table][j] - v) * (sampleY[table][j] - v);
if (dc > dj)
dc = dj;
}

if (dc > dmax) {
sampleX[table][i] = u;
sampleY(table][i] = v;
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dmax = dc;
}
}
}
}

return;

}

/ Now take the uniform distribution and warp it into ours

inline float distFunc(float r)
{

return(1.0-exp(-r)*(1.0+r));
}

float invDistFunc(float y, float tolerance)
{
float test, diff;
floatx = y;
while(1) {
test = distFunc(x);
diff = y - test;
if (fabsf(diff) < tolerance) break;
X = X + diff;
}

return(x);

}

void adaptSampleTables()

float Pl = fasin(1.0)*2.0;
for (inti=0; i < numSampleTables; i++) {
for (int j = 0; j < maxSamples; j++) {
float X = 2.0*sampleX[i][j]; // between -1 and 1
float Y = 2.0*sampleY[il[j];
float R = fsqrt(X*X+Y*Y); // between 0 and 1
float r = invDistFunc(R,.00001);
float theta = fatan2(Y,X); // between -Pl and PI
sampleX[i][j] = fcos(theta)™r;
sampleYTi][j] = fsin(theta)*r;

}
}

/I Finaly print the resulting tables

void printSampleTables()
{

inti, j;

printf ("uniform float scattdiffdist1[maxSamples] = {\n");
for (i = 0; i < numSampleTables; i++) {
for (j = 0; j < maxSamples; j++) {
printf ("%f", sampleX[il[j]);
if (j <maxSamples - 1)
printf (",");
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if (i <numSampleTables - 1)
printf (",\n");

}
printf ("\n};\n");

printf ("uniform float scattdiffdist2[maxSamples] = {\n");
for (i = 0; i < numSampleTables; i++) {
for (j = 0; j < maxSamples; j++) {
printf ("%f", sampleYTil[j]);
if (j <maxSamples - 1)
printf (",");

if (i <numSampleTables - 1)
printf (",\n");

}
printf ("\n};\n");
}

void main()

{
initSampleTables();
adaptSampleTables();
printSampleTables();
exit (0);
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Abstract

"The Human Face Project" is a short film documenting an effort at Walt Disney Feature
Animation to track and animate human facial performance, which was shown in the
SIGGRAPH 2001 Electronic Theater. This short paper outlines the techniques developed
in this project, and demonstrated in that film.

The face tracking system we developed is exemplary of model-based computer vision,
and exploits the detailed degrees of freedom of a geometric face model to confine the
space of solutions. Optical flow and successive rerendering of the model are employed in
an optimization loop to converge on model parameter estimates. The structure of the
model permits very principled mapping of estimated expressions to different targets.

Of critical importance in media applications is the handling of details beyond the
resolution or degrees of freedom of the tracking model. We describe behavioral
modeling expedients for realizing these details in a plausible way in resynthesis.

Keywords: 3D facial animation, optical flow, optimization, visual servo, model-based
coding.

1 Introduction

One of the oldest paradigms in the field of computer vision is construction of a three
dimensional geometric model consistent with a two dimensional image, or registration of
an existing model with an image or sequence of images. This was the approach
undertaken by Larry Roberts in his pioneering work at Lincoln Labs [Roberts63]. Bruce
Baumgart, whose wok in modeling has been very influential in the computer graphics
community, extended Roberts' approach considerably, and aptly summarized it in an
early paper [Baumgart75] "My approach to computer vision is best characterized as
inverse computer graphics. In computer graphics, the world is represented in sufficient
detail so that the image forming process can be numerically simulated to generate
synthetic television images; in the inverse, perceived television pictures (from a real TV
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camera) are analyzed to compute detailed geometric models."

Subsequently, David Lowe [Lowe80] used "inverse computer graphics" to develop both
academic and industrial robot vision systems. In the field of industrial robotics, the
control of an effector using an electronic camera is temed, "visual servo," and an ample
literature exists in this active area of model-based computer vision [Hutchinson96].

Fred Parke's pioneering work in 3D computer facial animation took place at the
University of Utah in the early 1970's. Among the possible applications of his work,
Parke mentioned the possibility of a kind of animated telecommunication, in which
animation parameters could be transmitted to drive a CG model at the receiving end
[Parke 82]. This has in fact been one of the more heavily-researched application areas for
computer animation aside from flight simuylation, animated entertainment, and video
games. Development has also continued in computer graphics and vision to enable
model-based face tracking for general purposes [Essa94] [Pighin99].

Such use of computer graphic models (typically head-and-shoulders models of human
beings) in image bandwidth compression, has led to increasingly refined methods for
estimating model parameters that most closely match the video stream to be encoded. In
such applications it is only natural to enlist renderings of the model in an iterative fitting
process (e.g. [Girod97]).

The Human Face Project was based on this technique, and was informed by three
principal areas of research and development: facial animation in computer graphics,
"visual servo" in robotics, and model-based video codecs in picture bandwidth
compression. Our particular application, motion picture visual effects, brought a
particular emphasis to our implementation: performance capture with high detail, and
high fidelity to a particular actor. Accuracy is much more important than speed in this
application.

2 Model data

Our effort began with data collection of our principal performer, Price Pethel, a studio VP
with a professional background in live action film, video, and visual effects, who was an
active participant in the project for its duration. We taped video studies of his changing
expressions, with features marked, and acquired 22 CyberWare 3D laser scans of his face
in a gamut of extreme expressions (some examples: [Figure 1]).
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Figure 1. Four scanned expressions, front and side views.
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For texture mapping, and modeling of fine details of the face, visual effects supervisor
Hoyt Yeatman set up a system of synchronized 35mm film cameras with polarizing
filters, and an enclosing set of synchronized strobe lights in diffusion boxes with cross-
polarizing filters. Fast exposures and diffuse, uniform illumination allowed us to capture
texture with no apparent lighting "baked in" (as in [Marschner99]). The cross-
polarization allowed us to capture images without specular highlights, even in the eyes.
We also captured the face with parallel polarizing filters on lights and cameras;
differencing these images proved helpful in synthesizing fine facial relief.

In addition, we struck the actor's life mask and cast it in urethane, and made laser scans of
dental molds of his teeth.

3 Surface modeling: "Hirokimation"

From the scanned head in a "neutral" expression, a NURBS mesh model was constructed
(Figure 2). Note the loss of detail from the laser scan data. This simplification keeps the
model from being too complex for rapid interaction. Later, detail is restored to the model
in the form of a displacement map, which is invoked only in rendering.

| Teeth

Figure 2. Neutral scan, teeth (left two images), NURBS model (right two).

Hiroki Itokazu, the chief modeler for our project, had previously developed at another
studio a method for modeling individual muscle shapes of a specific actor. Beginning
with a generic set of anatomically-based surface blendshapes (linear interpolation targets,
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in this case modeling the action of individual facial muscles) the modeler tries to
duplicate each of the extreme facial expressions that were scanned. After getting as close
as possible to an expression using the muscle blendshape weights, the modeler proceeds
to adjust individual control points of the spline surface to exactly match the expression
scanned. Once this matching surface has been created, the sculpted changes are mapped
back to the contributing blendshapes by back propagation. That is, for all spline control
points shared among several blendshapes, the sculpted changes are distributed according
to the parameter weights of the respective shapes. After iterating through the gamut of
expressions several times, a set of surface blendshapes corresponding to the contractions
of individual facial muscles of the particular person we are modeling results. These
shapes are used to track and animate the face.

4 Tracking

Given the head model with a complete set of muscle shapes as described, our process of
tracking is simple. We record the actor we hafve modeled on film or video, using one or
several calibrated cameras. The frames are digitized, and for each frame, the model head
is positioned and oriented so as to correspond to the plate image, and the model muscle
shapes are manipulated by hand to match the plate image expression. This is an exacting
but direct approach to modeling the performance, and was the method originally
employed to "Hirokimate" this linear surface model of facial musculature.

.. S

keytrame animation live action
(no optimization) reference

Figure 3. "Hirokimation"
CG model on left with muscles manually edited to match actor's expression on right.
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We gained confidence in the ability of the model to match the actor's expressions in this
way (Fig. 3).

To automate this process, we employ the following iteration, which we term the visual
servo loop:

(a) Adjust head position and orientation, and adjust muscle shapes to approximate the
plate image expression;
(b) render the head model;
(c) Compare the rendered image with the plate image:
Is rendered image close enough to the plate image?
If so, we are done.
If not, but we are making progress, return to (a);
Otherwise, EXIT, in failure.

In order for the visual servo process to converge, a basic requirement is that the actor's
muscle model has to be expressive enough to be able to mimic all expressions the actor
can assume. We'll assume in the following discussion that the performance is within the
range of shapes we have modeled.

To render the head model, we need to know both external and internal camera
parameters. We also need texture and lighting information.

To determine if the rendered image is close enough to the plate image, or to measure
progress toward that goal, we need a metric to compare the rendered image and the plate
image. Given such a metric, we can compute our visual servo loop using numerical
optimization. The objective function to be minimized is a scalar function based on the
metric, which encodes the distance between the rendered image and the plate image. The
optimization process computes the head position, orientation, and muscle parameters that
minimize the objective function.

Given: a face model H, controlled by a set of muscle shape variables x[0 . . . nmuscles-1]
including head rigid-body variables, input plate images of camera p, I[p] with resolution
[nx, ny], p in a set of cameras c[p=0 . . . ncams-1], and known lighting L.

Let the rendered model image at camera p be:

Im[p] = Im(x[O, . . . nmuscles-1], C[p], L)

We want to compute variables x[O0, . . . nmuscles-1] to minimize:

ncams-1 nx ny

r=2 2 2 dpllijl - Im[pllijlx, Clpl,L))* (1)

p=0 i=0 j=0

The optimizer we've employed in this work is L-BFGS [Zhu97] [Byrd95], a conjugate



SIGGRAPH 2005 Course #9 Digital Face Cloning

gradient solver which supports limits on each of the variables to be optimized. This
method requires us to compute the first derivatives of the objective function against x,
which includes all the muscle parameters, and the six degrees-of-freedom rigid body
transform.

Finite differences are a simple way to compute the first derivative of function (1). If we
are using central differences, then for each variable in x[0, n-1] we need to evaluate
function f twice. That is, we need to evaluate f 2*n times to compute all the partial
derivatives. If it takes k steps for the optimization to converge, each step requires 2*n
function evaluations. To compute one frame, we need to evaluate the function O(2*n*k)
times. For our model, this is relatively expensive, but most of the computation is
rendering. This straightforward and robust approach gives very accurate results.

We can also estimate the derivatives using optical flow, by relating 2D pixel motion to
the change in muscle parameters. Optical flow works very well if the movement between
successive frames is small, and if pixels simpy change location without changing
appearance. In many circumstances, including ours, these constraints are frequently
violated.

We use optical flow based on [Black96]. We tracked several sequences successfully
without iterating on the muscles; after first estimating the head transformation, we solve
for it and the expression coefficients directly from flow. In general, however, the visual
servo model governs the interpretation of the flowfield in a very useful way,
accommodating large frame-to-frame excursions and countless local appearance changes
resulting from occlusions, shading, highlights and shadows. Optical flow can be
understood as a measure of image distance. Our experience indicates very simple metrics
work with a 3D model; flow can be used to speed up the process but is unlikely to
improve it.

5 Gaze tracking

For face regions with drastic appearance changes from frame to frame, like gaze direction
and eye blinks, we applied a hybrid technique that uses optical flow equations but also a
statistical appearance model. The details of this technique are described in [Bregler02].
A training set of example images is selected. Figure 4 shows a training image. In this
case we used 15 different example images. Important morphing control points were
labeled by hand (the green points in the example images). We also match the rotation of
a 3D eye model to each frame. Using morphing, we extend this training set by
interpolating between all pairs of hand-labeled images (in our example, from 15 to 330);
the coordinates of key points and rotations of the eye model are similarly interpolated.
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Figure 4. Eye tracker training image

Then the images of the expanded training set were aligned by a best affine fit, and
principal component analysis was applied. The PCA stack of images, along with the
associated feature points and eye rotations, constitute our statistical appearance model.

This model is used in the eye tracking process in a manner analogous to Lucas-Kanade
affine tracking [Lucas81] [BakerO4]. The tracker is initialized with a manually selected
window on the first frame to be tracked (this first frame is ideally part of the training set,
in which case this interactive match has already been performed). We formulate the
image match as an optimization, solving a linear problem to find the best affine
transformation of the window image to the next frame. After applying this
transformation, we project the warped image onto the PCA stack to estimate a new
window image. After ten iterations or so, the tracker converges on a warp and a set of
PCA coefficients to match the next frame. The coefficients are used to interpolate the 3D
model eye rotations.

Such an appearance model, and such a tracker, is appealing for studio visual effects. It is
very general purpose, easily trainable, and can be "keyframed," in the sense that any
problematic frames in a sequence to be tracked can be entered into the training set along
with the desired outputs.
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In subsequent work, we've successfully used visual servo directly on 3D eye models to
track gaze. Unlike the image-based tracker, such an approach does not capture the
correlation between gaze direction and the muscle shapes around the eye, which is
visually very important. Model-based visual servo, on the other hand, has the conceptual
advantage of being better suited to accommodate occlusion and varying illumination.

6 Modeling and rendering details

This work was originally targeted at live action visual effects for motion picture
production. A particular scenario in which a well-known actor interacts with his younger
self was envisioned. The task of the Human Face Project was to make such movies
possible by creating totally convincing CG faces which could precisely duplicate the
performance of human actors.

Since the time our test film was produced, significant advances in rendering human flesh
have been achieved. In particular, the transillumination of flesh has been modeled by
simulated subsurface scattering.

In the judgment of the authors, the project was extremely successful in tracking and
animating human performance, but less successful in photorealistic rendering. Some of
the techniques we developed, however, are complementary to methods of rendering CG
humans today, and may be valuable in other contexts. To achieve our goals, we were
obliged to animate faces with far more detail than we could track.

In section 1, we observed the loss of surface detail attendant on the NURBS modeling of
our neutral-expression head model. The muscle blendshapes based on it are similarly
simplified. In order to compensate for this loss of detail, we used the life mask we cast of
our actor to create a high-resolution displacement map.

To do this, we had the cast digitized with a slow, very high-resolution structured-light
projection optical scanner [ATOSO1]. The result was a 3.3 million polygon surface
model with impressive detail (Figure 5). We downsampled this model to a tractable
resolution for interaction, and our modeler painstakingly fit our NURBS model to match
it, first by matching position and orientation, then by adjusting the facial muscles, and
finally, by moving control vertices to match it very closely. In doing so, he was
compensating for the sagging of facial features weighed down by the molding compound.
This sagging of facial features is the main drawback of casting faces of visual effects
work, and is the main reason visual effects artists are enthusiastic about laser scans --
they capture the features as in life, undeformed by the casting process. We combined the
best features of both approaches.
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Figure 5.

Digital Face Cloning

High resolution life mask scan data.
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Having registered the NURBS model with a downsampled version of the detailed
polygonal scan data, we read the registered NURBS head along with the scan data before
downsampling into Cyslice®, a commercial modeling application, and used it to compute
displacement maps for the patches in the NURBS model.

A still higher level of detail is required to reproduce very fine wrinkles, pores, and
stubble. We extracted this level of detail from the high resolution images acquired for
texture mapping, as described in section 1. When we shot cross-polarized texture images,
we also shot parallel-polarized images, which emphasize highlights and surface detail.
Because these images were not acquired in the same flash, but sequentially, they did not
precisely register with the cross-polarized texture images. In general, because they are
view dependent, highlights are a source of error for optical flow. In this case, however,
because the misregistration was small, because the uniform diffuse illumination created
corresponding dark features for wrinkles and light-trapping concavities in both images,
and because specular reflections were present in only convex details in one of the images,
we were able to use optical flow to register them. By differencing these registered
images, we created a map which could easily be adapted to simulate high resolution
surface relief.

The high resolution relief maps that resulted were composed with a lookup function that
gave a nice shape to the profile of the wrinkles. Then, a sequence of linear filtering and
morphological operations isolated pores from wrinkles and other surface features. We
used these computed pore sites in the beard area to "grow" geometric stubble, and
instanced fine downy hairs on the rest of the skin. These fine hairs are visible only in
closeup, but have a softening effect on the shading in midrange shots.

Figure 6.' Left, 11 displacements. Center, tension map. Right, tenioﬁ modlated
wrinkles.

Having recognized and separated pores and wrinkles in the texture, we create a dynamic
wrinkle displacement map. This map included hand-painted wrinkles and furrows based
on our original laser-scanned expressions, and on video studies of changes in expression.
Such surface displacements in CG animation typically do not animate; lumps, folds and
wrinkles simply "go along for the ride," adding detail to the model. We envisioned
"behavioral" displacements, which act in a manner consistent with the material behavior
of the surface. Folds and wrinkles can arise naturally in a physical simulation, but our
surface features would ideally match such details in the actor we model. Folds and
wrinkles are governed not simply by current physical conditions, but accordingt to the
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history of the material; prior flexing creates variable elasticity, and the appearance of
such features in skin is very individual. Also, at the level of detail we needed to work, a
simulation such as a finite element model would be very computationally demanding.

Figure 7. Model rendered without (left) and with (right) wrinkles.

Our solution is to filter the displacements into directional components, using pyramidal
filter banks or Fourier-domain methods. We divide dynamic wrinkles into horizontal,
vertical, diagonal and antidiagonal components with respect to the U, V parametrization.
For behavioral animation, we compute the distance of each spline control vertex from
each of eight neighbors in the neutral expression. At each animated frame, we compare
the distances to their neutral values to compute stretch and compression on each axis.
We term this a "tension map," and use the directional coefficients to modulate the
directional components, which are summed to produce the wrinkles for that frame.

A simple way to think of this, is that wrinkles "flatten out" when they are aligned
opposite an axis of sufficient stretch, while wrinkles aligned with the stretch will be
unaffected. But the same process can be used to create compression wrinkles, like the
furrows of the brow. In this case, sufficient compression interpolates the corrugations in.
Figure 6 shows an early test of the concept. The unmodulated displacements are on the
left, tension in U and V are displayed as intensity of red and green in the tension map at
center, and the rightmost frame shows the displacements modulated by tension. Figure 7
shows a more refined rendering of our model with and without computed wrinkles.
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Figure 8. The model illuminated by CG lights

Our shading model is a BRDF model, based on Stephen Marschner's characterizations of
human skin [Marschner99]. This shading method was successfully combined with on-set
captures of high dynamic range environment maps. The result is significantly better than
many commonly used shading models, capturing in particular the grazing-angle sheen
that arises from lipid films in skin, and is so identifiably human. The environment map,
captured by multiple photographic exposures of reflective spheres, or using a custom rig
we built with digital cameras in a dual fisheye configuration, provided complex, detailed
illumination that matched the plate photography.

Figure 8 illustrates the views of the model with CG lights. Figure 9 shows the same
model illuminated by high dynamic range environment maps: the first two were
cathedral and forest maps created by Paul Debevec and used with his permission
[Debevec98], the third example is from the casino set of our demonstration film.

Figure 9. The model illuminated with environment maps.
7 Cross-mapping

There are many ways of modeling human facial expression. Some systems interpolate
among whole faces in different expressions (like the expression scans in section 1).
Others use the actions of muscle groups, as in FACS [Ekman98], or general purpose
animation deformers implemented as clusters, wires, skeletons, lattice deformers, or force
fields. MPEG-4 FAPS provide detailed expression changes, but are not strictly
anatomically based.

Human facial expressions are innate, not learned. Blind children exhibit typical facial
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expressions for emotions such as fear, rage and joy, and human beings share many
expressive features with other animals. Yet faces themselves are individual. The same
muscle activations that shape one face into a characteristic expression will not produce
the same shape on another face. But there is a strong sense in which they can be said to
have the "same" expression.

Muscles do operate in groups, and people rarely train themselves to flex single facial
muscles. But one could expect, as expressions change, to better model coarticulation of
muscles by controlling them individually.

It is also true that separating our animation deformers into individual facial muscles
permits us to better approximate such actions as rapidly moving the head so as to deform
the flesh of the face by acceleration, or using the tongue to bulge the cheeks or lips. In
can be argued that such actions are not well reproduced by models of facial muscles, of
course, and actions such as puffing up the cheeks with air are a good argument for extra
blendshapes that are not accounted forby the muscles of the face.

Our approach to cross-mapping a captured performance to another face is simply to
directly apply the muscle parameters we track, to the muscle shapes of any other
character we may model. Of course, it is possible to shape the mapping by biasing or
scaling components, or applying motion signal processing. Figure 10 shows a tracked
expression applied to multiple models.

Input Actor Output Characters

Figure 10. The actor's tracked expression applied to multiple models.
8 Summary and future work
The advantages of our image based performance capture include:

* Accuracy: We can achieve subpixel accuracy in registering our 3D model with source
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images. This allows us to capture subtle expressions and changes in expression.

* Robustness: Every pixel can contribute to the estimation of the muscle parameters. As
a result, we have substantial immunity to noise and optical flow error. The model
constrains the solution to expressions and actions the actor can perform.

* Flexibility: Our approach can work with one or multiple cameras, which need not be
identical. It works with marked faces or unmarked faces. It can take conventional
motion capture data (in the form of 3D tracked points) and, by fitting it with the muscle
model, produce a more detailed result than scattered interpolation. It can also work with
2D tracking data, in the form of pixel coordinates of feature points.

* Animation: The model has on the order of 60-70 parameters, which control pose and
expression in a direct and intuitive way. It is perfectly suitable for keyframe animation,
rotomation, or puppeteering.

Compared with conventional motion capture approaches, the main disadvantages of our
method are:

* Turnaround time: We are far from being able to drive a CG character in real time,
while the actor is performing.

* Storage space: We need to store all the images before we can capture the performance.
In the case of film, high definition video, and/;or multiple cameras, the storage
requirement for all the images can be high.
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After all this work, the actor meets his younger counterpart.
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The Faces of ""The Polar Express"
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Abstract

This paper covers methods used by Imageworks artist and technologists on The Polar
Express (“PEX”) for the entire facial pipeline. It includes a wide range of information
from the shoot through to the final facial animation seen on the screen.

The main areas that will be covered:

( Facial Performance Capture — Defines performance capture and gives technical
details about the shooting of the movie.

(' Facial Tracking — Covers technical obstacles encountered with facial tracking
and the solutions used to overcome these issues.

( Facial Rigging — Outlines how the rigs were designed to accommodate the
motion capture and animation.

( Facial Integration — Covers the retargeting of the data to the character and other
tools that were used to prepare the motion capture for the animation department.

(' Facial Animation — Covers the tools and techniques that the animation
department used to enhance the data.

1 Introduction

The Polar Express was the first film to successfully utilize facial motion capture for an
entire CG movie. Although it has been attempted on other movies in the past such prior
movies have not been able to employ this method properly or efficiently. At the
beginning of PEX, it looked as if Imageworks would encounter the same fate and all of
the facial motion capture data would have to be discarded. However, new technology
was created by Imageworks’ artists and engineers to make it possible to utilize facial
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motion capture. Once all the necessary tools were in place, and under a seemingly
impossible deadline, a quick and precise process was designed that allowed realistic
facial movement to be produced within a short timeframe.

2 Performance Capture

Performance capture is a technique that utilizes motion capture technology to portray the
entire performance of the character. In traditional motion capture, the body and the face
are recorded at different times and later blended together. Utilizing performance capture,
the body and the face are captured at the same time to depict the entire performance of
the actor.

The capture was challenging because there were only two months to prep for the shoot.
Many changes and demands arose that required the technology to change often.
Originally it was intended that the 10 feet x 10 feet capture volume was to capture the
face and the body of two performers on the stage at the same time. It later became
necessary to capture four people on the stage at the same time, which would allow for a
more interactive shoot. Initially, 56 cameras captured the face and 8 cameras captured the
body. When it was determined that it was necessary to capture 4 people in the volume at
the same time, 8 more cameras were added to capture the body. During the shoot, 80
markers were used for the body and 152 markers were used for the face. When all four
actors were on the floor at the same time the cameras were capturing 928 markers at
60fps. The actual shoot lasted 3 months and averaged 50 gigs of raw data every day.

3 Facial Tracking
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The Imageworks Facial Tracking Department delivered 1400 facial takes within 1.5
years, which accounted for 16 hours of tracked data for the 96-minute movie. Described
below are some of the key elements to facial tracking that became necessary to deliver
high quality data for the facial system.

Stabilization is the process of removing the motion of the body from the facial markers.
This is important because the retargeting calculations require a stationary input. Any
slight shift in the alignment causes artificial facial changes on the character.

Stabilization is one of the most difficult aspects of the facial cleaning process. There is
no place on the face that does not have some amount of slide relative to the underlying

bone. As a result, this required the development of a tool that allowed the user control

over how and when to adjust stabilization. The artists were then able to specify which

markers controlled any of the six degrees of freedom over any frame range.

In addition, higher-level tools were then developed to automatically stabilize data. For
example, tools that limited the forehead markers from moving side to side or away from
the forehead. These, along with other tools, enabled more than 75% of the stabilization
to be automatically completed.

T-pose: The t-pose (relaxed facial frame) frame was pasted to the start of the animation
and checked for alignment. If the t-pose was not perfectly aligned with the rest of the
take, the t-pose would have to be re-stabilized to the first frame of animation. This frame
was later pasted to the start of every take to properly initialize the retargeting.

Normalization: Any two or more takes that are blended during a shot have to be
normalized. Normalization is the process of adjusting the marker placement so that the
positions of the markers in the t-pose are identical on every take. Normalization uses a
master t-pose file, which is a single frame of a t-pose for an actor that is accepted as a
perfectly neutral face with the best possible marker positions.

Normalization is important because the blending occurs on the marker data before the
retargeting process. If the takes are not normalized, marker position differences create
the effect of expression changes during blend regions.

Normalization consists of two steps. First, the take is oriented to allow the t-pose for that
specific take to become perfectly aligned with the master t-pose. This relies on landmark
marker positions, such as the corners of the eyes and the mouth, which were expected to
change very little from one day to the next. Second, after the take is aligned, a constant
offset is applied to each marker so that its position in the t-pose is identical to the position
in the master t-pose. When done properly any number of takes can be blended together.
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Regular Normalized

4 Facial Rigging

The facial set up on PEX was composed of several layers that ultimately controlled the
hi-resolution geometry.

The base level of control is called the “mug” which is a series of degree 1 nurbs patches.
The control vertices of the “mug” are controlled by the PFS muscle system plus the
motion capture data, via a series of locators called “markers.” The motion capture data
has freedom to go in any direction that it wants. The muscles must move along the offset
vectors that have been pre-defined by the rigging department. The muscle and marker
movement combined give one value that is passed on to the “fascia layer.”

The marker locations are determined by where the mocap data markers were placed on
the actors’ faces. The layout of patches for the mug are determined by the location of the
markers.

The mug influences the movement of the “fascia layer” or “fat layer” through deformers.
The fascia patches are simplified nurbs patches based on the high-resolution geometry.

The high-resolution geometry has many deformer connections from the fascia patches
that give the final shape to the skin.
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5 Facial Integration

One of Imageworks’ more complex challenges with the performance capture of PEX was
the fact that adults performed most of the children’s roles. This was an especially
challenging problem, the performance from adult to child constantly had to be retargeted.
As evidenced in the film, the conductor and hobo are perhaps the most realistic characters
of the entire movie. This is mainly due to the fact that there was a one to one retargeting
on these characters.

The difference in the retargeting became very obvious when observing the performance
of Tom Hanks as the Hero Boy character. Early difficulties were faced when the data was
retargeted to a smaller head, causing an expanding effect on the character. The fix for
this was to adjust the parameters and retarget the character again.

Retargeting the data from the actor to the character was done by breaking the face down
into muscle groups and scaling the motion of these muscle groups to match the
proportions of the characters. The landmarks were measured on the face of the talent and
destination character and scaled accordingly. The image below illustrates the parts of the
face that where scaled together.

There were problems with retargeting with this method that did not always give the most
desirable results because the actors’ and characters’ proportions are different. To fix this
problem, David Bennett designed the Facial Control Rig (FCR). This tool allowed the
user to edit the retargeted data directly. It had several offset layers, which made it a useful
to offset or animate without destroying the original data. These offset layers also provide
a useful way of scaling the data to get a more accurate retarget. This tool streamlined the
animation process and made it possible to finish 3000-frame animations within a day or
two.
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6 Facial Animation

The Performance Facial System (PFS) was the tool used by animators to accent the
motion capture and animate the face. Here are some key features of the PFS:

Muscles: are driven by curves on the face. These curves are meant to mimic the actual
muscles of the face. The curves can be edited but not through the UI. When values are
applied to muscles it creates an offset from the motion capture.

Poses: are created from assigning values to multiple muscles that create a very specific
shape. The user can save this muscle value assignment as a pose with which they can use
to animate.

Blending Motion Capture with Animation: in some instances it is necessary to blend
out of facial motion capture data. In these scenarios the animator simply blends out to the
retargeted data and then continues to animate. The main advantage was that it becomes
possible to leave a certain percentage of the original retargeted data on the skin, which
gives it a very life-like effect, yet still enables for animation over the top of it.

Tweak Clusters: The main use for tweak clusters is to add fine details. Tweak clusters
allow the user to animate the individual vertices, or user-defined clusters of vertices, of
the mesh directly. This gives the animator ultimate control over the facial animation.

7 Conclusion

As discussed, the realism created throughout The Polar Express was extremely difficult
to accomplish. The closer one gets to realism within the world of animation, the more
distortions from reality the audience is generally able to observe. While 100% realistic
facial animation has not been reached, through continued development of technology and
tools, and the creative input of talented individuals, such as those working on The Polar
Express, this goal will one day be achieved.
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Audience Perception of Clone Realism

J.P. Lewis

The digital clones that have appeared briefly in recent movies are remarkable examples of computer
graphics. We cannot say “mission accomplished” yet however.

In this session we will partially address two questions:

1. are the current virtual actors really “photoreal”?

2. does everyone perceive an image to be equally realistic?

These questions will be investigated using an audience survey, in which both real and synthetic face
images are viewed for various amounts of time, and people are asked to identify the synthetic faces.

The survey has been performed on previous audiences several times, and the results are interesting, and
disappointing:the majority of the viewers correctly identify most synthetic images in only 1/4 setbiw.
includes images resulting from major industry efforts involving many person-years of effort. On the other
hand, a few CG face images actually do fool a relatively large proportion of viewers.

Further, we have asked both CG professionals and casual viewers to suggest what is wrong with the
synthetic images. There is little consensus, and the varied responses include comments such as

e there is something wrong with the eyes

e the face is too perfect

The lack of specificity in these comments reveals a challenge to progress on digital cloning:

We will have difficulty producing plausible virtual actors if we canpot
clearly identify what is wrong with the existing ones.

Recently Lyu and Farid [1] demonstrated a program that automatically distinguishes between real syn-
thetic images in many cases. The program operates on low-level image statistics without knowledge of the
subject matter of the image. A wavelet representation is augmented with cross-scale correlation statistics, and
these combined statistics are the input to trained classifiers (both linear discriminant and support vector ma-
chine). The high performance of the program clearly shows that current “photoreal” renderings are missing
something. Unfortunately this program cannot indicate what is missing, at least in any usable form.

The viewing studies mentioned above suggests that further investigation in this area may be worthwhile.
Remarkably, viewers appear to be more accurate at discriminating synthetic face images at the short (1/4
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second) exposure than at longer exposures. This indicates that some problems with current renderings lie in
fairly global characteristics that can be preattentively judged (eye movements to fixate on different details
themselves require on the order of 200-250 msecs. each). Under longer observation, it is as if detail percep-
tion begins to dominate our decision making, and with all the details beautifully rendered, viewers are less
sure that what they are seeing is synthetic.

In this section of the course we will summarize the results of previous viewing studies and then invite
the course audience to directly experience these issues by participating in the survey (audience votes, several
minutes). The issues raised here will be revisited in the subsequent panel discussion.
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Abstract

Blend shape animation is the method of choice for keyframialfanimation: a set of blend shapes (key facial

expressions) are used to define a linear space of facial exjmes. However, in order to capture a significant

range of complexity of human expressions, blend shapestodeel segmented into smaller regions where key
idiosyncracies of the face being animated are presentoRmifig this segmentation by hand requires skill and a
lot of time. In this paper, we propose an automatic, phy$yealotivated segmentation that learns the controls and
parameters directly from the set of blend shapes. We shoustfellness and efficiency of this technique for both,
motion-capture animation and keyframing. We also provideralering algorithm to enhance the visual realism

of a blend shape model.

Categories and Subject Descript¢scording to ACM CCS) 1.3.7 [Computer Graphics]: Animation

1. Introduction range of expressions. Alternatively, the blend shapes ean b
directly scanned by a range scanner from a real actor or a
clay model. With this last technique, the scanned data needs
to be registered in order to produce blend shapes that share
a common topology and can therefore be combined cor-
rectly.

The human face has always held a particular interest for the
computer graphics community: its complexity is a constant
challenge to our increasing ability to model, render, and an
imate lifelike synthetic objects. Facial animation regsia
deformablemodel of the face to express the wide range of
facial configurations related to speech or emotions. There o . .
are two traditional ways of creating deformable face madels 10 €xpress a significant range of highly detailed expres-
using a physically-based model or a blend shape model. A sions, digital anlmato_rs often hav_e to create Ia_rge_llblsarl
physically-based model generally simulates various sk | of blend shapes. In this case anaive parameterization of the
ers, muscles, fatty tissues, bones, and all the necessary co [2C€ model, one that would give a parameter for each blend
ponents to approximate the real facial mechanics. A blend Sh@pPe is not practical. In particular, the visual impact of
shape model, however, mostly disregards the mechanics: in- €"anging the contribution of a blend shape might be diffcult
stead, it directly considers every facial expression ag-a li © Predict, leading to a tedious trial and error processtfer t

ear combination of a few select facial expressions, thecblen US€r- Splitting the face geometry in several regions that ca

shapes. By varying the weights of the linear combination, a € SPecified individually somewhat alleviates this problem
full range of facial expressions can be expressed with very BY manipulating a smaller area the user is guaranteed that
little computation. the modification will impact only a specific part of the face

(e.g., the left eyebrow). However, segmenting the face manu
Nowadays, there are several options for creating blend ally is difficult and tedious. The segmentation should reflec
shapes. A skilled digital artist can deform a base mesh into the idiosyncracies of the face being modeled and provide
the different canonical shapes needed to cover the desiredediting and different level of details. In general, findimg t
right parameters and control knobs in a blend shape model
is no simple task, and it often leverages an understanding of
T e-mail: ppj@usc.edu the mechanical structure of the face. In this paper we addres
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the problem of parameterization and control of blendshape 1.2. Contribution and Overview

models. . .
In this paper, we address the problemspairameteriza-

tion and control of blend shape models. We design aun

tomatic techniquehat extracts a set of parameters from a
1.1. Related Work blend shape model. Instead of deriving our control mecha-

nism from the biomechanics of the face, we learn it directly
Blend shape interpolation can be traced back to Parke’s pio- from the available data. This solution is thus specific to the

neering work in facial animatio#? 13. This initial work has  processed blend shapes, and reflects the facial idiosyncra-
found many applications both, in computer graphics and in cies present in data. We also demonstrate the usefulness of
computer vision. these parameters through two animation techniques: motion

Parke’s original idea was rapidly extended to a segmented capture and keyframing. Finally, we propose a new render-

face where the regions are blended individuéllyallowing ing algorithm for blenql shape mpdels; one that addresses the
a wider range of expressions. Traditionally these regioas a problem of texture misregistration across blend shape tex-

definedmanually A prototypical example is the segmenta- tures.

tion of a face into an upper region and a lower region: the up- ~ We will describe our work by starting in section 2 with
per region is used for expressing emotions, while the lower some definitions and notations. Section 3 and section 4 are
region expresses speech. Although this approximation-is of then dedicated to the use of the model in motion capture
ten used in practice, such an ad hoc separation does not re-animation and keyframing respectively. We also explain how
flect the subtle interdependencies appearing in reality. some of the blur artifacts can be avoided while rendering the

Blend sh dels h Iso found thei i th blend shape model in section 5. We finally conclude with a
€nd shape mode’s have aiso foun theirway int '€ COM- jiscussion of our results and ideas for future research.
puter vision community where they help analyze face images

and video. Blanz and Vettérdesigned an algorithm that fits
a blend shape model onto a single image. Their result is an 2. Blend Shape Face M odel
estimate of the geometry and texture of the person’s face.
Pighin et al'5 extended this work by fitting their model to

a whole sequence of images, allowing manipulation of the
video by editing the fitted model throughout the video se-
guence.

Setup We define a blend shape face model as being a con-
vex linear combination of basis vectors, each vector be-
ing one of the blend shapes. Each blend shape is a face
model that includes geometry and texture. All the blend
shape meshes for a given model share the same topology.

There has been little research on interactive blend shape The coordinates of a vertéx belonging to the blend shape
model manipulation with the exception of the work by model can then be written as follows:
Pighin et al*4. They describe a keyframe animation system N
that uses a palette of facial expressions along with a painti V= Zai Vi
interface to assign blending weights. The system gives the =
animator the freedom to assign the blending weights at the
granularity of a vertex. This freedom is, in practice, a draw where the scalarg; are the blending weightd/; is the
back: by not taking into account the physical limitations of location of the vertex in the blend shap&ndn is the num-
the face, it is rather difficult to create realistic expreasi ber of blend shapes. These weights must satisfy the convex
The system we propose is quite different: it does respect the constraint:
mechanics of the face through an analysis of the physical
properties of the data. In comparison, our system is more in-
tuitive and helps generate plausible facial expressioneeC ~ and must sum to one for rotational and translational invari-
et al3 have done some interesting work on mapping motion ance:
onto a set of blend shapes, but where they build a segmenta- n
tion of the face manually, we learn it from the data. Zdi =1

i=

aj >0, foralli

Segmentation is a very active topic in image processing
and computer visiori. However, the problem we are ad- Similarly, the texture at a particular point of the blend
dressing is very different from image or optical flow segmen- shape model is a linear combination (i.e., alpha blending)
tation; our goal is to segment a 3D mesh that is a linear com- of the blend shape textures with the same blending weights
bination of sample meshes. Similarly, subdivision surface as those used for the geometry.
have become a popular representation for three-dimersiona
objectsé. The goals of subdivision schemes as researched Learning Controls Spanning a complete range of facial ex-
so far in the compter graphics community do not match that pressions might require a large number of blend shapes. For
of this paper: the segmentation of a linear space of meshes. instance, the facial animations of Gollum in the feature film
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(b)

Figure 1: Automatically generated regions: (a) Deformation map @eéormation in X, Y and Z directions is expressed as a
respective RGB triplet) (b) Segmentation for a low thredl{o) and for a high threshold.

The Two Towersequired 675 blend shap&sHowever, stud- are thereforawo complementary measures of deformation
ies5 have shown that it is possible to create complex and be- of our face model. To further simplify our model, we will
lievable facial expressions using only a few blend shapes by assume that the area distortion is negligible on a face (our
combining smaller, local shapes. For instance, the face ge- tests confirm that this assumption does not change the re-
ometry can be split in three areas, one covering the mouth sults significantly); therefore, we only use the laplacian t
and the jaws, another covering the eyes, and the last onesegment the face into disjoint regions of similar amount of
the eyebrows. If the regions can be manipulated indepen- deformation, as explained next.

dently, the number of possible combinations (and therefore

the number of possible expressions) increases significantl Segmentation Debunne et af have introduced a simple
Although one can define the regions manually, it requires discrete evaluation of the laplacian operator present irlEq
considerable skill and time, and needs to be performed eachwe compute this discrete laplacian value at every vertex of
time a new character is animated. Instead, we propose a sim-every non-neutral (i.e., expressive) blend shape, andfeke
ple, automatic and fast (less than a minute for a typicaldlen  magnitude of the resulting vectors. This provides us with a
shape model) segmentation process that leverages face dedeformation map for each expression. We gather these maps
formation information directly from the input data to creat  into a single deformation may by computing for each ver-
meaningful blend regions. tex independently its maximum deformation value across all
expressions. This resulting map (see Figure 3(a) - expiesse
as a vector map to show direction of deformation) measures
the maximum amount ofocal deformationthat our face
model has for the blend shapes used. A fast segmentation
can now be performed by simply splitting this map in the
regions with low deformation, and those with high deforma-
tion. The threshold for this split can be chosen as:

Physical Model One of the simplest physical models for
deformable objects is that tifiear elasticity The deforma-
tion of an object is measured by the displacement féeld
between each point’s current position and its rest position
As explained, for instance, in Debunne etathe govern-
ing equation of motion of a linear elastic model is the Lamé

formulation:
threshold= D[n ]

whereD is the array of sorted deformation valuesis the

pa=AAd+(A+WO(0-d) size of this array antlis a scalar between 0 and 1.

@
That is, first sort all the deformation values, and then ob-

tain the deformation at the position that is a function of the

number of values. For instance, to generate the regions in

In our current context is the displacement of the vertex
from its position on the neutral facp,is the averaged face
mass densitya is the vertex’ acceleration, aidandp are

the Lamé’ coefficients that determine the material's behav-
ior (related to Young's modulus and Poisson ratio). The in-
terpretation of the previous equation is relatively simfhe

laplacian vectoAd of the displacement field represents the

Figure 3(b,c), we usetl= 0.25 andt = 0.75 respectively.

Depending on the threshold, disconnected regions are cre-
ated all across the mesh. We automatically clean up the re-
gions by absorbing isolated regions into larger regions and

propagation of deformation through the blend shape, while minimizing concavity of the regions. Finally, each regisn i
the second term represents the area-restoring force. Theseextended by one vertex all around its boundary, in order to

two second-order operators, null for any rigid deformation

(© The Eurographics Association 2003.
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is a large, least-deformed region (i.e. the background),aan
number of overlapping regions where there is generally more
significant deformation in the range of expressions. These
latter regions (see Figure 3(b,c)) correspond to verticas t
generally undergo similar deformation: locally, each oegi
deforms in a quasi-rigid way. Thus, linear blending in each
of these regions will reconstruct much more detail of the tar

andRBF(P;j) is the interpolated residual at vertBx:

m

RBF(Pj) = 'Zexp(*HMi —Pjl) Ci

®)

In equation 3 the vectolS; are computed using the known
values of the residual &;. Since the system of equations is

get face expression as demonstrated in the next two sections linear in the unknowns, using linear least-squares pravide

3. Animation with Motion Capture

an estimate of the unknowné Note that only applying the
residual would have a different effect; by first projecting o
the set of blend shapes we obtain a face geometry that re-
flects the blend shapes, then we apply the residual which

We express the motion in the motion capture data using the brings the geometry closer to the motion. Choe étsahp-

blend shape model. That is, we assume that the motion (0r proach to mapping motion onto a set of blend shapes is very
the per-frame position) of a motion marker can be expressed gimjjar, The main difference is how the residual is take int

as a linear combination of corresponding points in the blend
shapes. Namely:

n
M= Ziai Vij
i=

where M is a location on the face whose motion was
recorded andj is the corresponding location in blendshape
i. mis the number of motion markers andhe number of
blend shapes (as in Choe et.3l.

Given several such equations, we find the blending
weightsa;. We recast this as a minimization problem, where
we need to minimize the sum of the differences:

m n

> M- (_Z\Gi Vij)J?

=1 i

@)

The whole system is a linear system of equations where
the unknownsy; are the weights in the blend shape combina-
tion. By using an iterative quadratic programming soler
we obtain the optimal values of the blending weightsn

account. In their approach the blend shapes are modified to
adapt them to the motions. We, on the other hand, use radial
basis functions to modify the geometry on a per-frame basis.
Their method would probably be more effective for process-
ing a large quantity of motions, whereas ours would perform
better on a small dataset.

Instead of solving the above system for the entire model,
we solve for each region created using our automatic seg-
mentation process. Doing so gives us localized control over
the face mesh and results in better satisfaction of theadpati
constraints. This also allows us to express a wide range of
motion using only a limited number of blend shapes (ten, in
our case).

For every frame and for every region, we construct the
above minimization problem and obtain blending weights.
The same weights are then used to obtain, for all vertices of
the region, new positions that match the motion. Thus, for
every frame of motion, we can solve a minimization prob-
lem to obtain the blending weights and consequently the face
mesh that follows the motion capture data.

4. Keyframe Editing

the least squares sense. Solving this system is equivalent
to orthogonally projecting the motion onto the set of blend Using our blend shape model, we can interactively construct
shapes. In general equation 2 does not have an exact solu-face meshes that can be used as keyframes in a keyframing-
tion, since the motions can be more expressive than what the based facial animation tool.

set of blend shapes allows. To produce an animated mesh

that follows the motion more precisely we complement the Creating Keyframes Creating a keyframe is similar to pro-
projection on the blend shape basis by translating the ver- ducing a frame in a motion capture sequence in that we need
tices in the mesh by the residudt{ — 57 ; o - Vij). The to specify control points (markers), their respective map-
residual, which is only known for a small set of points, is pings, and spatial constraints (i.e. the positions of thekma
interpolated to the rest of the facial mesh using radialsasi ers). In our interface, the user can interactively spedify a
functions10. The final coordinatesyj, of a vertex on the the above by clicking and dragging with the mouse on the
face are then constructed using: face model. As in the process used in the motion capture
application (see Eq. 2), we construct a minimization prob-
lem using the interactively specified constraints and obtai
blending weights.

V; =P;+RBF(P;j)
whereP; is the projection on the set of blend shape:

n

Pj= Zldi Vij
i=

Regions and Region Hierarchy We can segment the blend
shape model into regions using our automatic segmentation

(© The Eurographics Association 2003.
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Figure 2: Successive keyframe editing from coarse (left) to fine irighel of details.

technique. In order to allow keyframe editing at various lev  the face geometry, combining them linearly will result in a
els of detail, we build a hierarchy of regions. This hierar- blurred rendering. Thus, the frequency content of the ren-
chy is created by first running the segmentation algorithm dered face images varies as a function of time. Figure 4 pro-
described in section 2 with a high threshold value so as to vides an illustration of this phenomenon. The leftmost im-
generate small and localized regions. These regions eonsti age shows our model rendered with only one contributing
tute the lowermost region level. We can then merge regions blend shape. The middle image shows the rendered model
iteratively so that contiguous regions are merged together  with seven equally contributing blend shapes. In the middle
we generate higher region levels. rendering a lot of the details of the face texture have disap-

peared.
Motion Damping Some of the locations on the face do not

move significantly throughout the set of blend shapes (e.g. 10 alleviate this problem, we borrow an approach from
tip of the nose). If we were to select such a location and the image processing communiy we base our blending
try to deform it, using the interface describe so far, a small 0" & band-pass decomposition of the textures. More specif-
motion of the mouse would trigger a dramatic change in the 1@lly, we build a two level laplacian image pyramid out of
facial expression. To reduce the sensitivity of the system w ©ach blend shape texture map. This results in the creation of
scale the displacement of the mouse according to a factor WO texture maps for each blend shape: the first is a low-pass
that is inversely proportional to the maximum displacement Version of the original texture, and the second is a signed

in the blend shape model at the selected point on the mesh. detail texture. We then render the blend shape model as fol-
low: we first render the lowpass texture maps and blend them

Fig. 2 displays a sequence of manipulations performed on ogether. Then we render the detail texture map of a single
a keyframe. The successive keyframe editing is performed jeng shape using the consensus geometry and add it to the
with increasing level of details to refine the facial expiess  previous rendering. The result is a rendering that both, bet
in a localized manner. ter preserves the original spectral content of the blengdesha
textures and maintains the high frequency content constant
5. Rendering Realistic Blend Shapes throughout the animation. The rightmost rendering in fig-
ure 4 illustrates the improvement obtained by using this-tec

Basic Process Rendering the blend shape model is pretty nique

straightforward and can be done in two steps: first the con-
sensus geometry is evaluated, and then itis rendered as many
times as there are blend shapes in the model to blend theg Reqits
texture maps. This latter step is done by assigning to each
vertex’ alpha channel the corresponding weight for a given We demonstrate the techniques described in this paper with a
blend shape. To improve our renderings we decided not to Set of blend shapes modeled to capture the facial expression
blend the texture maps on the parts of the face whose tex- 0f an actor. We created ten blend shapes corresponding to ex-
ture should not vary as a function of the facial expression, treme expressions. We used an image-based modeling tech-
in particular, in the hair, neck, and ears area. These areas a Nique similar to the one developed by Pighin etalThree
textured using the texture map of any blend shape (usually pPhotographs of the actor were processed to model each blend
one corresponding to the neutral expression). shape: front facing, 30 degree right, and 30 degree left. All
the animations shown in the video were computed and ren-
Realistic Textures Texture misregistration is a common dered in real-time (30Hz) on a 1GhZ PC equipped with an
problem with blend shape rendering for realistic facial an- NVidia GeForce 3 graphics card. We decided to animate the
imation. If the textures do not correspond at each point on tongue, the lower teeth and the upper teeth in a simple proce-
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dural manner; they are moved rigidly and follow the motion 2.
of separate sets of manually selected points on the mesh. The
eyeballs are moved rigidly according to the rigid motion of

the head.

Motion Capture As described in section 3, we can project
recorded motion onto the blend shape model. The accompa-
nying video includes a few animated sequences that demon- 4.
strate this technique. The deformations of the face are very
natural and reflect the actor’s personality. Fig. 5 showsesom

of the frames obtained. The example shown uses only 10
blend shapes. To animate speech motion usually a much 5.
larger set of shapes needs to be used. We are able to ani-
mate the lips by using radial basis functions as described in
section 3.

Keyframe Editing Also included in the video is a demon- 6.
stration of the interactive tool described in section 4. o

allows us to sculpt the face in a very intuitive way. We start 7.
manipulating the face with a set of coarse regions and refine
the expression by using increasingly finer segmentations.

7. Future Work

We would like to improve our results in different ways. 9.
In particular, we feel our rendering algorithm would bene-

fit from a more principled frequency analysis of the blend
shapes texture maps. Using a feature preserving filter to sep 0
arate the high frequency data might lead to better restilts. |
would be interesting to try this technique on a non-human
character; one for which segmenting the face might be more
challenging and non-intuitive. We would also like to test ou
technique on a larger dataset of blend shapes. Finally, our
segmentation technique only takes into account geometric
information. We would like to extend it to also take advan-
tage of the texture information.

13.
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Figure 3: Automatically generated regions: (a) Deformation map (@eéormation in X, Y and Z directions is expressed as a
respective RGB triplet) (b) Segmentation for a low thredl{o) and for a high threshold.

@) (b)

Figure 4: Blend shape renderings (a) a single contributing blend sh@y) seven equally contributing blend shapes without
detail texture (c) seven equally contributing blend shapitk detail texture

Figure5: Mapping motion capture data on a set of blend shapes
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Synthesizing Realistic Facial Expressions from Photographs

Frédéric Pighin
University of Washington

Abstract

We present new techniques for creating photorealistic textured 3D
facial models from photographs of a human subject, and for creat-
ing smooth transitions between different facial expressions by mor-
phing between these different models. Starting from severa uncali-
brated views of a human subject, we employ a user-assisted tech-
nique to recover the camera poses corresponding to the views as
well asthe 3D coordinates of asparse set of chosen |ocations on the
subject’s face. A scattered data interpolation technique is then used
to deform a generic face mesh to fit the particular geometry of the
subject’sface. Having recovered the camera poses and thefacial ge-

ometry, we extract from the input images one or more texture maps
for themodel. Thisprocessisrepeated for several facial expressions
of aparticular subject. To generate transitions between these facial

expressions we use 3D shape morphing between the corresponding
face models, while at the same time blending the corresponding tex-
tures. Using our technique, we have been ableto generate highly re-
alistic face models and natural |ooking animations.

CR Categories: 1.2.10 [Artificia Intelligence]: Vision and Scene Under-
standing — Modeling and recovery of physical attributes; 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics — Animation; 1.3.7 [Computer
Graphics]: Three-Dimensiona Graphics — Color, shading, shadowing and
texture.

Additional Keywords: facial modeling, facial expression generation, facial
animation, photogrammetry, morphing, view-dependent texture-mapping

1 Introduction

There is no landscape that we know as well as the human
face. The twenty-five-odd square inches containing the fea-
tures is the most intimately scrutinized piece of territory
in existence, examined constantly, and carefully, with far
more than an intellectual interest. Every detail of the nose,
eyes, and mouth, every regularity in proportion, every vari-
ation from one individual to the next, are matters about
which we are all authorities.

— Gary Faigin[14],
from The Artist’'s Complete Guide to Facial Expression

Realisticfacia synthesisisoneof the most fundamental problemsin
computer graphics— and one of the most difficult. Indeed, attempts
to model and animate realistic human faces date back to the early
70's [34], with many dozens of research papers published since.

JamieHecker  Dani Lischinskit

tThe Hebrew University

Richard Szeliskit  David H. Salesin

fMicrosoft Research

The applications of facial animation include such diverse fields as
character animation for films and advertising, computer games[19],
video teleconferencing [7], user-interface agents and avatars [44],
and facial surgery planning [23, 45]. Yet no perfectly redlistic facial
animation has ever been generated by computer: no “facial anima-
tion Turing test” has ever been passed.

There are several factors that make realistic facial animation so elu-
sive. First, the human faceis an extremely complex geometric form.
For example, the human face models used in Pixar’s Toy Sory had
several thousand control points each [10]. Moreover, the face ex-
hibits countless tiny creases and wrinkles, as well as subtle varia-
tionsin color and texture— al of which are crucial for our compre-
hension and appreciation of facial expressions. As difficult as the
face isto model, it is even more problematic to animate, since fa-
cial movement is a product of the underlying skeletal and muscu-
lar forms, as well as the mechanical properties of the skin and sub-
cutaneous layers (which vary in thickness and composition in dif-
ferent parts of theface). All of these problems are enormously mag-
nified by the fact that we as humans have an uncanny ability to read
expressions — an ability that is not merely alearned skill, but part
of our deep-rooted instincts. For facial expressions, the slightest de-
viation from truth is something any person will immediately detect.

A number of approaches have been developed to model and ani-
mate realistic facial expressionsin three dimensions. (The reader is
referred to the recent book by Parke and Waters [36] for an excel-
lent survey of thisentire field.) Parke's pioneering work introduced
simple geometric interpol ation between face models that were dig-
itized by hand [34]. A radically different approach is performance-
based animation, in which measurements from real actors are used
to drive synthetic characters[4, 13, 47]. Today, face models can aso
be obtained using laser-based cylindrical scanners, such as those
produced by Cyberware [8]. The resulting range and color data can
be fitted with a structured face mesh, augmented with a physically-
based model of skin and muscles [29, 30, 43, 46]. The animations
produced using these face models represent the state-of-the-art in
automatic physically-based facial animation.

For sheer photorealism, one of the most effective approachesto date
has been the use of 2D morphing between photographic images[3].
Indeed, some remarkable results have been achieved in thisway —
most notably, perhaps, the Michael Jackson video produced by PDI,
in which very different-looking actors are seemingly transformed
into one another as they dance. The production of this video, how-
ever, required animators to painstakingly specify afew dozen care-
fully chosen correspondences between physical features of the ac-
torsin almost every frame. Another problem with 2D image morph-
ing isthat it does not correctly account for changes in viewpoint or
object pose. Although this shortcoming has been recently addressed
by atechnique called “view morphing” [39], 2D morphing still lacks
some of the advantages of a 3D model, such as the complete free-
dom of viewpoint and the ability to composite the image with other
3D graphics. Morphing has also been applied in 3D: Chen et al. [6]

applied Beier and Neely’s 2D morphing technique [3] to morph be-

tween cylindrical laser scans of human heads. Still, eveninthiscase
the animator must specify correspondencesfor every pair of expres-

sionsin order to produce a transition between them. More recently,



Bregler et al. [5] used morphing of mouth regions to lip-synch ex-
isting video to anovel sound-track.

In this paper, we show how 2D morphing techniques can be com-
bined with 3D transformations of a geometric model to automati-
cally produce 3D facia expressions with a high degree of realism.
Our process consists of severa basic steps. First, we capture multi-
ple views of ahuman subject (with agiven facial expression) using
cameras at arbitrary locations. Next, we digitize these photographs
and manually mark a small set of initial corresponding points on
the face in the different views (typically, corners of the eyes and
mouth, tip of the nose, etc.). These points are then used to automat-
ically recover the camera parameters (position, focal length, etc.)
corresponding to each photograph, aswell asthe 3D positions of the
marked points in space. The 3D positions are then used to deform
ageneric 3D face mesh to fit the face of the particular human sub-
ject. At this stage, additional corresponding points may be marked
to refine thefit. Finally, we extract one or more texture maps for the
3D model from the photos. Either a single view-independent tex-
ture map can be extracted, or the original images can be used to
perform view-dependent texture mapping. Thiswhole processisre-
peated for the same human subject, with several different facial ex-
pressions. To produce facial animations, weinterpol ate between two
or more different 3D models constructed in this way, while at the
same time blending the textures. Since al the 3D models are con-
structed from the same generic mesh, there is a natural correspon-
dence between all geometric pointsfor performing the morph. Thus,
transitions between expressions can be produced entirely automati-
caly once the different face models have been constructed, without
having to specify pairwise correspondences between any of the ex-
pressions.

Our modeling approach is based on photogrammetric techniques
in which images are used to create precise geometry [31, 40]. The
earliest such techniques applied to facial modeling and animation
employed grids that were drawn directly on the human subject’s
face [34, 35]. One conseguence of these grids, however, is that the
images used to construct geometry can no longer be used as valid
texture maps for the subject. More recently, several methods have
been proposed for modeling the face photogrammetrically without
the use of grids [20, 24]. These modeling methods are similar in
concept to the modeling technique described in this paper. How-
ever, these previous techniques use asmall predetermined set of fea-
tures to deform the generic face mesh to the particular face being
modeled, and offer no mechanism to further improve the fit. Such
an approach may perform poorly on faces with unusual features or
other significant deviations from the normal. Our system, by con-
trast, gives the user complete freedom in specifying the correspon-
dences, and enables the user to refine the initial fit as needed. An-
other advantage of our technique isits ability to handle fairly arbi-
trary camera positions and lenses, rather than using afixed pair that
areprecisely oriented. Our method issimilar, in concept, to thework
done in architectural modeling by Debevec et al. [9], where a set of
annotated photographs are used to model buildings starting from a
rough description of their shape. Compared tofacial modeling meth-
ods that utilize alaser scanner, our technique uses simpler acquisi-
tion equipment (regular cameras), and it iscapable of extracting tex-
ture maps of higher resolution. (Cyberware scanstypically produce
acylindrical grid of 512 by 256 samples). The pricewe pay for these
advantagesistheneed for user intervention in the modeling process.

We employ our system not only for creating realistic face models,
but also for performing redistic transitions between different ex-
pressions. One advantage of our technique, compared to more tra-
ditional animatable models with asingle texture map, isthat we can
capture the subtle changes in illumination and appearance (e.g., fa-
cia creases) that occur as the face is deformed. This degree of re-
alism isdifficult to achieve even with physically-based models, be-

cause of the complexity of skin folding and the difficulty of simu-
lating interreflections and self-shadowing [18, 21, 32].

This paper aso presents several new expression synthesis tech-
niques based on extensions to the idea of morphing. We develop a
morphing technique that allows for different regions of the face to
have different “percentages’ or “mixing proportions’ of facial ex-
pressions. Weal so introduce apainting interface, which allowsusers
tolocaly add in alittle bit of an expression to an existing compos-
ite expression. We believe that these novel methods for expression
generation and animation may be more natural for the average user
than more traditional animation systems, which rely on the manual
adjustments of dozens or hundreds of control parameters.

The rest of this paper is organized as follows. Section 2 describes
our method for fitting a generic face mesh to a collection of si-
multaneous photographs of an individual’s head. Section 3 de-
scribes our technique for extracting both view-dependent and view-
independent texture maps for photorealistic rendering of the face.
Section 4 presents the face morphing algorithm that is used to an-
imate the face model. Section 5 describes the key aspects of our
system’s user interface. Section 6 presents the results of our experi-
ments with the proposed techniques, and Section 7 offersdirections
for future research.

2 Modd fitting

Thetask of the model -fitting process isto adapt ageneric face model
tofit anindividua’sface and facial expression. Asinput to this pro-
cess, we take severa images of the face from different viewpoints
(Figure 1a) and ageneric face model (we use the generic face model
created with Alias|Wavefront [2] shown in Figure 1c). A few fea
tures points are chosen (13 in this case, shown in the frames of Fig-
ure 1a) to recover the camera pose. These same points are al so used
to refine the generic face model (Figure 1d). The model can be fur-
ther refined by drawing corresponding curves in the different views
(Figure 1b). The output of the process isaface model that has been
adapted to fit the face in the input images (Figure 1e), along with
a precise estimate of the camera pose corresponding to each input
image.

The model-fitting process consists of three stages. In the pose re-
covery stage, we apply computer vision techniques to estimate the
viewing parameters (position, orientation, and focal length) for each
of theinput cameras. We simultaneously recover the 3D coordinates
of a set of feature points on the face. These feature points are se-
lected interactively from among the face mesh vertices, and their
positions in each image (where visible) are specified by hand. The
scattered data inter polation stage usesthe estimated 3D coordinates
of the feature points to compute the positions of the remaining face
mesh vertices. In the shape refinement stage, we specify additional
correspondences between facia vertices and image coordinates to
improve the estimated shape of the face (while keeping the camera
pose fixed).

2.1 Poserecovery

Starting with a rough knowledge of the camera positions (e.g.,
frontal view, side view, etc.) and of the 3D shape (given by the
generic head model), we iteratively improve the pose and the 3D
shape estimatesin order to minimize the difference between the pre-
dicted and observed feature point positions. Our formulation is
based on the non-linear least squares structure-from-motion ago-
rithm introduced by Szeliski and Kang [41]. However, unlike the
method they describe, which uses the Levenberg-Marquardt algo-
rithm to perform a complete iterative minimization over al of the
unknowns simultaneously, we break the problem down into a series
of linear least squares problemsthat can be solved using very simple
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Figure 1 Model-fitting process: (a) a set of input images with marked feature points, (b) facial features annotated using a set of curves, (c)
generic face geometry (shaded surface rendering), (d) face adapted toinitial 13 feature points (after pose estimation) (€) face after 99 additional

correspondences have been given.

and numerically stable techniques [16, 37].

Toformulate the pose recovery problem, we associate arotation ma-
trix R¢ and a trandation vector t“ with each camera pose k. (The
three rows of R* arer¥, Y, and r§, and the three entriesin t* are tf,
tf, t5.) We write each 3D feature point as p;, and its 2D screen coor-
dinatesin the k-th image as (X, y¥).

Assuming that the origin of the (X, y) image coordinate system lies
at the optical center of each image (i.e., wherethe optical axisinter-
sects the image plane), the traditional 3D projection equation for a
camerawith afocal length f* (expressed in pixels) can be written as
=fkr§'pi+tl>§ y_szkf'§-pi+tly<

rs.p +ts borkp g

X ©
(Thisisjust an exE)Iicit rewriting of the traditional projection equa-
tion XX oc R*p. + t* where x = (XX, y¥, %).)

Instead of using (1) directly, we reformul ate the problem to estimate
inverse distancesto the object [41]. Let * = 1/t bethisinversedis-
tance and s¢ = f*n* be aworl d-to-image scale factor. The advantage
of thisformulationisthat the scalefactor s¢ can bereliably estimated
even when thefocal length islong, whereasthe original formulation
has a strong coupling between the f* and t§ parameters.

Performing these substitution, we obtain

X = P+
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If weletws = (1+ (¥ - p))~* be the inverse denominator, and
collect terms on the left-hand side, we get
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Notethat these equations are linear in each of the unknowns that we
wish to recover, i.e., p;, tf, tf, 7%, s, and R¥, if we ignore the vari-
ation of W with respect to these parameters. (The reason we keep
the wX term, rather than just dropping it from these equations, is so
that the linear equations being solved in the least squares step have
the same magnitude as the original measurements (X, y¥). Hence,
least-squares will produce a maximum likelihood estimate for the
unknown parameters [26].)

Given estimates for initial values, we can solve for different sub-
sets of the unknowns. In our current algorithm, we solve for the un-
knowns in five steps: first s, then p;, R¥, ti and t§, and finally n*.
This order is chosen to provide maximum numerical stability given
the crudeinitial pose and shape estimates. For each parameter or set
of parameters chosen, we solve for the unknowns using linear least
squares (Appendix A). The simplicity of this approach isaresult of
solving for the unknowns in five separate stages, so that the parame-
tersfor agiven cameraor 3D point can be recovered independently
of the other parameters.

2.2 Scattered datainterpolation

Once we have computed an initial set of coordinates for the fea
ture points p;, we use these values to deform the remaining vertices
on the face mesh. We construct a smooth interpol ation function that
givesthe 3D displacements between the original point positionsand
the new adapted positions for every vertex in the origina generic
face mesh. Constructing such an interpolation function isastandard
problem in scattered data interpolation. Given a set of known dis-
placements u; = p, — p{® away from the original positions p© at
every constrained vertex i, construct a function that gives the dis-
placement u; for every unconstrained vertex j.

There are several considerations in choosing the particular data in-
terpolant [33]. The first consideration is the embedding space, that
is, the domain of the function being computed. In our case, we use
theoriginal 3D coordinates of the points asthe domain. (An alterna
tivewould be to use some 2D parameterization of the surface mesh,
for instance, the cylindrical coordinates described in Section 3.) We
therefore attempt to find a smooth vector-valued function f (p) fitted



totheknowndatau; = f(p;), fromwhich we can computeu; = f(p,).

Thereare also several choicesfor how to construct the interpolating
function [33]. We use amethod based on radial basisfunctions, that
is, functions of the form

f(0) =Y co(lp—pil),

where ¢(r) are radially symmetric basis functions. A more general
form of thisinterpolant also adds some low-order polynomial terms
to model global, e.g., affine, deformations [27, 28, 33]. In our sys-
tem, we use an affine basis as part of our interpolation algorithm, so
that our interpolant has the form:

()= collp—pil) +Mp+t, 3)

To determine the coefficients ¢; and the affine components M and t,
we solve a set of linear equations that includes the interpolation
constraints ui = f(p;), as well as the constraints ) . ¢ = 0 and

Zi Gi piT = 0, which remove affine contributions from the radial ba-
sisfunctions.

Many different functions for ¢(r) have been proposed [33]. After
experimenting with a number of functions, we have chosen to use
$(r) = /% with units measured in inches.

Figure 1d shows the shape of the face model after having inter-
polated the set of computed 3D displacements at 13 feature points
shown in Figure 1 and applied them to the entire face.

2.3 Correspondence-based shape refinement

After warping the generic face model into itsnew shape, we can fur-
ther improve the shape by specifying additional correspondences.
Since these correspondences may not be as easy to locate correctly,
we do not use them to update the camera pose estimates. Instead,
we simply solve for the values of the new feature points p; using a
simpleleast-squaresfit, which corresponds to finding the point near-
est the intersection of the viewing rays in 3D. We can then re-run
the scattered data interpolation algorithm to update the vertices for
which no correspondences are given. This process can be repeated
until we are satisfied with the shape.

Figure 1e shows the shape of the face model after 99 additional cor-
respondences have been specified. To facilitate the annotation pro-
cess, we grouped verticesinto polylines. Each polyline corresponds
to an eadily identifiable facial feature such as the eyebrow, eyelid,
lips, chin, or hairline. The features can be annotated by outlining
them with hand-drawn curves on each photograph where they are
visible. The curves are automatically converted into a set of feature
points by stepping aong them using an arc-length parametrization.
Figure 1b shows annotated facial features using a set of curves on
the front view.

3 Textureextraction

In this section we describe the process of extracting the texture maps
necessary for rendering photorealistic images of a reconstructed
face model from various viewpoints.

The texture extraction problem can be defined as follows. Given a
collection of photographs, the recovered viewing parameters, and
the fitted face model, compute for each point p on the face model
itstexture color T(p).

Each point p may be visible in one or more photographs; therefore,
we must identify the corresponding point in each photograph and
decide how these potentialy different values should be combined

Figure 2 Geometry for texture extraction

(blended) together. There are two principal ways to blend values
from different photographs: view-independent blending, resultingin
atexture map that can be used to render the facefrom any viewpoint;
and view-dependent blending, which adjusts the blending weights at
each point based on the direction of the current viewpoint [9, 38].
Rendering takes longer with view-dependent blending, but the re-
sulting image is of slightly higher quality (see Figure 3).

3.1 Weight maps

As outlined above, the texture value T(p) at each point on the face
mode! can be expressed as aconvex combination of the correspond-
ing colorsin the photographs:

P (OINERD!
Yomp)

Here, I¥ isthe image function (color at each pixel of the k-th photo-
graph,) and (X¢, y*) are the image coordinates of the projection of p
onto the k-th image plane. The weight map mX(p) is a function that
specifies the contribution of the k-th photograph to the texture at
each facial surface point.

T(p) =

The construction of these weight maps is probably the trickiest and
the most interesting component of our texture extraction technique.
There are several important considerations that must be taken into
account when defining a weight map:

1. Self-occlusion: mK(p) should be zero unless pisfront-facing with
respect to the k-th image and visiblein it.

2. Smoothness: the weight map should vary smoothly, in order to
ensure a seamless blend between different input images.

3. Positional certainty: m(p) should depend on the“positional cer-
tainty” [24] of p with respect to the k-th image. The positiona
certainty is defined as the dot product between the surface nor-
mal at p and the k-th direction of projection.

4. \View similarity: for view-dependent texture mapping, the weight
m(p) should also depend on the angle between the direction of
projection of p onto the j-th image and its direction of projection
in the new view.

Previous authors have taken only a subset of these considerations
into account when designing their weighting functions. For ex-
ample, Kurihara and Ara [24] use positional certainty as their
weighting function, but they do not account for self-occlusion. Aki-
moto et al. [1] and Ip and Yin [20] blend the images smoothly,
but address neither self-occlusion nor positiona certainty. De-
bevec et al. [9], who describe a view-dependent texture mapping
technique for modeling and rendering buildings from photographs,
do address occlusion but do not account for positional certainty. (It
should be noted, however, that positional certainty islesscritical in
photographs of buildings, since most buildings do not tend to curve
away from the camera.)



Tofacilitatefast visibility testing of points on the surface of theface
from a particular camera pose, we first render the face model us-
ing the recovered viewing parameters and save the resulting depth
map from the Z-buffer. Then, with the aid of this depth map, we
can quickly classify the visibility of each facia point by applying
the viewing transformation and comparing the resulting depth to the
corresponding value in the depth map.

3.2 View-independent texture mapping

In order to support rapid display of the textured face model from
any viewpoint, it isdesirableto blend theindividual photographsto-
gether into a single texture map. Thistexture map is constructed on
avirtua cylinder enclosing the face model. The mapping between
the 3D coordinates on the face mesh and the 2D texture space isde-
fined using a cylindrical projection, as in several previous papers
[6, 24, 29].

For view-independent texture mapping, we will index the weight
map m¥ by the (u, v) coordinates of the texture being created. Each
weight mi(u, v) is determined by the following steps:

1. Construct a feathered visibility map F* for each image k. These
maps are defined in the same cylindrical coordinates as the tex-
ture map. We initially set F¥(u, v) to 1 if the corresponding facial
point pisvisiblein the k-thimage, and to O otherwise. Theresult
isabinary visibility map, which isthen smoothly ramped (feath-
ered) from 1 to O in the vicinity of the boundaries [42]. A cubic
polynomial is used as the ramping function.

2. Compute the 3D point p on the surface of the face mesh whose
cylindrical projection is (u, V) (see Figure 2). This computation
is performed by casting aray from (u, v) on the cylinder towards
thecylinder’saxis. Thefirst intersection between thisray and the
face mesh is the point p. (Note that there can be more than one
intersection for certain regions of the face, most notablé/ theears.
These specia casesare discussed in Section 3.4.) Let P4(p) bethe
positional certainty of p with respect to the k-th image.

3. Set weight m¥(u, v) to the product F¥(u, v) P*(p).

For view-independent texture mapping, wewill compute each pixel
of theresulting texture T(u, v) asaweighted sum of the original im-
age functions, indexed by (u, v).

3.3 View-dependent texture mapping

The main disadvantage of the view-independent cylindrical texture
map described above is that its construction involves blending to-
gether resampled versions of the original images of the face. Be-
cause of this resampling, and also because of slight registration er-
rors, the resulting texture is slightly blurry. This problem can be al-
leviated to alarge degree by using aview-dependent texture map [9]
in which the blending weights are adjusted dynamically, according
to the current view.

For view-dependent texture mapping, we render the model several
times, each time using a different input photograph as a texture
map, and blend the results. More specifically, for each input photo-
graph, we associate texture coordinates and a blending weight with
each vertex in the face mesh. (The rendering hardware performs
perspective-correct texture mapping along with linear interpolation
of the blending weights.)

Given a viewing direction d, we first select the subset of pho-
tographs used for the rendering and then assign blending weightsto
each of these photographs. Pulli et al. [38] select three photographs
based on a Delaunay triangulation of a sphere surrounding the ob-
ject. Since our cameras were positioned roughly in the same plane,

Figure 3 Comparison between view-independent (left) and view-
dependent (right) texture mapping. Higher frequency details arevis-
ible in the view-dependent rendering.

we select just the two photographs whose view directions d and
d*** are the closest to d and blend between the two.

In choosing the view-dependent term V¥(d) of the blending weights,
we wish to use just a single photo if that photo’s view direction
matchesthe current view direction precisely, and to blend smoothly
between the nearest two photos otherwise. We used the simplest
possible blending function having this effect:

koo | ododd = df-d"t ifr<k<i+1
V(d)_{ 0 otherwise

For the final blending weights m¥(p, d), we then use the product of
all three terms F¥(X¥, y¥) PX(p) V¥(d).

View-dependent texture maps have several advantages over cylin-
drical texture maps. First, they can make up for some lack of de-
tail inthe model. Second, whenever the model projectsonto acylin-
der with overlap, acylindrical texture map will not contain data for
some parts of the model. This problem does not arise with view-
dependent texture maps if the geometry of the mesh matches the
photograph properly. One disadvantage of the view-dependent ap-
proach is its higher memory requirements and slower speed due to
the multi-pass rendering. Another drawback isthat theresulting im-
ages are much more sensitive to any variationsin exposure or light-
ing conditions in the original photographs.

3.4 Eyes, teeth, ears, and hair

The parts of the mesh that correspond to the eyes, teeth, ears, and
hair aretextured in aseparate process. The eyesand teeth areusually
partially occluded by the face; hence it is difficult to extract a tex-
turemap for these partsin every facial expression. The ears have an
intricate geometry with many folds and usually fail to project with-
out overlap on a cylinder. The hair has fine-detailed texture that is
difficult to register properly acrossfacial expressions. For these rea-
sons, each of these facial elementsis assigned an individual texture
map. Thetexture maps for the eyes, teeth, and ears are computed by
projecting the corresponding mesh part onto a selected input image
where that part is clearly visible (the front view for eyes and teeth,
sideviewsfor ears).

The eyes and the teeth are usualy partially shadowed by the eye-
lids and the mouth respectively. We approximate this shadowing by
modulating the brightness of the eye and teeth texture maps accord-
ing to the size of the eyelid and mouth openings.



Figure4 A globa blend between “surprised” (left) and “sad” (cen-
ter) produces a“worried” expression (right).

4 Expression morphing

A major goa of this work is the generation of continuous and re-
aligtic transitions between different facial expressions. We achieve
these effects by morphing between corresponding face models.

In genera the problem of morphing between arbitrary polygonal
meshes is a difficult one [22], since it requires a set of correspon-
dences between meshes with potentially different topology that can
produce a reasonable set of intermediate shapes. In our case, how-
ever, the topology of al the face meshesisidentical. Thus, thereis
already anatural correspondence between vertices. Furthermore, in
creating the models we attempt to mark facial features consistently
across different facial expressions, so that the major facial features
correspond to the same verticesin all expressions. Inthis case, a sat-
isfactory 3D morphing sequence can be obtained using simplelinear
interpolation between the geometric coordinates of corresponding
verticesin each of the two face meshes.

Together with the geometric interpolation, we need to blend the as-
sociated textures. Again, in general, morphing between two images
requires pairwise correspondences between images features [3]. In
our case, however, correspondences between the two textures are
implicitin thetexture coordinates of the two associated face meshes.
Rather than warping the two textures to form an intermediate one,
the intermediate face model (obtained by geometric interpolation)
is rendered once with the first texture, and again with the second.
The two resulting images are then blended together. This approach
isfaster than warping the textures (which typically have high resolu-
tion), and it avoids the resampling that istypically performed during
warping.

4.1 Multiway blend and localized blend

Given a set of facial expression meshes, we have explored ways to
enlarge this set by combining expressions. The simplest approach
isto use the morphing technique described above to create new fa-
cia expressions, which can be added to the set. This idea can be
generalized to an arbitrary number of starting expressions by tak-
ing convex combinations of them all, using weights that apply both
to the coordinates of the mesh vertices and to the values in the tex-
ture map. (Extrapolation of expressions should also be possible by
allowing weights to have values outside of the interval [0, 1]; note,
however, that such weights might result in colors outside of the al-
lowable gamut.)

We can generate an even wider range of expressions using alocal-
ized blend of the facial expressions. Such ablend is specified by a
set of blend functions, onefor each expression, defined over the ver-
tices of the mesh. These blend functions describe the contribution of
agiven expression at a particular vertex.

Although it would be possible to compute a texture map for each
new expression, doing so would result in a loss of texture quality.
Instead, the weights for each new blended expression are aways
factored into weights over the vertices of the original set of expres-

Figure5 Combining the upper part of a“neutral” expression (left)
with the lower part of a “happy” expression (center) produces a
“fake smile” (right).

sions. Thus, each blended expression is rendered using the texture
map of an original expression, aong with weights at each vertex,
which control the opacity of that texture. The opacities are linearly
interpolated over the face mesh using Gouraud shading.

4.2 Blend specification

In order to design new facial expressions easily, the user must be
provided with useful tools for specifying the blending functions.
These tools should satisfy several requirements. First, it should be
possible to edit the blend at different resolutions. Moreover, we
would like the specification process to be continuous so that small
changes in the blend parameters do not trigger radical changes in
the resulting expression. Finally, the tools should be intuitive to the
user; it should be easy to produce a particular target facial expres-
sion from an existing set.

We explored several different ways of specifying the blending
weights:

e Global blend. Theblending weights are constant over al vertices.
A set of diders controls the mixing proportions of the contribut-
ing expressions. Figure 4 shows two facial expressions blended
in equal proportions to produce a halfway blend.

e Regional blend. According to studiesin psychology, the face can
be split into several regions that behave as coherent units [11].
Usually, three regions are considered: one for the forehead (in-
cluding the eyebrows), another for the eyes, and another for the
lower part of the face. Further splitting the face vertically down
the center results in six regions and alows for asymmetric ex-
pressions. Wesimilarly partition theface meshinto several (softly
feathered) regions and assign weights so that vertices belonging
tothe sameregion havethe sameweights. The mixing proportions
describing a selected region can be adjusted by manipulating a set
of diders. Figure 5illustrates the blend of two facial expressions
with two regions: the upper part of the face (including eyes and
forehead) and the lower part (including nose, mouth, and chin.)

e Painterly interface. The blending weights can be assigned to the
vertices using a3D painting tool. Thistool usesapalettein which
the“colors’ arefacial expressions (both geometry and color), and
the“ opacity” of the brush controls how much the expression con-
tributes to the result. Once an expression is selected, a 3D brush
can be used to modify the blending weights in selected areas of
the mesh. The fraction painted has agradua drop-off and is con-
trolled by the opacity of thebrush. Thestrokesare applied directly
on the rendering of the current facial blend, which is updated in
real-time. To improve the rendering speed, only the portion of the
mesh that is being painted is re-rendered. Figure 7 illustrates the
design of a debauched smile: starting with a neutral expression,
the face is locally modified using three other expressions. Note
that in the last step, the use of a partially transparent brush with
the “deepy” expression resultsin the actual geometry of the eye-
lids becoming partially lowered.



Figure 6 Animation interface. On the left is the “expression
gdlery”; on theright an expression is being designed. At the bottom
expressions and poses are scheduled on the timeline.

Combining different original expressions enlarges the repertoire of
expressions obtained from a set of photographs. The expressionsin
this repertoire can themselves be blended to create even more ex-
pressions, with the resulting expression still being representable as
a(locally varying) linear combination of the original expressions.

5 User interface

We designed an interactive tool to fit a 3D face mesh to aset of im-
ages. Thistool allows auser to select vertices on the mesh and mark
wherethese curves or vertices should project on theimages. Aftera
first expression has been model ed, the set of annotations can be used
asaninitial guessfor subsequent expressions. These guesses are au-
tomatically refined using standard correl ation-based search. Any re-
sulting errors can be fixed up by hand. The extraction of the texture
map does not require user intervention, but isincluded in theinter-
face to provide feedback during the modeling phase.

We also designed a keyframe animation system to generate facial
animations. Our animation system permitsauser to blend facial ex-
pressions and to control the transitions between these different ex-
pressions (Figure 6). The expression gallery is a key component
of our system; it is used to select and display (as thumbnails) the
set of facial expressions currently available. The thumbnails can be
dragged and dropped onto the timeline (to set keyframes) or onto
thefacia design interface (to select or add facial expressions). The
timelineis used to schedule the different expression blends and the
changes in viewing parameters (pose) during the animation. The
blends and poses have two distinct types of keyframes. Both types
of keyframes are linearly interpolated with user-controlled cubic
Bézier curves. The timeline can also be used to display intermedi-
ate frames at low resolution to provide a quick feedback to the ani-
mator. A second timeline can be displayed next to the composition
timeline. This featureis helpful for correctly synchronizing an ani-
mation with live video or asoundtrack. The eyes are animated sepa-
rately from therest of theface, with the gaze direction parameterized
by two Euler angles.

6 Results

In order to test our technique, we photographed both aman (J. R.)
and awoman (Karla) in avariety of facia expressions. The photog-

"neutral”

"amused”

“surprised”

"sleepy”

"debauched”

Figure7 Painterly interface: design of adebauched smile. Theright
column shows the different stages of the design; the left column
shows the portions of the original expressions used in creating the
final expression. The “soft brush” used is shown at the bottom-right
corner of each contributing expression.



raphy was performed using five cameras simultaneously. The cam-
eras were not cdibrated in any particular way, and the lenses had
different focal lengths. Since no specia attempt was made to illu-
minate the subject uniformly, the resulting photographs exhibited
considerable variation in both hue and brightness. The photographs
were digitized using the Kodak PhotoCD process. Five typica im-
ages (cropped to the size of the subject’s head) are shown in Fig-
ure la

We used the interactive modeling system described in Sections 2
and 3 to create the same set of eight face models for each subject:
“happy,” *amused,” “angry,” * surprised,” *sad,” * Seepy,” “ pained,”
and “neutral.”

Following the modeling stage, we generated afacial animation for
each of the individua s starting from the eight original expressions.
Wefirst created an animation for J. R. Wethen applied the very same
morphs specified by this animation to the models created for Karla
For most frames of the animation, the resulting expressions were
quite realistic. Figure 8 shows five frames from the animation se-
quence for J. R. and the purely automatically generated frames in
the corresponding animation for Karla. With just a small amount
of additional retouching (using the blending tools described in Sec-
tion 4.2), this derivative animation can be made to look as good as
the original animation for J. R.

7 Futurework

The work described in this paper isjust the first step towards build-
ing a complete image-based facial modeling and animation system.
There are many ways to further enhance and extend the techniques
that we have described:

Color correction. For better color consistency in facial textures ex-
tracted from photographs, color correction should be applied to si-
multaneous photographs of each expression.

Improved registration. Some residual ghosting or blurring artifacts
may occasionally be visible in the cylindrical texture map due to
small misregistrations between the images, which can occur if ge-
ometry isimperfectly modeled or not detailed enough. To improve
the quality of the composite textures, we could locally warp each
component texture (and weight) map before blending [42].

Texture relighting. Currently, extracted textures reflect the light-
ing conditions under which the photographs were taken. Relighting
techniques should be devel oped for seamlessintegration of our face
models with other elements.

Automatic modeling. Our ultimate goal, as far as the facial model-
ing part isconcerned, isto construct afully automated modeling sys-
tem, which would automatically find features and correspondences
with minimal user intervention. This is a challenging problem in-
deed, but recent resultson 2D face modeling in computer vision [25]
give us cause for hope.

Modeling from video. We would like to be able to create face mod-
es from video or old movie footage. For this purpose, we would
have to improve the robustness of our techniques in order to syn-
thesi ze face meshes and texture maps from images that do not cor-
respond to different views of the same expression. Adding anthro-
pomorphic constraints to our face model might make up for the lack
of coherence in the data [48].

Complex animations. In order to create complex animations, we
must extend our vocabulary for describing facial movements be-
yond blending between different expressions. There are several po-
tential ways to attack this problem. One would be to adopt an
action-unit-based system such as the Facial Action Coding System

(b)

Figure 8 On the left are frames from an original animation, which
we created for J. R. The morphs specified in these frames were then
directly used to create aderivative animation for Karla, shown onthe
right.



(FACS) [12]. Another possibility would be to apply modal analysis
(principal component analysis) techniquesto describefacial expres-
sion changes using asmall number of maotions [25]. Finding natural
control parameters to facilitate animation and developing realistic-
looking temporal profiles for such movements are also challenging
research problems.

Lip-synching. Generating speech animation with our keyframe an-
imation system would require a large number of keyframes. How-
ever, we could use atechnique similar to that of Bregler et al. [5] to
automatically lip-synch an animation to a sound-track. This would
reguirethe synthesis of face modelsfor awiderange of visemes. For
example, such database of models could be constructed using video
footage to reconstruct face models automatically [17].

Performance-driven animation. Ultimately, we would also like to
support performance-driven animation, i.e., the ability to automati-
caly track facial movements in a video sequence, and to automeat-
ically trandlate these into animation control parameters. Our cur-
rent techniques for registering images and converting them into
3D movements should provide a good start, although they will
probably need to be enhanced with feature-tracking techniques and
some rudimentary expression-recognition capabilities. Such a sys-
tem would enable not only very realistic facial animation, but also a
new level of video coding and compression techniques (since only
the expression parameters would need to be encoded), as well as
real-time control of avatarsin 3D chat systems.
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A Least squaresfor pose recovery

To solve for asubset of the parameters given in Equation (2), we use linear
least squares. In general, given aset of linear equations of the form

8- -x—b =0 @)

we solve for the vector x by minimizing
> @ -x—b)?
]
Setting the partial derivative of this sum with respect to x to zero, we obtain

> @ahx—bg =0,
i

®

()
i.e., we solve the set of normal equations [16]
Sad 1= Soa
j j

More numericaly stable methods such as QR decomposition or Singular
Value Decomposition [16] can aso be used to solve the least squares prob-
lem, but we have not found them to be necessary for our application.

v

To update one of the parameters, we simply pull out the relevant linear co-
efficient & and scalar value by from Equation (2). For example, to solve for
p;, we set

agao = WEOKDKrE — $1%), baeo = WS — %)
g1 = WEYDHrE — 18), o = WS — ¥).
For ascalar variable like &%, we obtain scalar equations
baco = W (X + X7 (rk - p)))
baces = Wi (W + Y (k- ) -

Similar equations for a and bj can be derived for the other parameters t&, t&,

and 7K. Note that the parameters for a given camerak or 3D point i can be
recovered independently of the other parameters.

ageo = WAk - py +t),

g = WE(TY - py + 1),

Solving for rotation is alittle trickier than for the other parameters, since R
must be avalid rotation matrix. Instead of updating the elements in Ry di-
rectly, we replace the rotation matrix R with RR¥ [42], where R is given by
Rodriguez's formula [15]:

R(A,0) = | +sinOX(A) + (1 — cosf)X3(R), ®)
where @ isan incremental rotation angle, i isarotation axis, and X(v) isthe
cross product operator

0 -V W
XM =] v 0 —w% ©)
-V W 0

A first order expansion of Rin terms of the entriesinv = 6 = (W, W, Vz) IS
given by | + X(v).

Substituting into Equation (2) and letting g; = Rkpi , we obtain
W (X XS - ) — ST - g+ £)
W (Y + YK - ) — SO - g + 1)
where 7§ = (1, —vz, W), 7§ = (v, 1, —W), 7§ = (—wy, %, 1), are the rows
of [I + X(v)]. This expression is linear in (v, vy, Vz), and hence leads to a

3x 3set of normal equations in (vx, Vy, Vz). Once the elements of v have been
estimated, we can compute ¢ and f, and update the rotation matrix using

0 (10)

0,

R « R(AK, 0¥)RX.
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ABSTRACT life-like 3D animation of facial expression. Both the time varying
texture created from the video streams and the accurate reproduc-
We have created a system for capturing both the three-dimensionaltion of the 3D face structure contribute to the believability of the
geometry and color and shading information for human facial ex- resulting animation.
pressions. We use this data to reconstruct photorealistic, 3D ani-  Our system differs from much previous work in facial anima-
mations of the captured expressions. The system uses a large setion, such as that of Lee [10], Waters [14], and Cassel [3], in that
of sampling points on the face to accurately track the three dimen- we are not synthesizing animations using a physical or procedu-
sional deformations of the face. Simultaneously with the tracking ral model of the face. Instead, we capture facial movements in
of the geometric data, we capture multiple high resolution, regis- three dimensions and then replay them. The systems of [10], [14]
tered video images of the face. These images are used to create are designed to make it relatively easy to animate facial expression
texture map sequence for a three dimensional polygonal face modelmanually. The system of [3] is designed to automatically create
which can then be rendered on standard 3D graphics hardware. Thea dialog rather than faithfully reconstruct a particular person’s fa-
resulting facial animation is surprisingly life-like and looks very cial expression. The work of Williams [15] is most similar to ours
much like the original live performance. Separating the capture of except that he used a single static texture image of a real person’s
the geometry from the texture images eliminates much of the vari- face and tracked points only in 2D. The work of Bregler et al [2]
ance in the image data due to motion, which increases compressioris somewhat less related. They use speech recognition to locate
ratios. Although the primary emphasis of our work is not compres- viseme$ in a video of a person talking and then synthesize new
sion we have investigated the use of a novel method to compressvideo, based on the original video sequence, for the mouth and jaw
the geometric data based on principal components analysis. Theregion of the face to correspond with synthetic utterances. They do
texture sequence is compressed using an MPEG4 video codec. Annot create a three dimensional face model nor do they vary the ex-
imations reconstructed from 512x512 pixel textures look good at pression on the remainder of the face. Since we are only concerned
data rates as low as 240 Kbits per second. with capturing and reconstructing facial performances out work is
unlike that of [5] which attempts to recognize expressions or that
CR Categories: 1.3.7 [Computer Graphics]: Three Dimen-  0f [4] which can track only a limited set of facial expressions.
sional Graphics and Realism: Animation; 1.3.5 [Computer Graph- ~ An obvious application of this new method is the creation of
ics]: Computational Geometry and Object Modeling believable virtual characters for movies and television. Another
application is the construction of a flexible type of video compres-
. sion. Facial expression can be captured in a studio, delivered via
1 Introduction CDROM or the internet to a user, and then reconstructed in real
time on a user’'s computer in a virtual 3D environment. The user
One of the most elusive goals in computer animation has been thecan select any arbitrary position for the face, any virtual camera
realistic animation of the human face. Possessed of many degreesjiewpoint, and render the result at any size.
of freedom and capable of deforming in many ways the face has  One might think the second application would be difficult to
been difficult to simulate accurately enough to convince the average gchieve because of the huge amount of video data required for the
person that a piece of computer animation is actually an image of a time varying texture map. However, since our system generates ac-
real person. ) curate 3D deformation information, the texture image data is pre-
We have created a system for capturing human facial expres- cisely registered from frame to frame. This reduces most of the
sion and replaying it as a highly realistic 3D “talking head” con- variation in image intensity due to geometric motion, leaving pri-
sisting of a deformable 3D polygonal face model with a changing marily shading and self shadowing effects. These effects tend to
texture map. The process begins with video of a live actor’s face, pe of low spatial frequency and can be compressed very efficiently.
recorded from multiple camera positions simultaneously. Fluores- The compressed animation looks good at data rates of 240 kbits
cent colored 1/8” circular paper fiducials are glued on the actor's per second for texture image sizes of 512x512 pixels, updating at
face and their 3D position reconstructed over time as the actor talks 30 frames per second.
and emotes. The 3D fiducial positions are used to distort a 3D The main contributions of the paper are a method for robustly
polygonal face model in mimicry of the distortions of the real face. capturing both a 3D deformation model and a registered texture im-
The fiducials are removed using image processing techniques andage sequence from video data. The resulting geometric and texture

the video streams from the multiple cameras are merged into a sin-data can be compressed, with little loss of fidelity, so that storage
gle texture map. When the resulting fiducial-free texture map is ap-

plied to the 3D reconstructed face mesh the result is a remarkably ~*Visemes are the visual analog of phonemes.
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requirements are reasonable for many applications.

Section 2 of the paper explains the data capture stage of the
process. Section 3 describes the fiducial correspondence algorithm.
In Section 4 we discuss capturing and moving the mesh. Sections 5
and 6 describe the process for making the texture maps. Section 7
of the paper describes the algorithm for compressing the geometric
data.

Match
reference dots
0 frame dot
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Donefor all frames Legend

2 Data Capture ) _

Figure 2: The sequence of operations needed to produce the labeled
We used six studio quality video cameras arranged in the pattern3D dot movements over time.
shown in Plate 1 to capture the video data. The cameras were syn-
chronized and the data saved digitally. Each of the six cameras
was individually calibrated to determine its intrinsic and extrinsic
parameters and to correct for lens distortion. The details of the
calibration process are not germane to this paper but the intereste
reader can find a good overview of the topic in [6] as well as an
extensive bibliography.

We glued 182 dots of six different colors onto the actress’ face.
The dots were arranged so that dots of the same color were as fal
apart as possible from each other and followed the contours of the
face. This made the task of determining frame to frame dot corre-
spondence (described in Section 3.3) much easier. The dot patternI'he left side of the flowchart is described in Section 3.3.1, the

was chosen to follow the contours of the face (i.e., outlining the ' X X . S
eyes, lips, and nasio-labial furrows), although the manual applica- Middle in Sections 3.1, 3.2, and 3.3.2, and the right side in Sec-

tion of the dots made it difficult to follow the pattern exactly. tion 3.1.1.

The actress’ head was kept relatively immobile using a padded
foam box; this reduced rigid body motions and ensured that the 3 1 Two-dimensional dot location
actress’ face stayed centered in the video images. Note that rigid
body motions can be captured later using a 3D motion tracker, if For each camera view the 2D coordinates of the centroid of each
desired. colored fiducial must be computed. There are three steps to this

The actress was illuminated with a combination of visible and process: color classification, connected color component genera-
near UV light. Because the dots were painted with fluorescent pig- tion, and centroid computation.
ments the UV illumination increased the brightness of the dots sig- First, each pixel is classified as belonging to one of the six dot
nificantly and moved them further away in color space from the colors or to the background. Then depth first search is used to lo-
colors of the face than they would ordinarily be. This made them cate connected blobs of similarly colored pixels. Each connected
easier to track reliably. Before the video shoot the actress’ face wascolored blob is grown by one pixel to create a mask used to mark
digitized using a cyberware scanner. This scan was used to creatghose pixels to be included in the centroid computation. This pro-
the base 3D face mesh which was then distorted using the positionscess is illustrated in Figure 4.
of the tracked dots. The classifier requires the manual marking of the fiducials for
one frame for each of the six cameras. From this data a robust color
classifier is created (exact details are discussed in Section 3.1.1).
Although the training set was created using a single frame of a 3330
o ) ) frame sequence, the fiducial colors are reliably labeled throughout
The fldUC|-a|S are used to generate a set of 3D pOIntS which act asSthe sequence. False positives are quite rare, with one major ex-
control points to warp the cyberware scan mesh of the actress head ception, and are almost always isolated pixels or two pixel clusters.
They are also used to establish a stable mapping for the texturesthe majority of exceptions arise because the highlights on the teeth
generated from each of the six camera views. This requires thatand mouth match the color of the white fiducial training set. Fortu-
each dot have a unique and consistent label over time so that it ispately, the incorrect white fiducial labelings occur at consistent 3D
associated with a consistent set of mesh vertices. locations and are easily eliminated in the 3D dot processing stage.

The classifier generalizes well so that even fairly dramatic changes

The dot labeling begins by first locating (for each camera view)
connected components of pixels which correspond to the fiducials.
drhe 2D location for each dot is computed by finding the two dimen-
sional centroid of each connected component. Correspondence be-
tween 2D dots in different camera views is established and potential
3D locations of dots reconstructed by triangulation. We construct
fl reference set of dots and pair up this reference set with the 3D
ocations in each frame. This gives a unique labeling for the dots
that is maintained throughout the video sequence.

A flowchart of the dot labeling process is shown in Figure 2.

3 Dot Labeling



in fiducial color over time do not result in incorrect classification.
For example, Figure 5(b) shows the same green fiducial in two dif-
ferent frames. This fiducial is correctly classified as green in both
frames.

The next step, finding connected color components, is com-
plicated by the fact that the video is interlaced. There is signif-
icant field to field movement, especially around the lips and jaw,
sometimes great enough so that there is no spatial overlap at all
between the pixels of a fiducial in one field and the pixels of the
same fiducial in the next field. If the two fields are treated as a sin-
gle frame then a single fiducial can be fragmented, sometimes into _. ) . , . -
many pieces. Figure 3: Animage of the actress’s face. A typical training set for

One could just find connected color components in each field e yellow dots, selected from the image on the left.

and use these to compute the 2D dot locations. Unfortunately,
this does not work well because the fiducials often deform and e . . -
to be classified is given the label of the closest item in the training

are sometimes partially occluded. Therefore, the threshold for the N . ; .
number of pixels needed to classify a group of pixels as a fiducial S€t Which in our case is the color data contained in the color class
has to be set very low. In our implémentation any connected com- images. Because we have 3 dimensional data we can approximate

ponent which has more than three pixels is classified as a fiducial (€ nearest neighbor classifier by subdividing the RGB cube uni-
rather than noise. If just the connected pixels in a single field are formly into voxels, and assigning C'QSS labels to each RGB \{oxel.
counted then the threshold would have to be reduced to one pixel. 10 €lassify a new color you quantize its RGB values and then index
This would cause many false fiducial classifications because there/Nt0 the cube to extract the label. .

are typically a few 1 pixel false color classifications per frame and 10 create the color classifier we use the color class images to
2 or 3 pixel false clusters occur occasionally. Instead, we find con- assign color classes to each v_ox_el. Assume that the color class
nected components and generate lists of potential 2D dots in eachiMage for color clasg’; hasn distinct colors,cy...c,. Each of
field. Each potential 2D dot in field one is then paired with the € VOxels corresponding to the coley is labeled with the color
closest 2D potential dot in field two. Because fiducials of the same €12sSCi. Once the voxels for all of the known colors are labeled,
color are spaced far apart, and because the field to field movement!® rémaining unlabeled voxels are assigned labels by searching
is not very large, the closest potential 2D dot is virtually guaran- through all of the colors in each color claSsand finding the color
teed to be the correct match. If the sum of the pixels in the two

potential 2D dots is greater than three pixels then the connected

closest top in RGB space. The colgs is given the label of the
color class containing the nearest color. Nearness in our case is the
components of the two 2D potential dots are merged, and the re-
sulting connected component is marked as a 2D dot.

Euclidean distance between the two points in RGB space.
The next step is to find the centroid of the connected compo-

If colors from different color classes map to the same sub-cube,
we label that sub-cube with the background label since it is more

nents marked as 2D dots in the previous step. A two dimensional

gradient magnitude image is computed by passing a one dimen-

important to avoid incorrect dot labeling than it is to try to label
every dot pixel. For the results shown in this paper we quantized
sional first derivative of Gaussian along thendy directions and
then taking the magnitude of these two values at each pixel. The

the RGB color cube into a 32x32x32 lattice.
centroid of the colored blob is computed by taking a weighted sum 3 2 Camera to camera dot correspondence and
of positions of the pixe{z, y) coordinates which lie inside the gra-

dient mask, where the weights are equal to the gradient magnitude. 3D reconstruction
In order to capture good images of both the front and the sides of
3.1.1 Training the color classifier the face the cameras were spaced far apart. Because there are such

extreme changes in perspective between the different camera views,

We create one color classifier for each of the camera views, sincethe projected images of the colored fiducials are very different. Fig-
the lighting can vary greatly between cameras. In the following ure 5 shows some examples of the changes in fiducial shape and
discussion we build the classifier for a single camera. color between camera views. Establishing fiducial correspondence

The data for the color classifier is created by manually marking between camera views by using image matching techniques such as
the pixels of frame zero that belong to a particular fiducial color. optical flow or template matching would be difficult and likely to
This is repeated for each of the six colors. The marked data is generate incorrect matches. In addition, most of the camera views
stored as &olor class imageseach of which is created from the  will only see a fraction of the fiducials so the correspondence has to
original camera image by setting all of the pixelst marked as the be robust enough to cope with occlusion of fiducials in some of the
given color to black (we use black as an out-of-class label becausecamera views. With the large number of fiducials we have placed
pure black never occurred in any of our images). A typical color on the face false matches are also quite likely and these must be
class image for the yellow dots is shown in Figure 3. We generated detected and removed. We used ray tracing in combination with
the color class images using the “magic wand” tool available in a RANSAC [7] like algorithm to establish fiducial correspondence
many image editing programs. and to compute accurate 3D dot positions. This algorithm is robust

A seventh color class image is automatically created for the to occlusion and to false matches as well.
background color (e.g., skin and hair) by labeling as out-of-class First, all potential point correspondences between cameras are
any pixel in the image which was previously marked as a fiducial generated. If there are cameras, ana 2D dots in each camera
in any of the fiducial color class images. This produces an image , ; k 2 ;
of theyface with black holes where thg fiducials F\jvere. 9° view then( 2 ) n” point correspondences will be tested. Each

The color classifier is a discrete approximation to a nearest correspondence gives rise to a 3D candidate point defined as the
neighbor classifier [12]. In a nearest neighbor classifier the item closest point of intersection of rays cast from the 2D dots in the
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cameras (the purple dot is occluded in one camera’s view). Right:
two camera views. The 3D candidate point is projected into each A single dot seen from a single camera but in two different frames.

of the two camera views used to generate it. If the projection is
further than a user-defined epsilon, in our case two pixels, from the Id like th d . b .
centroid of either 2D point then the point is discarded as a potential S€t We would like the correspondence computation to be automatic

3D point candidate. All the 3D candidate points which remain are and quite efficient. To §implify the mf'itching we used a fiducial .
added to the 3D point list. pattern that separates fiducials of a given color as much as possi-

ble so that only a small subset of the unlabeled 3D dots need be
checked for a best match. Unfortunately, simple nearest neighbor
matching fails for several reasons: some fiducials occasionally dis-
appear, some 3D dots may move more than the average distance
between 3D dots of the same color, and occasionally extraneous 3D
dots appear, caused by highlights in the eyes or teeth. Fortunately,
o ) Tn . neighboring fiducials move similarly and we can exploit this fact,
For each 3D point in the potential 3D match “ét'?, ) possi- modifying the nearest neighbor matching algorithm so that it is still
ble combinations of three points in the 3D point list are computed €fficient but also robust.
and the combination with the smallest variance is chosen as the true ~ For each frame we first move the reference dots to the loca-
3D position. Then all 3D points which lie within a user defined tions found in the previous frame. Next, we find a (possibly incom-
distance, in our case the sphere subtended by a cone two pixellete) match between the reference dots and the 3D dot locations
in radius at the distance of the 3D point, are averaged to generatefor frame:. We then move each matched reference dot to the loca-
the final 3D dot position. This 3D dot position is assigned to the tion of its corresponding 3D dot. If a reference dot does not have
corresponding 2D dot in the reference camera view. a match we “gUeSS” a new location for it by mOVing it in the same
This algorithm could clearly be made more efficient because direction as its neighbors. We then perform a final matching step.
many more 3D candidate points are generated then necessary. One
could search for po_tentlal camera to camera correspon_d_ences only&3.1 Acquiring the reference set of dots
along the epipolar lines and use a variety of space subdivision tech-
niques to find 3D candidate points to test for a given 2D point. The cyberware scan was taken with the dots glued onto the face.
However, because the number of fiducials in each color set is small Since the dots are visible in both the geometric and color informa-
(never more thar0) both steps of this simple and robust algorithm  tion of the scan, we can place the reference dots on the cyberware
are reasonably fast, taking less than a second to generate the 2D dahodel by manually clicking on the model. We next need to align
correspondences and 3D dot positions for six camera views. Thethe reference dots and the model with the 3D dot locations found in
2D dot correspondence calculation is dominated by the time takenframe zero. The coordinate system for the cyberware scan differs
to read in the images of the six camera views and to locate the 2D from the one used for the 3D dot locations, but only by a rigid body
dots in each view. Consequently, the extra complexity of more ef- motion plus a uniform scale. We find this transform as follows: we
ficient stereo matching algorithms does not appear to be justified. first hand-align the 3D dots from frame zero with the reference dots
acquired from the scan, then call the matching routine described in
Section 3.3.2 below to find the correspondence between the 3D dot
3.3 Fr.ame to frame dot correspondence and la- locations, f;, and the reference dotd;. We use the method de-
beling scribed in [9] to find the exact transforrii, between the two sets
of dots. Finally, we replace the temporary locations of the reference
tdots withd; = f;.
8nd user ! to transform the cyberware model into the coordinate
system of the video 3D dot locations.

Each of the points in the 3D point list is projected into a refer-
ence camera view which is the camera with the best view of all the
fiducials on the face. If the projected point lies within two pixels of
the centroid of a 2D dot visible in the reference camera view then
it is added to the list of potential 3D candidate positions for that 2D
dot. This is the list of potential 3D matches for a given 2D dot.

We now have a set of unlabeled 3D dot locations for each frame.
We need to assign, across the entire sequence, consistent labels
the 3D dot locations. We do this by defining a reference set of
dots D and matching this set to the 3D dot locations given for each
frame. We can then describe how the reference dots move over time

as follows: Letd; € D be the neutral location for the reference dot 3.3.2 The matching routine

j. We define the position of; at framei by an offset, i.e., ) o ) )
The matching routine is run twice per frame. We first perform a

conservative match, move the reference dots (as described below in
dj- =d; + {;’; 1) Section 3.3.3), then perform a second, less conservative, match. By
moving the reference dots between matches we reduce the problem
Because there are thousands of frames and 182 dots in our dataf large 3D dot position displacements.
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e o ’l &8 &0 4.1 Constructing the mesh
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To construct a mesh we begin with a cyberware scan of the head.
: : : Because we later need to align the scan with the 3D video dot data,
Bg ~ Smal  Big  Smal Big ~ Smal we scanned the head with the fiducials glued on. The resulting scan
epsilon epsilon  epsilon epsilon epsilon  epsilon .

suffers from four problems:

Figure 7: Examples of extra and missing dots and the effect of e The fluorescent fiducials caused “bumps” on the mesh.
different values fok.
e Several parts of the mesh were not adequately scanned, namely,

the ears, one side of the nose, the eyes, and under the chin.
The matching routine can be thought of as a graph problem These were manually corrected.

where an edge between a reference dot and a frame dot indicates )
that the dots are potentially paired (see Figure 6). The matching  ® The mesh does not have an opening for the mouth.
routine proceeds in several steps; first, for each reference dot we
add an edge for every 3D dot of the same color that is within a given
distancer. We then search for connected components in the graph  The humps caused by the fluorescent fiducials were removed by
that have an equal number of 3D and reference dots (most con-selecting the vertices which were out of place (approximately 10-30
nected components will have exactly two dots, one of each type). syrrounding each dot) and automatically finding new locations for
We sort the dots in the vertical dimension of the plane of the face them by blending between four correct neighbors. Since the scan
and use the resulting ordering to pair up the reference dots with the yroduces a rectangular grid of vertices we can pick the neighbors

e The scan has too many polygons.

3D dot locations (see Figure 6). . ) to blend between ifu, v) space, i.e., the nearest valid neighbors in
In the video sequences we captured, the difference in the 3D dothe positive and negativeandw direction.
positions from frame to frame varied from zero to abbuttimes The polygons at the mouth were split and then filled with six

the average distance separating closest dots. To adjust for this, Weows of polygons located slightly behind the lips. We map the teeth
run the matching routine with several valuescafnd pick the run and tongue onto these polygons when the mouth is open.
that generates the most matches. Different choicesmbduce We reduced the number of polygons in the mesh from approxi-

different results (see Figure 7): dfis too small we may not find  mately460, 000 to 4800 using Hoppe's simplification method [8].
matches for 3D dots that have moved a lot.e I6 too large then

the connected components in the graph will expand to include too .

many 3D dots. We try approximately five distances ranging from 4.2 Moving the mesh

0.5 to 1.5 of the average distance between closest reference dots. The vertices are moved by a linear combination of the offsets of
If we are doing the second match for the frame we add an ad- the nearest dots (refer to é uation 1). The linear combination for

ditional step to locate matches where a dot may be missing (or ex- . q : S

tra). We take those dots which have not been matched and run theach vertex; is expressed as a set of blend coefficients, one

matching routine on them with smaller and sma#lemlues. This for each dot, such that,, _,, aj = 1 (most of thea; s will be

resolves situations such as the one shown on the right of Figure 7. zero). The new |ocatiop;. of the vertexv; at framei is then

3.3.3 Moving the dots i =p;+ Y aplldi — di|
k

We move all of the matched reference dots to their new locations

then interpolate the locations for the remaining, unmatched refer- wherep; is the initial location of the vertex;.

ence dots by using their nearest, matched neighbors. For each ref-  For most of the vertices the),s are a weighted average of the

erence dot we define a valid set of neighbors using the routine in closest dots. The vertices in the eyes, mouth, behind the mouth,

Section 4.2.1, ignoring the blending values returned by the routine. and outside of the facial area are treated slightly differently since,
To move an unmatched daf, we use a combination of the  for example, we do not want the dots on the lower lip influencing

offsets of all of its valid neighbors (refer to Equation 1). et C vertices on the upper part of the lip. Also, although we tried to keep

D be the set of neighbor dots for ddf. Let 7 be the set of  the head as still as possible, there is still some residual rigid body
neighbors that have a match for the current franferovidedn,. # motion. We need to compensate for this for those vertices that are
0, the offset vector for doif}, is calculated as follows: lef; = not directly influenced by a dot (e.qg., the back of the head).

d§ — d; be the offset of doj (recall thatd; is the initial position We use a two-step process to assign the blend coefficients to
for the reference daf). the vertices. We first find blend coefficients for a grid of points

evenly distributed across the face, then use this grid of points to



Figure 8: Left: The original dots plus the extra dots (in white). The ' Figure 9: Masks surrounding important facial features. The gradi-
labeling curves are shown in light green. Right: The grid of dots. ent of a blurred version of this mask is used to orient the low-pass

Outline dots are green or blue. filters used in the dot removal process.
assign blend coefficients to the vertices. This two-step process iSthe dots inD.. letl: = —1% . Then the corresponding's are
g . : " C =l
helpful because both the fluorescent fiducials and the mesh vertices
are unevenly distributed across the face, making it difficult to get I;
smoothly changing blend coefficients. a; = ﬁ
The grid consists of roughli400 points, evenly distributed and di€Dy "

placed by hand to follow the contours of the face (see Figure 8).
The points along the nasolabial furrows, nostrils, eyes, and lips are
treated slightly differently than the other points to avoid blending
across features such as the lips.

We next filter the blend coefficients for the grid points. For each
grid point we find the closest grid points — since the grid points
are distributed in a rough grid there will usually beneighboring

Because we want the mesh movement to go to zero outside ofpo@nts — using the_ above routine (_re_placin_g the_ dots with the grid
points). We special case the outlining grid points; they are only

the face, we add another set of unmoving dots to the reference Setblended with other outlining grid points. The new blend coeffi-

These new dots form aring around the face (see Figure 8) enCIOSingcients are found by takin@ 75 of the grid point’s blend coefficients

all of the reference dots. For each frame we determine the rigid : . ; I =
body motion of the head (if any) using a subset of those reference and0.25 of the average of the neighboring grid point’s coefficients.
More formally, letg; = [aw, ..., axs] be the vector of blend co-

dots which are relatively stable. This rigid body transformation is efficients for the grid point. Then the new vectog! is found as

then applied to the new dots. = . . ; ! .
We label the dots, grid points, and vertices as beibgve be- follows, whereN; is the set of neighboring grid points for the grid

low, or neither with respect to each of the eyes and the mouth. points:

Dots which areabovea given feature can not be combined with , 0.25

dots which aréelowthat same feature (or vice-versa). Labeling is g; = 0.75g; + ——— gj
accomplished using three curves, one for each of the eyes and one [Vl JEN;

for the mouth. Dots directly above (or below) a curve are labeled

asabove(or below) that curve. Otherwise, they are labelesither We apply this filter twice to simulate a wide low pass filter.

To find the blend coefficients for the vertices of the mesh we
. . . find the closest grid point with the same label as the vertex and copy
4.2.1 Assigning blends to the grid points the blend coefficients. The only exception to this is the vertices for

The algorithm for assigning blends to the grid points first finds the 1€ polygons inside of the mouth. For these vertices we fagé

closest dots, assigns blends, then filters to more evenly distributeth® closest grid point on the top lip and) — 3 of the closest grid

the blends. point on the bottom lip. The& values ard.8, 0.6, 0.4, 0.25, and
Finding the ideal set of reference dots to influence a grid point 0-1 from top to bottom of the mouth polygons.

is complicated because the reference dots are not evenly distributed

across the face. The algorithm attempts to find two or more dots

distributed in a rough circle around the given grid point. To do 5 Dot removal

this we both compensate for the dot density, by setting the searchgetqre e create the textures, the dots and their associated illumi-

dl_s”tanCﬁ “us'lrllg.thehtwo closest dots, and by checking for dots which yation effects have to be removed from the camera images. Inter-

will both “pull” in the same direction. reflection effects are surprisingly noticeable because some parts of

Tofind the closest dots to the grid pogntve first findd, andos, the face fold dramatically, bringing the reflective surface of some
the distance to the closest and second closest dot, respectively. Le}jqic into close proximity with the skin. This is a big problem along

L 51468 . . . . .

D C D be the set of dots within.8 21322 distance ofp whose the naso-labial furrow where diffuse interreflection from the col-
labels do not conflict wittp's label. Next, we check for pairs of  gred dots onto the face significantly alters the skin color.

dots that are more or less in the same direction fpoand remove First, the dot colors are removed from each of the six camera

the furthest one. More precisely, I8 be the normalized vector  jmage sequences by substituting skin texture for pixels which are
fromp to the dotd; € D,, and leti; be the normalized vector from  covered by colored dots. Next, diffuse interreflection effects and
ptothedotd; € Dy. If 61 - 5> > 0.8 then remove the furthest of  any remaining color casts from stray pixels that have not been prop-
di andd;; from the setD,,. _ erly substituted are removed.

We assign blend values based on the distance of the dots from = “The skin texture substitution begins by finding the pixels which
p. If the dot is not inDy, then its corresponding value is0. For correspond to colored dots. The nearest neighbor color classifier



mouth, found using the eye and lip masks shown in Figure 9, are
left unchanged.

Some temporal variation remains in the substituted skin texture
due to imperfect registration of the high frequency texture from
frame to frame. A low pass temporal filter is applied to the dot mask
regions in the texture images, because in the texture map space
the dots are relatively motionless. This temporal filter effectively
eliminates the temporal texture substitution artifacts.

6 Creating the texture maps

Figure 11 is a flowchart of the texture creation process. We create

Figure 10: Standard cylindrical texture map. Warped texture map texture maps for every frame of our animation in a four-step pro-
that focuses on the face, and particularly on the eyes and mouth.Cess. The first two steps are performed only once per mesh. First
The warp is defined by the line pairs shown in white. we define a parameterization of the mesh. Second, using this pa-

rameterization, we createggometry majontaining a location on
the mesh for each texel. Third, for every frame, we create six pre-

described in Section 3.1.1 is used to mark all pixels which have liminary texture maps, one from each camera image, along with
any of the dot colors. A special training set is used since in this Weight maps. The weight maps indicate the relative quality of the

case false positives are much less detrimental than they are for thedata from the different cameras. Fourth, we take a weighted aver-
dot tracking case. Also, there is no need to distinguish between dotage of these texture maps to make our final texture map.

colors, only between dot colors and the background colors. The  We create an initial set of texture coordinates for the head by
training set is created to capture as much of the dot color and thetilting the mesh back 10 degrees to expose the nostrils and pro-
boundary region between dots and the background colors as possiiecting the mesh vertices onto a cylinder. A texture map generated
ble. using this parametrization is shown on the left of Figure 10. We

A dot mask is generated by applying the classifier to each pixel SPecify a set of line pairs and warp the texture coordinates using
in the image. The mask is grown by a few pixels to account for any the technique described by Beier and Neely[1]. This parametriza-
remaining pixels which might be contaminated by the dot color. tion results in the texture map shown on the right of Figure 10.
The dot mask marks all pixels which must have skin texture substi- Only the front of the head is textured with data from the six video
tuted. streams.

The skin texture is broken into low spatial frequency and high =~ Next we create the geometry map containing a mesh location
frequency components. The low frequency components of the skin for each texel. A mesh location is a trip(&, 51, 32) specifying
texture are interpolated by using a directional low pass filter ori- 2 trianglek and barycentric coordinates in the triangl@ (32,
ented parallel to features that might introduce intensity discontinu- 1 — 81 — 82). To find the triangle identifiek for texel (u, v) we
ities. This prevents bleeding of colors across sharp intensity bound- €xhaustively search through the mesh'’s triangles to find the one that
aries such as the boundary between the lips and the lighter coloredcontains the texture coordinatés, v). We then set the;s to be
regions around the mouth. The directionality of the filter is con- the barycentric coordinates of the pofat v) in the texture coordi-
trolled by a two dimensional mask which is the projection into the nates of the trianglé. When finding the mesh location for a pixel
image plane of a three dimensional polygon mask lying on the 3D We a_llready know in which triangles its nelght_)ors above_ and to the
face model. Because the polygon mask is fixed on the 3D mesh, left lie. Therefore, we speed our search by first searching through
the 2D projection of the polygon mask stays in registration with these triangles and their neighbors. However, the time required for
the texture map as the face deforms. this task is not critical as the geometry map need only be created

All of the important intensity gradients have their own polygon Once. o
mask: the eyes, the eyebrows, the lips, and the naso-labial furrows ~ Next we create preliminary texture maps for frafh@ne for
(see 9). The 2D polygon masks are filled with white and the re- _each camera. This is a modified version of the technlque described
gion of the image outside the masks is filled with black to create an in [11]. To create the texture map for camerave begin by de-
image. This image is low-pass filtered. The intensity of the result- forming the mesh into its fram¢ position. Then, for each texel,
ing image is used to control how directional the filter is. The filter We getits mesh locatiork, 51, 32 ), from the geometry map. With
is circularly symmetric where the image is black, i.e., far from in- the 3D coordinates of trianglés vertices and the barycentric coor-
tensity discontinuities, and it is very directional where the image dinates3;, we compute the texel's 3D locationWe transformt by
is white. The directional filter is oriented so that its long axis is Camera:’s projection matrix to obtain a locatiofy;, ), on camera
orthogonal to the gradient of this image. c's image plane. We then color the texel W_lth the color from cam-

The high frequency skin texture is created from a rectangular €rac’s image at(z,y). We set the texel's weight to the dot product
sample of skin texture taken from a part of the face that is free Of the mesh normal at 7, with the direction back to the camera,
of dots. The skin sample is highpass filtered to eliminate low fre- @ (see Figure 12). Negative values are clamped to zero. Hence,
guency components. At each dot mask pixel location the highpassWeights are low where the camera’s view is glancing. However,
filtered skin texture is first registered to the center of the 2D bound- this weight map is not smooth at triangle boundaries, so we smooth
ing box of the connected dot region and then added to the low fre- it by convolving it with a Gaussian kernel.
quency interpolated skin texture. La_st, we merge the Six preliminary texture maps. As they do

The remaining diffuse interreflection effects are removed by not align perfectly, averaging them blurs the texture and loses de-
clamping the hue of the skin color to a narrow range determined tail. Therefore, we use only the texture map of our bottom, center
from the actual skin colors. First the pixel values are converted camera for the center 46 % of the final texture map. We smoothly
from RGB to HSV space and then any hue outside the legal range transition (over 23 pixels) to using a weighted average of each pre-
is clamped to the extremes of the range. Pixels in the eyes andliminary texture map at the sides.
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Figure 11: Creating the texture maps.

We texture the parts of the head not covered by the aforemen-  The data in thed matrix can be projected onto the principal

tioned texture maps with the captured reflectance data from our Cy- component basis as follows:

berware scan, modified in two ways. First, because we replaced the

mesh’s ears with ears from a stock mesh (Section 4.1), we moved w=U0TA

the ears in the texture to achieve better registration. Second, we

set the alpha channel to zero (with a soft edge) in the region of the Row: of W is the projection of columni; onto the basis vectar;.

texture for the front of the head. Then we render in two passes to More precisely, thgth element in rowi of W corresponds to the

create an image of the head with both texture maps applied. projection of framej of the original data onto thé&h basis vector.
We will call the elements of th&” matrix projectioncoefficients

Similarly, A can be reconstructed exactly frdiri by multipli-

7 Compression cation by the basis set, i.ed, = UW.
The most important property of the principal components for our
7.1 Principal Components Analysis purposes is that they are the best linear basis set for reconstruction

) ) o in thel> norm sense. For any given matii), wherek is the num-
The geometric and texture map data have different statistical char-per of columns of the matrix and < rank(A4), the reconstruction
acteristics and are best compressed in different ways. There is sig-grror

nificant long-term temporal correlation in the geometric data since

similar facial expressions occur throughout the sequence. The short e=[|A—Us UI;FAH; ©)
term correlation of the texture data is significantly increased over ‘

that of the raw video footage because in the texture image spacewhere|| B||%. is the Frobenius norm defined to be
the fiducials are essentially motionless. This eliminates most of the

intensity changes associated with movement and leaves primarily N " & 5
shading changes. Shading changes tend to have low spatial fre- 1Bl = Z Zbiy‘
quencies and are highly compressible. Compression schemes such i=1 j=1

as MPEG, which can take advantage of short term temporal corre-yij| he minimized if U is the matrix containing the most signif-
lation, can exploit this increase in short term correlation. icant principal components of.

_For the geometric data, one way to exploit the long term corre- — \yg can compress a data seby quantizing the elements of its
lation is to use principal component analysis. If we represent our correspondingV andU matrices and entropy coding them. Since
data set as a matrid, where frame of the data maps columiof the compressed data cannot be reconstructed without the principal
A, then the first principal component dfis component basis vectors both thié and U matrices have to be

T oNT, T compressed. The basis vectors add overhead that is not present
muaX(A u) (A" ) @ with basis sets that can be computed independent of the original
data set, such as the DCT basis.

For data sequences that have no particular structure the extra
overhead of the basis vectors would probably out-weigh any gainin
compression efficiency. However, for data sets with regular frame
to frame structure the residual error for reconstruction with the
principal component basis vectors can be much smaller than for
other bases. This reduction in residual error can be great enough to

4)

The u which maximizes Equation 2 is the eigenvector associated
with the largest eigenvalue of AT, which is also the value of the
maximum. Succeeding principal components are defined similarly,
except that they are required to be orthogonal to all preceding prin-
cipal components, i.eu; u; = 0 for j # i. The principal com-
ponents form an orthonormal basis set represented by the rbatrix
where the columns df’ are the principal components dfordered o5 nensate for the overhead bits of the basis vectors.
by eigenvalue size with the most significant principal component in The principal components can be computed using the singular
the first column ol value decomposition (SVD) [13]. Efficient implementations of this
algorithm are widely available. The SVD of a matrixis
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where the columns dff are the eigenvectors ofA”, the singular
values,o;, along the diagonal matriX are the square roots of the
eigenvalues ofAA”, and the columns of are the eigenvectors
of AT A. Theith column ofU is theith principal component of
A. Computing the firsk left singular vectors ofd is equivalent to
computing the firsk principal components.

Figure 13: Reduction in entropy after temporal prediction.

animation in which the actress makes random expressions while
reading from a script

The facial expressions look remarkably life-like. The anima-
tion sequence is similarly striking. Virtually all evidence of the
7.2 Geometric Data colored fiducials and diffuse interreflection artifacts is gone, which

) is surprising considering that in some regions of the face, especially

The geometric data has the long term temporal coherence proper-5round the lips, there is very little of the actress’ skin visible — most
ties mentioned above since the motion of the face is highly struc- of ihe area is covered by colored fiducials.
tured. The overhead of the basis vectors for the geometric datais  ggth the accurate 3D geometry and the accurate face texture
fixed because there are onlg2 fiducials on the face. The maxi-  ¢onrribute to the believability of the reconstructed expressions. Oc-
mum number of basis vectorsii82 « 3 since there are three num-  ¢|ysion contours look correct and the subtle details of face geom-
bers,z, y, andz, associated with each fiducial. Consequently, the ety that are very difficult to capture as geometric data show up
basis vector overhead steadily diminishes as the length of the ani-\ya| in the texture images. Important examples of this occur at
mation sequence increases. _ ) the nasolabial furrow which runs from just above the nares down

The geometric data is mapped to matrix form by taking the 3D {4 g|ightly below the lips, eyebrows, and eyes. Forehead furrows
offset data for theth frame and mapping it thih column of the 44 wrinkles also are captured. To recreate these features using
data matrixA,. The firstk principal components/,, of A, are geometric data rather than texture data would require an extremely
computed andi, is projected into thé/, basis to give the projec-  getajled 3D capture of the face geometry and a resulting high poly-
tion coefficientsiV. _ _gon count in the 3D model. In addition, shading these details prop-
_ There is significant correlation between the columns of projec- gy if they were represented as geometry would be difficult since it
tion coefficients because the motion of the dots is relatively smooth ;5,14 require computing shadows and possibly even diffuse inter-
over time. We can reduce the entropy of the quantized projection reflection effects in order to look correct. Subtle shading changes
coefficients by temporally predicting the projection coefficients in 5, the smooth parts of the skin, most prominent at the cheekbones,
columni from columni — 1, i.e.,¢; = ci—1 + A; where we encode are also captured well in the texture images.

Ai. N - . . There are still visible artifacts in the animation, some of which

For our data set, only the projection coefficients associated with gre polygonization or shading artifacts, others of which arise be-

the first 45 principal components, corresponding to the first 45 rows .5,,se of limitations in our current implementation.

of Wy, have significant te_mporal correlathn_ so only the first 45 Some polygonization of the face surface is visible, especially

rows are temporally predicted. The remaining rows are entropy 4j0nq the chin contour, because the front surface of the head con-

coded directly. After the temporal prediction the entropy is reduced 545 only4500 polygons. This is not a limitation of the algorithm —

by about 20 percent (Figure 13). _ we chose this number of polygons because we wanted to verify that
The basis vectors are compressed by choosing a peak error ratggjievaple facial animation could be done at polygon resolutions

and then varying the number of qlJ_antization Ievel_s aII_ocated to _each low enough to potentially be displayed in real time on inexpensive
vector based on the standard deviation of the projection coefﬂuents( $200) 3D graphics cardsFor film or television work, where real

for each vector. time rendering is not an issue, the polygon count can be made much

We visually examined animation sequences With and U, higher and the polygonization artifacts will disappear. As graphics

compressed at a variety of peak error rates and chose a level which,5rqware becomes faster the differential in quality between offline
resulted in undetectable geometric jitter in reconstructed animation. 54 online rendered face images will diminish.

The entropy ofi¥, for this error level is 26 Kbits per second and Several artifacts are simply the result of our current implemen-
the entropy oU, is 13 kbits per second for a total of 40 kbits per (ation. For example, occasionally the edge of the face, the tips
second for all the geometric data. These values were computed forgf the nares, and the eyebrows appear to jitter. This usually oc-
our 3330 frame animation sequence. curs when dots are lost, either by falling below the minimum size

threshold or by not being visible to three or more cameras. When
8 Results a dot is lost the algorithm synthesizes dot position data which is

i . 2The rubber cap on the actress’ head was used to keep her hair out of her face.
Figure 16 shows some typical frames from areconstructed sequence 3in this paper we have not addressed the issue of real time texture decompression

of 3D facial expressions. These frames are taken from a 3330 frameand rendering of the face model, but we plan to do so in future work



usually incorrect enough that it is visible as jitter. More cameras, imately 300 by 400 pixels, is still good at data rates as low as 240
or better placement of the cameras, would eliminate this problem. Kbits per second, and there is significant potential for lowering this
However, overall the image is extremely stable. bit rate even further. Because the bit overhead for the geometric

In retrospect, a mesh constructed by hand with the correct ge-data is low in comparison to the texture data one can get a 3D talk-
ometry and then fit to the cyberware data [10] would be much sim- ing head, with all the attendant flexibility, for little more than the
pler and possibly reduce some of the polygonization artifacts. cost of a conventional video sequence. With the true 3D model of

Another implementation artifact that becomes most visible when facial expression, the animation can be viewed from any angle and
the head is viewed near profile is that the teeth and tongue appeaplaced in a 3D virtual environment, making it much more flexible
slightly distorted. This is because we do not use correct 3D models than conventional video.

to represent them. Instead, the texture map of the teeth and tongue
is projected onto a sheet of polygons stretching between the lips. It

is possible that the teeth and tongue could be tracked using moreReferences

sophisticated computer vision techniques and then more correct ge-
ometric models could be used. (1]

Shading artifacts represent an intrinsic limitation of the algo-
rithm. The highlights on the eyes and skin remain in fixed positions
regardless of point of view, and shadowing is fixed at the time the 2]
video is captured. However, for many applications this should not
be a limitation because these artifacts are surprisingly subtle. Most
people do not notice that the shading is incorrect until it is pointed
out to them, and even then frequently do not find it particularly ob-  [3]
jectionable. The highlights on the eyes can probably be corrected
by building a 3D eye model and creating synthetic highlights ap-
propriate for the viewing situation. Correcting the skin shading and
self shadowing artifacts is more difficult. The former will require
very realistic and efficient skin reflectance models while the lat-
ter will require significant improvements in rendering performance,
especially if the shadowing effect of area light sources is to be ade- (4]
quately modeled. When both these problems are solved then it will
no longer be necessary to capture the live video sequence — only the
3D geometric data and skin reflectance properties will be needed.

The compression numbers are quite good. Figure 14 shows 5]
a single frame from the original sequence, the same frame com-
pressed by the MPEG4 codec at 460 Kbps and at 260 KBps. All
of the images look quite good. The animated sequences also look
good, with the 260 KBps sequence just beginning to show notice-
able compression artifacts. The 260 KBps video is well within the  [6]
bandwidth of single speed CDROM drives. This data rate is proba-
bly low enough that decompression could be performed in real time
in software on the fastest personal computers so there is the poten- [7]
tial for real time display of the resulting animations. We intend to
investigate this possibility in future work.

There is still room for significant improvement in our compres-
sion. A better mesh parameterization would significantly reduce 18]
the number of bits needed to encode the eyes, which distort signif-
icantly over time in the texture map space. Also the teeth, inner
edges of the lips, and the tongue could potentially be tracked over
time and at least partially stabilized, resulting in a significant re-
duction in bit rate for the mouth region. Since these two regions
account for the majority of the bit budget, the potential for further  [9]
reduction in bit rate is large.

9 Conclusion [10]

The system produces remarkably lifelike reconstructions of facial
expressions recorded from live actors’ performances. The accurate
3D tracking of a large number of points on the face results in an [11]
accurate 3D model of facial expression. The texture map sequence
captured simultaneously with the 3D deformation data captures de-
tails of expression that would be difficult to capture any other way.

By using the 3D deformation information to register the texture
maps from frame to frame the variance of the texture map sequencey1 2]
is significantly reduced which increases its compressibility. Image
quality of 30 frame per second animations, reconstructed at approx-
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Figure 15: Face before and after dot removal, with details showing the steps in the dot removal process. From left to right, top to bottom:
Face with dots, dots replaced with low frequency skin texture, high frequency skin texture added, hue clamped.

Figure 16: Sequence of rendered images of textured mesh.



Digital Face Cloning

Henrik Wann Jensén
University of California, San Diego

(a) 3D mesh (close-up of nostril) (b) Color data (c) Diffuse rendering

(d) Oily layer (e) Subsurface scattering (f) Final result
Figure 1: These images illustrate the steps in recreating a human face using 3D scanning (top row) and a skin BSSRDF model (bottom row).

Abstract face. A rendering of the final oily layer (using a Torrance Sparrow
model) is shown in Figure 1d.
This sketch describes the process and the technology used in the A full simulation of subsurface scattering requires a BSSRDF
creation of a digital clone of a human face for a story in the Novem- model [Jensen et al. 2001] as well as scattering and absorption pa-
ber 2002 issue of National Geographic on skin[Swerdlow 2002].  rameters for the skin. These parameters were not available and in-
stead the skin parameters measured in [Jensen et al. 2001] were
Digital Face Cloning used as a starting point. Furthermore, a simple heuristic was devel-
. . . .. oped to locally adjust the scattering parameters slightly based on
In the Spring of 2002 National Geographic contacted me to hear if \1o color information from the scanning process. Using the BSS-

I would be interested in rendering a human face for a story on skin. RpE model we obtained the image in Figure 1e, which shows the
The challenge would be to reproduce the appearance of a face givery psyrface scattering component of the skin. '

a 3D model. To obtain the final face image it was necessary to add facial hair
Scanning:  The first challenge was the acquisition of an accurate to the model. Most important was the lack of eyebrows. The eye-
3D model of a face. Since the face would be rendered as a close-upbrows and eyelashes were modeled by Steve Worley using his com-
spread over two pages the face model had to be very accurate, withmercial Sasquatch program (www.worley.com), and rendered using
enough resolution to capture fine details such as pores. Unfortu-the Kajiya model for hair [Kajiya and Kay 1989].

nately, it is not possible with existing techniques to scan skin with  Note, that the rendering of the final face model had to be done in
this accuracy due to subsurface scattering which blurs the light asroughly one week. The final combined result is shown in Figure 1f,
it interacts with the skin. To achieve sufficient accuracy a company and this image appeared in the 2002 November issue of National
(Arius3D) has developed a technique where they create a cast ofGeographic [Swerdlow 2002], and was used on the cover of the
a human face. The cast is flexible enough to represent pores andbutch edition. For the same article, National Geographic had the
sufficiently opaque that it can be scanned with very high resolution hyman subject photographed under roughly the same lighting con-
(100um). With this technology, they were able to produce a face ditions as in the simulation in order to compare with the results of
model with 13 million triangles. A slightly simplified version is  the computer generated skin. Unfortunately, the subject used a sig-
shown in Figure 1a - the smallest triangles in this image are repre- pificant amount of makeup for these closeup photographs, which
sentative for the detail in the full model. In addition, photographs aimost eliminated the presence of subsurface scattering in her skin.

of the model were aligned with the 3D model to obtain a rough es-  Eytyre challenges includes a more detailed skin model as well as
timate of the skin color (Figure 1b). A white diffuse rendering of  the apility to animate the face.

the geometry is shown in Figurelc.

Rendering:  To accurately render a human face it is necessary References
to take into account the two key elements of light interaction with
human skin: subsurface scattering and light reflection of the oily
layer at the surface the skin. Since the scanned model did not have
any information about oil, the first task was to create a program that

made it possible to interactively adjust the oil |ayer density over the KAJIYA, J.,'AND Kay, T. 1989. Rendering fur with three dimensional textures.
Proceedings of SIGGRAPH 1989

JENSEN, H. W., MARSCHNER S., LEvOY, M., AND HANRAHAN, P. 2001. A
practical model for subsurface light transpdProceedings of SIGGRAPH '2001
511-518.

*e-mail: henrik@cs.ucsd.edu SWERDLOW, J. 2002. Unmasking skifNational Geographic36—63.
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A Rapid Hierarchical Rendering Technique for Translucent Materials

Henrik Wann Jensen Juan Buhler
Stanford University PDI/DreamWorks
Abstract within the material between different points on the surface. This

requires treating the material as a participating medium with a sur-
This paper introduces an efficient two-pass rendering technique forface. This was done by Dorsey et al. [1999] who used photon map-
translucent materials. We decouple the computation of irradiance ping to simulate subsurface scattering in weathered stone. Pharr
at the surface from the evaluation of scattering inside the material. and Hanrahan [2000] introduced the concept of scattering equations
This is done by splitting the evaluation into two passes, where the and demonstrated how this concept could be used to simulate sub-
first pass consists of computing the irradiance at selected points onsurface scattering more efficiently than traditional Monte Carlo ray
the surface. The second pass uses a rapid hierarchical integrationracing.
technique to evaluate a diffusion approximation based on the irra-  More recently, Koenderink and van Doorn [2001] and Jensen
diance samples. This approach is substantially faster than previouset al. [2001] proposed modeling the scattering of light in translu-
methods for rendering translucent materials, and it has the advan-cent materials as a diffusion process. The diffusion approxima-
tage that it integrates seamlessly with both scanline rendering andtion works particularly well in highly scattering media where tra-
global illumination methods. We show several images and anima- ditional Monte Carlo ray tracing becomes very expensive [Stam
tions from our implementation that demonstrate that the approach 1995]. Jensen et al. [2001] suggested a simple analytical dipole dif-
is both fast and robust, making it suitable for rendering translucent fusion approximation and found this model to be in good agreement
materials in production. with measurements of light scattered from translucent materials.

; They used this approximation to formulate a complete BSSRDF

BSSRDF, reflection models, (Bidirectional Scattering Surface Reflectance Distribution Func-
tion [Nicodemus et al. 1977]), which relates outgoing radiance at
a point to incident flux at all points on the surface. Finally, they
evaluate the BSSRDF by sampling the incident flux on the surface.
1 Introduction The BSSRDF approximation [Jensen et al. 2001] is much faster

than Monte Carlo photon tracing. However, since it requires sam-
Translucent materials are frequently encountered in the naturalPling the incident flux distribution at the surface, it is still more
world. Examples include snow, plants, milk, cheese, meat, human expensive to evaluate than a traditional BRDF. It is particularly ex-
skin, cloth, marble, and jade. The degree of translucency may vary, Pensive for highly translucent materials where light can scatter a
but the characteristic appearance is distinctly smooth and soft as dong distance within the material. Another difficulty with the ap-
result of light scattering inside the objects, a process known as sub-Proach is that it only includes internal scattering in the material due
surface scattering. Subsurface scattering diffuses the scattered lighto direct illumination from the light sources. It is not obvious how
and blurs the effect of small geometric details on the surface, soft- to extend the sampling technique to include global illumination as
ening the overall look. In addition, scattered light can pass through Well.
translucent objects; this is particularly noticeable when the objects  In this paper we introduce a fast and general two-pass rendering
are lit from behind. To render these phenomena and capture thetéchnique for translucent materials. Our approach is based on two
true appearance of translucent materials it is therefore necessary tdey ideas. The first idea is to decouple of the computation of the
simulate subsurface Scattering_ incident illumination from the evaluation of the BSSRDF by using

Traditionally subsurface scattering has been approximated asa two-pass approach. In the first pass, we compute the irradiance at
Lambertian diffuse reflection. This was later improved by Hanra- Selected points on the surface, and in the second pass we evaluate
han and Krueger [1993] with an analytic term for single scattering @ diffusion approximation using the pre-computed irradiance sam-
in order to account for important directional effects. They also pro- Ples. The second idea is to use a rapid hierarchical evaluation of the
posed a method for simulating subsurface scattering by tracing pho-diffusion approximation using the pre-computed irradiance sam-
tons through the material, but in the end they used a BRDF (Bidirec- Ples. This approach is substantially faster than directly sampling
tional Reflectance Distribution Function [Nicodemus et al. 1977]) the BSSRDF since it only evaluates the incident illumination once
to represent the final model. A BRDF only accounts for scattering at a given surface location, and it is particularly efficient for highly
at a single point, and it cannot be used to simulate light transport translucent materials where sampling the BSSRDF is costly. To
evaluate the irradiance, we can use standard rendering techniques
including scanline rendering and global illumination methods. This
means that we can compute the effects of indirect illumination on
translucent materials. Furthermore, our results do not suffer from
any high-frequency Monte Carlo sampling noise since the hierar-
chical evaluation is deterministic. This is a great advantage for ani-
mations where this type of noise is particularly noticeable.

Another contribution of this paper is a reformulation of the scat-
tering parameters for translucent materials. We show how the in-
trinsic scattering properties of translucent materials can be com-
puted from two intuitive parameters: a diffuse reflectance and an
average scattering distance. Finally, we show several results from
our implementation of the method in a scanline renderer as well as

Keywords: Subsurface scattering,
light transport, diffusion theory, global illumination, realistic image
synthesis
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a Monte Carlo ray tracer. Our results indicate that the hierarchical The Oth-order spherical harmonic, the radiant fluenég, is
evaluation technique is fast and robust, and capable of renderingF;(z) = fh Ly(x,d')dd’, and the 3 terms of the 1st-
images and animations of translucent objects in complex lighting ;,qer spherical harmonic, the vector irradiandd. is B =

environments. . La(z,&")&'d. Note thatL, cannot be purely diffuse as this
would result in zero flux within the medium. Insteédd is approx-

2 Light Diffusion in Translucent Materials imated as belng mostly diffuse, but with a preferential direction (as
indicated byF)) to the overall flow of the flux.

The scattering of light within a medium is described by the radiative ~ The diffusion approximation is particularly effective in highly

transport equation [Chandrasekhar 1960]: scattering media at some distance from the light sources as well
as in regions with rapidly changing scattering properties. This
(@-V)L(z,d) = —01 L(z,0) + 0sLi(z, D) + s(z,d). (1) is due to the natural smoothing resulting from multiple scatter-

ing [Stam 1995]. More precisely, the diffusion approximation has
Here, L is the radiances is a source termg; is the scattering been shown [Furutso 1980] to be accurate whgfo; < 1 — g°.

coefficient,o, is the absorption coefficient; is defined ag,+o, Applying the diffusion approximation (Equation 6) to the radia-
andL; is the in-scattered radiance: tive transport equation (Equation 1) yields the diffusion equation
(the details of the derivation can be found in [Ishimaru 1978]):
Li(z,d) = /p(ﬁ,ﬁ')L(w@’)dﬁ'- ) 1 1_ =
4n gv%(x) = 0.Fi(z) — So(z) + V- Si(z). (@)
t t
The phase functionp, specifies the spherical distribution of the )
scattered light. It is normalizedf, p(&,&')ds’ = 1, and we Here,So andS; represents the Oth- and the 1st-order spherical har-
assume it only depends on the cosine of the scattering angle,Monics expansion of the source term, similar to the expansion for
p(@,&) = p(@ - J'). The mean cosing, of the scattering an-  diffuse radiance. _ _ ]
gleis: The diffusion equation can be solved analytically for special
, . cases [Ishimaru 1978], or by using a multigrid approach [Stam
g= / Pp(&,d") (& - &")da. (3) 1995]. In the case of translucent materials, we are interested in
4m

the outgoing radiance at the material surface as a function of the
The value ofg € [—1,1] indicates the type of scattering in the incoming radiance. Jensen et al. [2001] use a dipole diffusion ap-
medium. g = 0 is isotropic scatteringg < 0 is backwards scat- proximation for a point source in a semi-infinite medium. The point
tering andg > 0 is forward scattering. Most translucent materials Source is an approximation of an incoming beam of light for which
are strongly forward scattering withh > 0.7 (skin for example itis assumed that all light scatters at a depth of one mean-free path
has0.7 < g < 0.9 [Gemert et al. 1989]). Such strongly peaked below the surface. The dipole diffusion approximation results in
phase functions are costly to simulate in media with multiple scat- the following expression for the radiant exitande,, at surface
tering since the probability of sampling in the direction of the light locationz, due to incident flux®; (z;), atz;:
sources will be low in most situations. The difficulty of sampling
further increases with the distance to the light sources. In this case o {01 e trdr e Ttrdv } ®)

we can benefit from a powerful technique known asdimailarity M, (o) = dq)i(xi)ﬂ dz? +C: d?
of moment§Wyman et al. 1980], which allows us to change the
scattering properties of the medium without significantly influenc- where
ing the actual distribution of light. Specifically, we can modify the
medium to have isotropic scattering £ 0) by changing the scat- Cy = 2, (Uw + i) and Cy = 2z, (am + i) )]
tering coefficient to d, dy
O—., = (179)057 (4)

. ’ ) o ) Here,o/ = ol /o} is the reduced albedoy, = /3040, is the
whereoy is thereducedscattering coefficient. The absorption co- effective transport extinction coefficient, = 2 1 22 is the
efficient remains unchanged, and we get the reduced extinction co- . P . — . "
efficiento’ = o’ + 0. dlstanCPT to the real light sourcé, = VT + 23 is the distance

Equation 1 is a five-dimensional integro-differential equation, tﬁ the .v|rtufa!”sou.rce1; = Hx& 7_“”” 1S tZe dlitance fron:ro;;o
and even in media with isotropic scattering it is in most cases dif- the point of illumination, and:, = £, andz, = fu(1 + 4/34)
ficult to solve. One approach is to expand radiance into a trun- are .the dlstancg from the the dipole Ilght_s to the §urface (shgwn
cated series of spherical harmonics. For this purpose we divide " Figure 2). Finally, the boundary condition for mismatched in-
the radiance into two components: the unscattered radidnge, ~ L/1aces is taken into account by tHeterm which is computed as
and the scattered (diffuse) radiande;. The unscattered radi- “* = (1 + Fda)f/(l _hFdT)’I vv_her_eéhe d:cffu?e Fr_esm)nel term“,l;] IS
ance is reduced as a function of the distance traveled through theapplroxmat'e rom the relative index of refractipy [Groenhuis
medium [Ishimaru 1978]: etal. 1983]:

1-;1;10 N g +0.668 + 0.0636n.  (10)

Lu(z 4+ Az,&) = e 727 L, (z,d). (5) For = —

The average distance at which the light is scattered, the mean-free
path, ist,, = 1/o;.

The diffusion approximation uses the first four terms of the
spherical harmonic expansion to represkant

In addition to Equation 8 the BSSRDF includes a single scatter-
ing term (see [Jensen et al. 2001] for the details).

2.1 The Importance of Multiple Scattering

- 3 - . . .
Lg(z,&) = Fy(z) + ZwE(m) - . (6) The diffuse term is the most costly to sample for translucent materi-
als since it depends on lighting from a large fraction of the material

surface. We can approximate the average distafices 1/04,
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eafis om0 — 3 A Two-Pass Technique for Evaluating
os| [E09° o the Diffusion Approximation
10 o
- 0.6 -~ As shown in the previous section, the radiant exitance from highly
e 04 / scattering translucent materials is dominated by photons that have
B SRS - / scattered multiple times inside the material. Jensen et al. [2001]
0.2 . . . . .
compute the contribution from multiple scattering by sampling the
51 R Ry — irradiance at the material surface and evaluating the diffusion ap-

proximation — in effect convolving the reflectance profile predicted
by the diffusion approximation with the incident illumination. Even

Figure 1: These graphs show the effect of increasing the scattering though the diffusion approximation is a very effective way of ap-
albedo of the material. The left graph shows the average scatter- proximating multiple scattering, this sampling technique becomes
ing distance for diffuse radiance divided by the mean-free path for expensive for highly translucent materials. The reason for this is
single scattering (for g = 0.9) as predicted by Equation 11 and es- that the sampled surface area grows and needs more samples as the
timated using a Monte Carlo photon simulation. The graph on the material becomes more translucent.

right shows the fraction of the radiant exitance that is due to mul- The key idea for making this process faster is to decouple the
tiple scattering (estimated with a Monte Carlo photon simulation). computation of irradiance from the evaluation of the diffusion ap-
The important thing to notice in the two graphs is that the diffuse proximation. This makes it possible to reuse irradiance samples
radiance scatters much further, and that it becomes increasingly im- for different evaluations of the diffusion equation. For this pur-
portant as the albedo gets closer to one. pose, we use a two-pass approach in which the first pass consists

of computing the irradiance at selected points on the surface, and
) ] ~ the second pass is evaluating the diffusion approximation using the
along the surface that the diffused radiance scatters by assumingyrecomputed irradiance values. For the second pass we exploit the

that the exponential term dominates in Equation 8. By dividing this gecreasing importance of distant samples and use a rapid hierarchi-
distance with the mean-free path, = 1/0:, of single-scattered 3| integration technique.
light, we can estimate the relative scattered distance of the two

within the medium: Pass 1: Sampling the Irradiance
la _ 0t _ L ) (11) To obtain the sample locations on the surface of a piece of geometry
ls O 3(1 — a)(1 — ga) we use Turk’s point repulsion algorithm [Turk 1992], which pro-

duces a uniform sampling of points on a polygon mesh. We do not

Note how the ratio depends only on the albedpand the scat- change (retile) our mesh as we only need the point locations. To en-
tering anisotropyg. Figure 1 shows a plot of this equation and a sure an accurate evaluation of the diffusion approximation we need
comparison with a Monte Carlo photon simulation. For the pho- enough points to account for several factors including the geometry,
ton simulation, we traced photons from random directions towards the variation in the lighting, the scattering properties of the material,
a translucent material and recorded the average distance at whichand the integration technique. We use the mean-free fpgths the
the photons left the surface again after scattering inside the mate-maximum distance between the points on the surface. The approxi-
rial. This distance divided by, is shown in the graph. For the  mate number of points that we use for a given object then becomes
simulation we used the Henyey-Greenstein phase function [Henyey A /(n¢2), whereA is the surface area of the object. This is a con-
and Greenstein 1941] and the photons are scattered using the apservative estimate, since anything below the mean-free path will be
proach described by Hanrahan and Krueger [1993]. Despite sev-blurred by multiple scattering. However, the sample density should
eral assumptions about the average scattering distance, it can be&ot be much lower since this will result in low-frequency noise in
seen that the predictions of Equation 11 are surprisingly accurate.the reconstruction of the diffusion approximation. Note that our re-
For both simulations the ratio rapidly increases as the albedo ap-construction does not require a uniform sampling since we weight
proaches one as a consequence of the increasing number of scaeach sample point by the area associated with the point. It would be
tering events. From the measurements in [Jensen et al. 2001] wepossible to use other approaches that sample more densely around
can see that all of the materials have an albedo close to one. As ardiscontinuities in the irradiance or the geometry.
example, red wavelengths in skim milk (assuming: 0.9) have a With each sample point we store the location, the area associ-
scattering albedo af ~ 0.9998, which gives a ratidq/¢; ~ 129. ated with the point (in the case of uniform sampling, this is sim-
This means that the average distance traveled by diffuse radiance isly the surface area divided by the number of points), and a com-
129 times larger than the average distance traveled by unscattereghuted irradiance estimate. Since the irradiance is computed at a
radiance. In effect this means that single scattering is substantially surface location we can use standard rendering techniques includ-
more localized than diffuse scattering. ing methods that account for global illumination (such as photon

The importance of multiple scattering increases with the albedo mapping [Jensen 1996] and irradiance caching [Ward et al. 1988]).
of the material. To further investigate how important multiple scat-
tered light is for translucent materials, we performed another Monte Pass 2: Evaluating the Diffusion Approximation
Carlo photon simulation. In this simulation we traced photons from
random directions towards the surface scattering medium. At the
surface we recorded the radiant exitance from the photons that scat
tered in the medium. We used an index of refraction of 1.3 for the
medium (the results are very similar for other values). Two impor-
tant parameters for the medium are the scattering anisotropy and th
scattering albedo. The right graph in Figure 1 shows the fraction of
the radiant exitance from the material due to multiple scattered light
as a function of the albedo. Note, how the fraction gets close to 1.0
for the forward scattering material, and close to 0.9 for a material
with isotropic scattering.

The diffusion approximation can be evaluated directly (using Equa-
tion 8) by summing the contribution from all the irradiance samples.
However, this approach is costly since most objects have several
thousand irradiance samples. Another, strategy would be to only
onsider nearby “important” points. This approach would work,
ut it could potentially leave out important illumination, and for
accurate evaluations it would still need hundreds of irradiance sam-
ples (e.g. our sampling produces roughly 300 samples within a disc
with a radius of 10 mean-free paths). Instead we use a hierarchi-
cal evaluation technique which takes into account the contribution
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from all irradiance samples by clustering distant samples to make

this evaluation fast. The exponential shaped fall-off in the diffusion
approximation makes the hierarchical approach very efficient. The T
concept is similar to the hierarchical approaches used for N-body z,

problems [Appel 1985].

Several different hierarchical structures can be used for the ir-
radiance samples. We use an octree in our implementation. Each |
node in the tree stores a representation of illumination in all its child 1
nodes: the total irradiancey,,, the total area represented by the
points, A,,, and the average location (weighted by the irradiance) of
the points,]31,. To increase efficiency we allow up ®irradiance
samples in a leaf voxel. Figure 2: For each point sample we use the dipole diffusion approx-

The total radiant exitance flux at a locatiar, is computed by ~ imation to compute the radiant exitance.
traversing the octree from the root. For each voxel we check if it

is “small enough” or if it is a leaf node that it can be used directly; Fu(w, &) Mo(x)
otherwise all the child nodes of the voxel are evaluated recursively. Lo(z,8) = ===, ¢ (14)
If the pointz is inside the voxel then we always evaluate the child Far(z)

nodes. For all other voxels we need an error criterion that speci-
fies the desired accuracy of the hierarchical evaluation. One option
would be to compute the potential contribution from the voxel and
decide based on this estimate if the voxel should be subdivided.
Unfortunately, this is not trivial — and simply using the center of
the points in the voxel is not a good approximation for nearby large

voxels. Instead we use a much simpler criterion that is both fast i
to evaluate and that works well in practice. We base our criteria 4 Reparameterlzmg the BSSRDF

for subdividing a voxel on an approximation of the maximum solid - oe ifficulty in simulating subsurface scattering is that it is diffi-
angle,Aw, spanned by the points in the voxel: cult to predict the resulting appearance from a given combination

We scale the contribution by the Fresnel transmittatiGeto ac-
count for reflection and transmission at the surface. Since, the dif-
fusion approximation already includes a diffuse Fresnel transmit-
tance we divide byFy,.. Alternatively, we could omit the Fresnel
terms and assume a diffuse radiance.

A, of absorption and scattering coefficients (since their effect is highly
W= B (12) non-linear). In this section, we will outline a simple technique for
17 = Pl reparameterizing the BSSRDF into using intuitive translucency and
To decide if a voxel should be subdivided we simply compate reflectivity parameters. These parameters are already present in the
to a valuee which controls the error. IAw is larger thare then computations in the form of the diffuse mean free péattand the

the children of the voxel are evaluated; otherwise the voxel is used diffuse reflectance of the material, and they are sufficient for com-
directly. Another option would be to check the solid angle of the puting the scattering and absorption properties of the material.
voxel itself; however, using the area of the points makes the evalu-  First, using the diffuse reflection coefficient (see [Jensen et al.
ation faster, since we can use the clustered values for large voxels2001]), we solve for the reduced albedo of the material:
with just a few irradiance samples (e.g. large voxels that just barely ,
intersect the surfa}ce). . ‘ Ry = o (1 4 eféA\/fs(l—a/)) 67\/3(17% . (15)

The radiant exitance due to a voxel is evaluated using the clus- 2
tered values for the voxel, or if it is a leaf-voxel by summing the . . . . . . .
contribution from each of the points in the voxel. The radiant ex- 11iS équation is not easily invertible, but it has a simple monotonic
itance, M, ,(z) atz from a given irradiance sample is computed shape in the valid regioa’ € [0 : 1], and we use a few iterations

using the dipole diffusion approximation of a simple secant root finder to compute
M, (z) We know the effective transport coefficient;, ~ 1/¢4, and
Mop(x) = Far(2) ——=—2—Ep Ay, (13) given the reduced albedo we can find the reduced extinction coeffi-
o/d®;(Pp) cient;
. . . . . Otr ; o Otr
where P, is the location of the irradiance sample(d), is the o= 3(1-a) — o= ———e (16)
irradiance at that location, and, is the area of the location. ¢ 31—a)

dM,(||x — P,|2)/(o/d®;(P,)) is computed using Equation 8.
Notice that we scale each irradiance sample by the diffuse Fres-
nel transmittancefFy; = 1 — Fy, (Fu- IS computed using Equa-
tion 10). This is necessary when approximating the irradiance by
the dipole source. We could have scaled the contribution from each
of the sample rays used to compute the irradiance by the true Fres-5
nel transmittance, but by using the diffuse (Lambertian) assumption
we can benefit from fast rendering techniques for diffuse materials
(e.g. caching techniques such as photon maps [Jensen 1996] an
irradiance caching [Ward et al. 1988]). The dipole approximation
for an irradiance sample is illustrated in Figure 2. Note that this
approximation has been derived assuming a semi-infinite medium.
In the presence of complex geometry (e.g. curved surfaces or thin
geometry) we use the same techniques as Jensen et al. [2001] t
ensure numerical stability.

The result of traversing and evaluating the voxels is an estimate
of the total (diffuse) radiant exitancé/, atx, which we convert
into radianceL,:

Finally, this gives us the absorption and the reduced scattering coef-
ficients:o, = oo} ando, = o} — o.. If the scattering anisotropy,

g, is given then the real extinction and scattering coefficients can be
computed as well.

Results

H’I this section we present several results from our implementation
of the rendering technique. We have used two different systems
to implement the model: A Monte Carlo ray tracer with support
for global illumination, and a modified a-buffer renderer used in
production. Our timings were recorded on a dual 800MHz Pentium
8’ for images with a width of 1024 pixels and 4 samples per pixel.
The first example include several renderings of a translucent
marble teapot as shown in Figure 3. All of these images were
rendered with the Monte Carlo ray tracer. The left column shows
a comparison with the BSSRDF sampling technique by Jensen et
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al. [2001], and our hierarchical technique under the same lighting ance on the surface with a fast hierarchical evaluation of a diffusion
conditions (for this comparison we use the BRDF approximation approximation. Our approach is particularly efficient for highly
for the single scattering term). The important thing to notice is translucent materials where the BSSRDF sampling [Jensen et al.
that the two images are practically indistinguishable except for a 2001] becomes costly, and it integrates seamlessly with both scan-
small amount of sampling noise in the BSSRDF image. This shows line rendering and global illumination methods. Our results demon-
that the hierarchical approach is capable of matching the output of strate how the technique is both fast and robust making it suitable
the BSSRDF for a translucent material. However, the hierarchi- for rendering translucent materials in production of computer ani-
cal technique took just 7 seconds to render (including 1 second mations.
to compute the irradiance values at the samples), while the BSS- Future improvements include extending the approach to translu-
RDF sampling took 18 minutes — a factor of 154 speedup in this cent materials with a visible internal 3D structure. It would also be
case. The speedup will be even more dramatic for objects that areuseful to investigate the accuracy of the dipole diffusion approxi-
more translucent. The top image in the right column shows a glossy mation in the presence of complex geometry.
teapot illuminated by a high dynamic range environment map [De-  Another interesting path to explore is interactive rendering of
bevec 1999]. To enhance the translucency effect we made the entranslucent materials. This could be done by further simplifying
vironment black behind the camera. The render time for the image the evaluation technique so that it can be implemented directly on
without glossy reflection is 7 seconds (the rendering time including programmable graphics hardware.
glossy reflection is 40 seconds). The precomputation time for the
irradiance samples (sampling the environment map) was roughly 1
minute. This sgene(woulz bg extremely costly to rl:()e)nder usingg t)r/1e 7 Acknowledgments
BSSRDF sampling approach, since it would involve picking a point . i
on the light source and then sampling in the direction of the teapot Thanks to the SIGGRAPH reviewers and to Maryann Simmons,
— a process where the probability of generating good samples is Mike Cammgrano, Pat Hanrahan, and Marc Levoy for helpful com-
very low. Finally, the lower right image shows the 150,000 sample Ments. The first author was supported by NSF ITR (11S-0085864).
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Our second example in Figure 4 shows the classic Cornell box PD! R&D group and thanks them for supporting the development
global illumination scene with a translucent box. This image was and publication of these techniques.
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BSSRDF: sampled evaluation - 18 minutes lllumination from a HDR environment

BSSRDF: hierarchical evaluation - 7 seconds The sample locations on the teapot

Figure 3: A translucent teapot. On the left we compare our hierarchical BSSRDF evaluation (bottom) to a sampled BSSRDF
(top). The top right image shows the teapot in a HDR environment, and the bottom right shows the 150,000 sample points on

the teapot.

Figure 5: An animation with a translucent character.
Translucency helps depict the small size of the character.
Figure 4: A global illumination scene with a translucent Image courtesy of Scott Peterson - PDI/DreamWorks.

box. Note the light bleeding through the box, and the color

bleeding in the model.

Figure 6: A textured face model lit by three light sources (key, fill, and rim). The left image shows the result using the skin
shader that was used in the movie “Shrek”, and the right image shows the result after adding our simulation of translucency to

this shader.



Realistic Human Face Rendering for “The Matrix Reloaded”

George Borshukov and J.P.Lewis
ESC Entertainment

Introduction

The ultimate challenge in photorealistic computer graphics is
rendering believable human faces. We are trained to study the
human face since birth, so our brains are intimately familiar with
every nuance and detail of what human skin is supposed look like.
The challenge of rendering human skin is further complicated by
some technical issues such as the fact that skin is a highly detailed
surface with noticeable features in the order of ~100 microns and
the fact that skin is translucent. On The Matrix Reloaded we had to
create completely photorealistic renderings for most of the
principal actors including Keanu Reeves, Lawrence Fishborne, and
Hugo Weaving.

Facial Surface Detail

The geometry used for our rendering was based on a 100-micron
resolution scan of a plaster cast mold of the actors' faces. Arius3d
provided the scanning technology. These scans had extremely high
polygonal counts (10 million triangles; see Fig. 1). To use these
models in production and preserve the detail we deployed the
following technique. A low-res ~5K quad model was constructed
using Paraform software. The model was given a UV
parameterization and then used as a subdivision surface. The high
resolution detail was extracted using the lightmapping feature of
the mental ray renderer combined with custom shaders that
performed ray tracing from the low-res subdivision surface model
to the high-detailed 10M triangle raw scan; the distance difference
is stored in a displacement map. We applied the low frequency
component of this map as displacement; the high frequency
component was applied using bump mapping.

Image-based Derivation of Skin BRDF

Our skin BRDF was derived using an image-based approach. In
Summer 2000 as part of the early stages of Matrix Reloaded R& D
we had a setup, which consisted of 30 still cameras arranged
around the actor’'s head. Actors were photographed illuminated
with a series of light sources from different directions (see Fig. 2).
The setup was carefully color calibrated and photogrammetry was
used to precisely reconstruct the camera positions and head
placement with respect to each camera for each image. The
collected image data from each camera was brought into a
common UV space through reprojection using a cyberscan model
of the actor. This convenient space (see Fig. 3) alowed us to
analyze the skin reflectance properties for many incident and
outgoing light directions. We derived parameters for an
approximate analytical BRDF that consisted of a Lambertian
diffuse component and a modified Phong-like specular component
with a Fresnel-like effect. (We would like to acknowledge
Matthew Landauer for his contributions to this section).

Subsurface Scattering of Skin

As production progressed it becameincreasingly clear that realistic
skin rendering couldn’t be achieved without subsurface scattering
simulation. There are a number of published methods for rendering
tranducent materials however they are all fairly complex, require
large amounts of CPU power and produce somewhat disappointing
results. To address this we devel oped a technique for producing the
appearance of subsurface scattering in skin that is computationally

inexpensive and fairly easy to implement. The result of the diffuse
illumination reflecting off the face in the camera direction is stored in a
2-d light map (see Fig. 4). We then approximately simulate light
diffusion in the image domain. To simulate the different mean free path
for different light colors we vary the diffusion parameters for each color
channel. For animations the lightmap needs to be computed at every
frame, so our technique computes an appropriate lightmap resolution
depending on the size of the head in frame. For objects like ears where
light can pass directly through, we employed a more traditiona ray
tracing approach to achieve the desired translucency effect.

Results

The above components are combined with our Universal Capture, real
world Lighting Reconstruction technologies, and a ray tracer such as
mental ray to produce the synthetic images in Fig. 5 and 6. For
comparison Fig. 7 shows a photograph of Keanu Reeves (Neo). The
bottom imageis afully virtual frame from The Matrix Reloaded.




Reflectance Field Rendering of Human Faces for “Spider-Man 2”

Mark Sagar

Sony Pictures Imageworks

The creation of convincing computer generated human
faces which can withstand close-up scrutiny under
arbitrary lighting has been notoriously difficult to
achieve, especialy for well known actors. For the film
“Spider-Man 2” it was decided to try recent
experimental computer graphics research that looked
promising but that had never been production tested.

In order to create highly realistic digital versions of
the faces for the main characters (played by Tobey
Maguire and Alfred Molina) the techniques introduced
in the SIGGRAPH 2000 paper “Acquiring the
reflectance field of a human face™* were extended to
support deforming shapes for facial animation and
integrated into the Sony Imageworks CG pipeline.

The USC ICT Lightstage 2.0 was used for the capture.
Four film cameras were placed at various angles
around the subject and synchronized to the strobes for
simultaneous image capture. The resulting images
were color corrected and projected onto a 3D model of
the performer. Colorspace Analysis was used to
decompose each dataset into diffuse and specular
components. The specular component distribution was
transformed to a view independent representation. The
decomposed multiview datasets were then combined
in UV space weighted by surface normal and visibility
criteria to create the final reflectance functions.

In order to apply facial motion capture to create an
animated model which could be relighted it is
necessary either to capture images of the face in many
expressions and interpolate, requiring a huge amount
of data, or to modify a single set of neutral expression
reflectance functions as the model deforms.

Because we had very limited time with the actors, and
to avoid the logistics and processing cost of capturing
many separate expressions, only the images captured
for the faces in the neutral position (and with teeth
bared) were used. In order to approximate the lighting
changes as the face deformed (driven by motion
capture or animation) into different expressions the
reflectance functions were transformed based on
changes in surface normal direction and light source
visibility. This proved successful, however it is a first
order approximation only as it does not account for
indirect illumination changes and does not represent
visual changes due to blood redistribution as the face
compresses.

The eyes had to be treated separately as they move
independently from the head, and the captured data for
corneal highlights were too sparse to re-synthesize
sharp continuous highlights. Obscured regions of the
eyes were filled in by mapping normalized reflectance
functions of nearby tissue. The surface geometry of

the corneas was determined from the reflectance data,
to create a bump map for a conventional shader.

A few unexpected problems had to be dealt with. The
actors both had haircuts which did not match the final
look in the film, and also had some surface blemishes.
Certain small areas in the ear were not seen by any
camera and so had no capture data.  Several
approaches used to fix these problems (which had to
be addressed on 480 frames per camera) including
paint fixes and the creation of a "virtual lightstage" to
generate skin texture for missing regions.

One of the main challenges was integration with the
conventional CG shading pipeline. To do this the
reflectance field shader was implemented to work with
both individual lights controlled by the existing
lighting tools and with HDR image based
environmental lighting. A downsampled dataset was
available to speed up rendering for the environmental
case. The acquired reflectance field is non-local so the
data does not account for partial shadowing and other
local lighting effects (e.g. the lighting changes caused
by wearing sunglasses). This was approximated by
locally modifying the illumination model using
conventional shading techniques.

The successful combination of the reflectance field
shaded and conventionally shaded CG permitted
artists/Technical Directors to use preexisting tools and
workflow without special consideration to which
shading technique was being employed.

Contributors: (Sony Pictures Imageworks) John Monos, John
Schmidt, Dan Ziegler, Sing-choong Foo, Remington Scott,
Jeff Stern, Chris Waegner, Peter Nofz, ( ICT) Tim Hawkins,
Paul Debevec
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Analysisand Synthesis of Facial Expressions
with Hand-Generated Muscle Actuation Basis

Byoungwon Choe*

Hyeong-Seok Ko
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Abstract

We present a performance-driven facial animation sys-
temfor analyzing captured expressions to find muscle actu-
ation and synthesizing expressions with the actuation val-
ues. Sgnificantly different approach of our work is that we
let artists sculpt the initial draft of the actuation basis—the
basic facial shapes corresponding to the isolated actuation
of individual muscles, instead of calculating skin surface
deformation entirely relying on the mathematical models
such as finite element methods. We synthesize expressions
by linear combinations of the basis elements, and analyze
expressions by finding the weights for the combinations.
Even though the hand-generated actuation basis represents
the essence of the subject’s characteristic expressions, it is
not accurate enough to be used in the subsequent computa-
tional procedures. We also describe an iterative algorithm
to increase the accuracy of the actuation basis. The exper-
imental results suggest that our artist-in-the-loop method
produces more predictable and controllable outcome than
pure mathematical models, thus can be a quite useful tool
in animation productions.

1. Introduction

Since Williams’ pioneering work on performance-driven
facial animation [23], applying facial expressions from
human faces to computer-generated characters has been
widely studied [9, 3, 24, 12, 19]. To control facial move-
ment, facial expressions were analyzed into the position
of feature points [9, 3, 24] or the weights for blending
pre-modeled expressions [12, 19]. Another fascinating ap-
proach, which we took in this work, is finding muscle ac-
tuation parameters from facial expressions [21, 6, 1]. Ex-
pressions can be easily modified by editing muscle actua-
tion curves [1], and the actuation values can be converted

*133-316, Seoul National University, Shillim-dong, Gwanak-gu, Seoul,
151-742, KOREA. drei@graphics.snu.ac.kr

to other control parameters such as the values of Actuation
Units in Facial Action Coding System [4] without much ef-
fort.

Terzopoulos et al. [21] and Essa et al. [6] analyzed the
expressions recorded in video footage into muscle actuation
values for facial expression recognition. They also synthe-
sized facial expressions with the actuation values. The syn-
thetic expressions, however, showed only conspicuous ones
such as ‘opening mouth’ or ‘raising eyebrows’, which were
not yet to be used in high quality animation production. Re-
cently, Choe et al. [1] proposed an algorithm to find muscle
actuation values from the trajectory of feature points gen-
erated by an optical capture system. They could reproduce
delicate facial movements by extracting complicated set of
muscle actuation values with a linear finite element model,
and showed the possibility of practical use in character an-
imation. Still, the heuristic muscle model could misinter-
pret the original expressions, and simplified finite element
model occasionally produced unnatural artifacts in skin de-
formation.

In this work, instead of relying entirely on the mathe-
matical models to compute the 3D facial shape, we include
the artists’ modeling capability as an integral part of the
method. According to our previous tests, the result of pure
mathematical modeling was usually distant from what was
expected.! Such expectation cannot be quantitatively stated;
we thought that an artist may be able to form the expected
(or desired) facial shape. Thus we made the artists sculpt
manually a set of expressions called the muscle actuation
basis, and let the computer program synthesize expressions
based on the basis elements. Each element of the actuation
basis corresponds to the facial shape when a single expres-
sion muscle is fully actuated and the rest are left relaxed.

We can synthesize a facial expression by the linear com-
bination of the basis elements on the same principle as the
linear muscle model [1]. Then our algorithm is basically re-

1Some of the reasons might be that we could not calibrate the muscle
size and layout of the computer model with those of the subject being cap-
tured, and we made too many simplifying assumptions to use mathematical
models.



duced to the methods that synthesize expressions by blend-
ing pre-modeled expressions, which was experimented by
Kouadio et al. [12] and Pighin et al. [18, 19]. Our method
is different from theirs in the pre-modeled expression set:
we use an artificial but functional set of expressions instead
of using real human expression samples such as ‘happi-
ness’ or ‘sadness’. Using the actuation basis rather than real
human expression samples has an important consequence.
The elements in the actuation basis are orthogonal to each
other, and form a meaningful basis for the facial expression
space—the actuation basis can produce (or in mathemat-
ical terms, span) the complete set of human expressions.
When real human expressions are used, on the other hand,
the linear combinations of them cannot generally guarantee
to produce the complete set of expressions.?

We can summarize our facial animation process into two
major steps: modeling to set up the neutral face and the ac-
tuation basis of a subject and analysis to find muscle con-
tractions from the subject’s performance using the actuation
basis. We can synthesize expressions by applying the ana-
lyzed muscle contractions to any computer model with an
equivalent muscle structure.

In order to model the actuation basis, we first obtain
the neutral face of the subject using a 3D scanning device.
Starting from the neutral face, we let an artist sculpt the
basis elements considering the human facial anatomy [2].
The work of Faigin [7], which illustrates the facial shape
corresponding to the actuation of each individual muscle,
serves a good guide for the job. It could be expected that
the first hand-generated draft would not give a satisfactory
result. Moreover, considering that the accuracy of the ac-
tuation basis greatly affects the result of the analysis, we
need to develop a procedure for improving the basis. The
improvement procedure (described in Section 4.2), in turn,
refers to the result of the analysis on some trial data; the
procedure takes the form of fixed point iteration between
modeling and analysis.

Once the actuation basis of a subject is ready, we can
start analyzing the expressions captured from the subject.
We approximate each frame of the facial performance by
a linear combination of the basis elements. Finding the
best approximation can be formulated as a constrained
guadratic programming, and the coefficients in the resulting
solution are interpreted as the muscle contraction values.

The rest of this paper is organized as follows. Section 2
reviews related work in facial animation. Section 3 and
Section 4 present the modeling and analysis procedures re-

2There have been efforts to resolve the correlation among human ex-
pression samples and map the expressions into an orthogonal domain [14].
A popular domain studied first in psychology was a two-dimensional space
represented by pleasure and arousal axes [8]. However, the quantitative
use of the parameters (e.g., for expression synthesis) does not seem suitable
since the dimension is quite limited and assigning the coordinate values is
done in a subjective manner.

spectively. Section 5 shows the experimental results of our
method, and Section 6 concludes the paper.

2. Background

This section reviews the state-of-the-art techniques on
performance-driven facial animation and muscle-based fa-
cial modeling. More topics on facial modeling and anima-
tion can be found in [17].

Williams [23] introduced a performance-driven facial
animation system which synthesized expressions by chang-
ing texture coordinates calculated from the position of fea-
ture points on the face. Guenter et al. [9] captured both
the 3D geometry and shading information of a human face,
and reproduced photorealistic expressions. Eisert and Girod
[3] modeled a face with a triangular B-spline surface, and
analyzed facial expressions by estimating the facial anima-
tion parameters of MPEG-4 standard. Pighin et al. [18] re-
constructed the geometry and texture of an individual face
from five photo images of the subject. With this method,
they modeled basic expressions such as ‘joy’ or ‘surprise’,
and synthesized novel expressions by blending them. The
result was photo-realistic, showing detailed wrinkles and
creases. Later, they proposed an algorithm to find the blend-
ing weights from the video recording of a performance [19].
Kouadio et al. [12] animated a synthetic character by the
linear combination of previously modeled 3D facial expres-
sions by extracting the interpolation weights from the fea-
ture points traced by an optical capture device.

Waters [22] introduced an anatomically based muscle
model which was kinematically formulated. Terzopoulos
et al. [20, 13] represented the mesh of the skin surface
by a mass-spring model, and calculated skin deformation
due to muscle actuation. Koch et al. predicted the geom-
etry of skin surface due to the skull shape change using a
finite-element model [11], and synthesized expressions by
embedding expression muscles [10].

Terzopoulos and Waters [21] developed a method to ex-
tract muscle contractions from the expressions recorded in
video footage based on a dynamic muscle model. Essa et
al. [5, 6] developed a system to estimate muscle actuation
corresponding to a given expression using feedback control
theory. Choe et al. [1] calculated muscle actuation values
based on the finite element skin model and linear muscle
model.

3. Modeling Muscle Actuation Basis

Muscle actuation basis is a set of expressions
{E1,E,,...,E,,}, each of which represents the 3D facial
shape when a single expression muscle is fully actuated and
the others are relaxed. Figure 1 shows an example of the
actuation basis.



(1,2) Frontalis

(7,8) Levator labii
superioris

Expression Muscles

(13) Depressor
anguli oris

(14) Orbi-
cularis oris

(3,4) Corrugator (5,6) Orbicularis oculi

(9,10) Zygomatic major

(16) Jaw
rotation

(11,12) Risorius

(15) Lips
pressor

Neutral

Figure 1. Expression muscles and the corresponding basis elements in the actuation basis.

Once we have the actuation basis, we can synthesize
facial expressions by linear combinations of the basis ele-
ments if we assume the linear muscle model [1]. Let Eq
denote the neutral expression—the position of about 1,500
verticesthat constitute the facial surface. Lete; = E; — Eg
(t = 1,2,...,m) be the difference between the basis el-
ement and the neutral expression, where m is the num-
ber of the basis elements. When the muscle contractions
1,T2,...,%,; are given, we synthesize an expression E
by

E = Eo + Z.’L‘iei. (1)
i=1
We normally expect the muscle contractions have the value
in[0, 1] since each basis element embodiesthefull actuation
of an expression muscle.

In this work, we used an actuation basis of 16 elements
asshownin Figure 1. six for the musclesin the upper region
around the eyebrows (Figure 1 (1)~(6)), ten for the muscles
in the lower region around the mouth (Figure 1 (7)~(16)).
We get the reduced set of 16 basis elements to represent the
operation of not less than 26 expression musclesin the hu-
man face. The operation of several muscles can be merged
into a single basis element if they are dependent on each
other, and the operation of a single muscle should be rep-
resented by multiple basis elements if the actuation of the
muscle can produce multiple distinct shapes:

e Merging: We merge the operation of the musclesinto

a single basis element if they usualy actuate simul-
taneously. For example, we merge the three muscles
Levator labii superiorisalaequenasi, Levator labii su-
perioris, and Zygomatic minor which are known asthe
sneering muscles (see Figure 1 (7, 8)) into the single
basis element Levator labii superioris. The basis ele-
ments Corrugator (Figure 1 (3, 4)), Risorius (Figure 1
(11, 12)), and Depressor anguli oris (Figure 1 (13))
are also the results of merging the operation of two or
three muscles.

e Mouth: The operation of Orbicularis oris around the
mouth is very complicated, and the full actuation of
the muscle can generate many different shapes. In
this work, we created two basis elements to repre-
sent the operation of the muscle: normal Orbicularis
oris which corresponds to the mouth shape when pro-
nouncing /u/ sound (Figure 1 (14)), and the Lips pres-
sor which corresponds to the protruded (upset) mouth
(Figure 1 (15)).2 Gentle closing of the mouth is cov-
ered by the neutral expression Ey.

e Eyes: Orbicularis oculi, the sphincter muscle at the
eyes, consists of the palpebral and orbital parts. In this

SQOrhicularis oris was an obvious choice for the basis, but the inclusion
of Lips pressor was based upon our experiences: without the Lips pressor,
we observed the elements Risorius and Orbicularis oris had to combine
frequently to produce the shape of Lips pressor, which was quite unnatural
in the operation of human expression muscles.



work, we implemented only the operation of the pal pe-
bral part (gentle closing of the eyes) as abasis element
(Figure 1 (5, 6)). Therefore emphatic closing of the
eyes cannot be generated.

We let artists model the basis elements considering the
size and location of expression muscles[2]. Faigin[7] illus-
trated thefacial expressionsresulting from the actuation of a
single or multiple expression muscles, which served an ex-
cellent guide to the modeling job. The actuation basis only
used for expression synthesis does not need to come from a
human subject. However, the actuation basis for expression
analysis should accurately reflect the operation of expres-
sion muscles of the subject because it affects drastically the
result of expression analysis (Section 4.1). Therefore artists
were asked to watch carefully the video recording of the
subject (or the training data in Section 4.2) where the sub-
ject was asked to make all kinds of expressions including
the extreme actuation of each muscle.

It would be impractical to assume that the hand-
generated actuation basis is accurate enough. Fortunately,
there is a way to evaluate the given basis. we simply run
the expression analysis procedure on the training data, then
we can infer that the basis is not accurate when the result-
ing muscle contractions go far beyond the expected range
[0, 1]. In such a case, we ask the artists to re-model the ba-
sis elements. We repeat the step until a reasonable basis
is obtained. However, it would be still impractical to as-
sume that the resulting basis is accurate enough to start our
computational steps of expression analysis. We present an
algorithm that improves further the actuation basis (at this
timewithout the help of artists) by taking iterations between
the expression analysis and basis modification procedures.
The algorithm cannot be fully described until the expres-
sion analysis procedure is understood, so the description is
deferred to the end of the next section.

4. Analysis of Facial Expressions

This section presents the procedures to extract muscle
contractions from facial performances, and shows how the
procedure can be used for improving the hand-generated ac-
tuation basis.

4.1. Extracting Muscle Contractions

We analyzethefacia expressionsby finding muscle con-
tractionsto reproduce optimally the marker trajectories gen-
erated by optical capture systems. We improved the algo-
rithm proposed by Choe et al. [1].

Markers for the
upper face

Markers for the
lower face

(a) Real Marker

(b) Virtual Marker

Figure 2. Real markers and corresponding vir-
tual markers on the synthetic model.

411 Coordinate Alignment

While the 3D geometry of the synthetic face is resolved
inits own local coordinate system {M } (model coordinate
system), the marker points in the performance data are re-
solved in another coordinate system {P} (performance co-
ordinate system). Before calculating the muscle contrac-
tions, we first have to transform the marker points from
the performance coordinate system to the model coordinate
system. We assume the transform from {P} to {M} isan
affine (similarity) transform with scale s, rotation R, and
trandation t. We calculate the transform only once at the
first frame of the performance data, and apply the same
transform to al the other frames. In the following, we use
the notation Zp to denote the 3D coordinate of a point p
resolved in the coordinate system {Z}

Let the position of the j-th marker be ©'p;. We definethe
virtual marker p; to be the corresponding point in {1/ }.
Figure 2 shows the real and virtual markers. We want to
find s, R, and t that satisfy the following equations,

Mp;=sR'p;+t, (j=1,2,...,n)

where n is the number of markers. To initiate the compu-
tation, we first manually mark the virtual marker positions
looking at both the first frame of the performance and the
3D model of the face. Then we solve the linear least square
problems to find s, t, and R sequentially, and repeat the
procedure until the least square error is saturated.

The accuracy of s, R, and t solved from the above pro-
cedure is at best limited to the accuracy of hand-marked
position of the virtual markers. We note that, once we have
s, R, and t, then the real markers can now be transformed
to the model coordinate system. But the resulting points
may not lie exactly on the surface of the 3D face model. By
slightly adjusting the points along the normal directions, we
can make the points lie on the surface, and get the next es-
timation of the (virtual) markers. We can further improve
the accuracy of s, R, and t by repeating the least square
procedure with the new position of the markers.



The above assumes that the facial shape at the first frame
of the performance is the same with the pre-modeled neu-
tral face. Therefore we asked the actors to make a consis-
tent neutral expression at the beginning of each performance

capture.

4.1.2 Calculating Muscle Contractions

The final position of the virtual marker j in the above pro-
cedure will be a point within one of the triangles that con-
dtitute the facial geometry. Thus the marker point p; can
be encoded by the triangle index and the relative position
within the triangle (barycentric coordinates), which do not
depend on the subsequent deformation of the face. But the
marker point will have different 3D position depending on
the current shape of the face.

Let d;; be the displacement of p; at basis element E;
from p; at neutral expression E,. From the synthesis equa-
tion (1), if muscle contractions x; are given, the total dis-
placement d; of p; is given by

dj = Zmzd” .
i=1

We find the muscle contractions so that d ; is closest to the
observed displacement &j from the performance by mini-
mizing

doldj —dj)P = |d; = Y widi)’.
j=1 Jj=1 i=1

Because the muscle contractions should be lie in [0, 1], we
can find the contractions by solving the following optimiza-
tion problem:

n m
minimize E |dj—E :v,-dij|2
j=1 i=1

subjectto 0<z;<1(i=1,2,...,m)

)

The muscle contraction vector x = [z1,z2,...,2,]7 can
be obtained by solving the constrained quadratic program-
ming
minimize
subject to
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We solve this problem using the active set method, and ap-
ply Lagrange method for the sub-problems derived from the
active sets [15]. To make the optimization procedure more
robust, we divided the face into the upper and lower regions.
The contractions of Frontalis, Corrugator, and Orbicularis
oculi were calculated using only the markers in the upper
region, and contractions of the other muscles were calcu-
lated using only the markersin the lower region (Figure 2).
A muscle contraction value larger than one can be thought
of as an exaggerated expression. So, we set only z; > 0 as
the constraints if we need to allow the exaggeration.

4.2. Improving the Actuation Basis

The actuation basis only used for expression synthesis
can be entirely depend on the craftsmanship of the artist.
However, the actuation basis for the subject being captured
needs to have a certain level of accuracy to get reliable ex-
pression analysisresults. It isnot likely that hand-generated
basis has such an accuracy. Therefore we develop an iter-
ative algorithm that increases the accuracy of an actuation
basis.

The algorithm takes the form of a fixed point iteration
between modeling and analysis—the result of modeling is
used for the analysis, and the result of analysisisin turn
used for improving the actuation basis. For theiteration, we
collect a performance data called training data in which the
actor is asked to make all sorts of expressions. We let the
actor fully contract each individual muscles. Even though
ordinary people cannot make isolated muscle actuation, the
facial expressions generated in the process of trying to use
only a single muscle contain important information about
the operation of the muscles, and helpsto find more optimal
basis elements. The training data also includes a significant
amount of ordinary expressions that involve compound ac-
tuation of multiple muscles.

Wefirst cal culate muscle contractionsat al frames of the
training data by solving (3). Then the following equations
should be satisfied in ideal cases for the marker point p ;-

xgl)du +$g1)d2j +x§,1)d3j N +x7(711)dmj _ aj(_l)
e®dy; 0l doy + 2 dy; 4+ 2 dpy = A

oM dy; + 2l oy + 2y 4 2l = dFY,
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Figure 3. The four snapshots and plotting of the corresponding muscle contraction vectors

where x@, e ,x;? are analyzed muscle contractions at

framet, d is the observed displacements at frame ¢, and
N isthetotal number of framesin thetraining data. Inreal-
ity, however, the equalities do not hold. But, if we solve the
equationsfor (di;, ..., d;), theleast square solution can
provide us the improved position of the marker point p ; in
each of the basiselements E4, . . ., E,,,. If we perform the
above steps for all the marker pointsp; (j = 1,...,n), we
can get anew (improved) actuation basis.

Thus we get an improved actuation basis from the initial
draft: (1) calculating muscle contractions from the initial
draft, (2) findingnewd;; (i =1,2,...,m,j =1,2,...,n)
with the muscle contractions. We repeat the cycle until the
total analysiserror 37, ", 1d%" —d|"|? is saturated, and fi-
nally get the optimized displacements d;; (i = 1,2,...,m,
j=1,2,...,n). Finaly, using the scattered data interpola-
tion method with a radial basis function [16], we can form
an optimized actuation basis from d;; and the initial draft
of actuation basis.

5. Experiments

We implemented our agorithms on a PC platform.
For the experiment, we also developed an optical cap-
ture system with five video cameras [1], which gener-
ated 3D trgjectory of the markers and gross motion of
the head at 30 frames per second. The experimental re-
sults (demo clips) described in this Section is available at
http://graphics.snu.ac.kr/research/basis/.

First, we 3D-scanned the face of an actor, let an artist
model the actuation basis of it, ran the improvement algo-
rithm described in Section 4.2, and got the final actuation

basis. Then we captured performances and analyzed them
into muscle actuation values. Figure 3 shows four expres-
sion snapshots during a performance: (a) raising eyebrows,
(b) jaw rotation, (c) smiling, and (d) frowning. The graph
in the figure plots the muscle contractions at the snapshots
which were analyzed by the algorithm described in Sec-
tion 4.1. The result agrees well with our anticipation:

e Expression (a): The contractions (about 0.9) of the
left and right Frontalis are dominant in raising eye-
brows.

e Expression (b): We can see the jaw rotation is con-
Spicuous.

e Expression (c): Thetwo dominant contractionsin the
middle correspond to the left and right Zygomatic ma-
jors, which matches well with the muscle actuation in
real smiling.

e Expression (d): We can see the six muscles are dom-
inant in the last row: the pairs of Corrugator, Orbic-
ularis oculi, and Levator labii superioris. The con-
traction of Corrugator and Levator labii superioris
matches well with the muscle actuation in real frown-
ing. Orbicularis oculi resulted from the close of the
eyes are not directly related to this expression.

Figure 4 shows the result of applying the contractions of the
expressions to the computer model of the actor and other
two cartoon-like characters.

Figure 5 plots the contractions of |eft Frontalis and Jaw
rotation during the performance of “Tulip Season” con-
tained in the demo clip. The z-axis represents the frame



Figure 4. Results of applying the muscle con-
tractions in Figure 3 to different 3D models.

number and the y-axis represents the muscle contractions
in [0,1]. The figure also shows per-frame marker error
(X7 |d;—d;|)/n, whichismeasuredin centimeters. The
error was computed separately for the upper and lower re-
gionsof theface. Theerrorisbigger in the lower region due
to the nonlinear and irregular movement around the mouth,
which ismainly caused by Orbicularisoris muscle.

6. Conclusion

In this paper, we presented a new muscle-based facial an-
imation technique that uses the actuation basis, a set of 3D
facia shapes corresponding to the full actuation of individ-
ual muscles. Instead of completely relying on a mathemat-
ical method, we let artists manually sculpt (theinitia draft
of) the basis el ements so that we could get more predictable
deformation of the face. To increase the accuracy of the
actuation basis, we developed an iterative algorithm that re-

fined the actuation basis. Once an actuation basis was ready,
a performance could be analyzed quite accurately, and the
result could be applied to any 3D models with equivalent
muscle structures.

An interesting contribution of this paper is that it pro-
posed a technique that includes the artists’ modeling ca-
pability as an integral part of the algorithm. The manual
shaping of the basis elements complemented the pure math-
ematical approach which produced unexpected results oc-
casionally. The proposed method is robust, and we believe
that this artist-in-the-loop method can be quite useful in an-
imation productions until the mathematical models can ac-
curately simulate the operation of the muscles and concomi-
tant movementsin the facial tissue and skin.
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Universal Capture — Image-based Facial Animation for “The Matrix Reloaded”

George Borshukov, Dan Piponi, Oystein Larsen, J.P.Lewis, Christina Tempelaar-Lietz
ESC Entertainment

Introduction

The VFX R&D stage for The Matrix Reloaded was kicked off in
January 2000 with the challenge to create realistic human faces. We
believed that traditional facial animation approaches like muscle
deformers or blend shapes would simply never work, both because of
the richness of facial movement and because of the human viewer's
extreme sensitivity to facial nuances. Our task was further complicated
as we had to recreate familiar actors such as Keanu Reeves and
Lawrence Fishburne. Our team had been very successful at applying
image-based techniques for photorealistic film set/location rendering,
so we decided to approach the problem from the image-based side
again. We wanted to produce a 3-d recording of the rea actor's
performance and be able to play it back from different angles and
under different lighting conditions. Just as we can extract geometry,
texture, or light from images, we are now able to extract movement.
Universal Capture combines two powerful computer vision
techniques: optical flow and photogrammetry.

HiDef Capture Setup

We used a carefully placed array of five synchronized cameras that
captured the actor's performance in ambient lighting. For the best
image quality we deployed a sophisticated arrangement of
Sony/Panavision HDW-F900 cameras and computer workstations
that captured the images in uncompressed digital format straight to
hard disks at data rates close to 1G/sec.

Optical Flow + Photogrammetry

We use optical flow to track each pixel's motion over time in each
camera view. The result of this process is then combined with a
cyberscan model of a neutral expression of the actor and with
photogrammetric reconstruction of the camera positions. The
algorithm works by projecting a vertex of the model into each of the
cameras and then tracking the motion of that vertex in 2-d using the
optical flow where a each frame the 3-d position is estimated using
triangulation. The result is an accurate reconstruction of the path of
each vertex though 3-d space over time.

Keyshaping, Adapt, Removing Global Motion

Optical flow errors can accumulate over time, causing an undesirable
drift in the 3-d reconstruction. To minimize the drift we make use of
reverse optical flow. On this production the problem was eliminated
by introducing a manual keyshaping step: when the flow error
becomes unacceptably large the geometry is manually corrected and
the correction is then algorithmically propagated to previous frames.

The reconstructed motion contains the globa "rigid" head
movement. In order to attach facial performances to CG bodies or
blend between different performances this movement must be
removed. We estimate the rigid transformation using a least squares fit
of aneutral face and then subtract this motion to obtain the non-rigid
deformation.

Texture Map Extraction

No believable facial rendering can be done without varying the face
texture over time. The fact that we did not use any markers on the face
to assist feature tracking gave us the important advantage that we
could combine the images from the multiple camera views over time
to produce animated seamless UV color maps capturing important

textural variation across the face, such as the forming of fine wrinkles or
changesin color due to strain, in high-res detail on each side of the face.

Rendering

Although the extracted facial animation had most of the motion nuances
it lacked the small-scale surface detail like pores and wrinkles. We
obtained that by using a highly detailed 100-micron scan of the actor’s
face. The detail is then extracted in a bump (displacement) map.
Dynamic wrinkles were identified by image processing on the texture
maps; these are then isolated and layered over the static bump map. We
then combine these with image-based skin BRDF estimation, subsurface
scattering approximation, and real-world lighting reconstruction for the
highly photorealistic human face renderings below.
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Generating Realistic Human Hair for “The Matrix Reloaded”

Tadao Mihashi, Christina Tempelaar-Lietz, George Borshukov
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Introduction

In recent years, there have been a few successful applications of
realistic computer generated hair in the entertainment industry. For
The Matrix Reloaded we had to face new challenges. First, we had
to handle both close ups and scenes with hundreds of human
characters with hair. The task was further complicated by the fact
that the CG hair needed to exactly match the styling of familiar
heroes from the film: Agent Smith and Neo. Also because of the
rendering methods we chose for our virtual actors the hair solution
needed to work in a ray tracing context with many lights. Our in-
house hair styling tool together with some key rendering techniques
made it al possible.

Styling Hair

During the early stages of hair R&D for The Matrix Reloaded we
tried to use Maya Fur as our hair styling tool. Eventually we
decided against it, as it did not provide us with enough freedom to
match the detailed hairstyles of the principal actors. Alternatively,
we developed an in-house hair styling tool called Gossamer.
Gossamer is a set of plugins and scripts for Alias|Wavefront
Maya. It has dl the parameters of Maya Fur, but aso provides
functionality that allows the user to directly move control points on
"guide" hairs which are then used to generate many interpolated
hairs. The interpolated hair is rendered in real-time using OpenGL
in Maya (see Fig. 1). This allows artists to see the hairstyle as it
would appear in the final rendered image while they are working.
Gossamer also provides the ability to clump areas of hair for
further hairstyle control.  (We would like to acknowledge Eric
Soulvie for his early development work on the Gossamer tool.)

Rendering Hair

Hair objects are generated procedurally during rendering time from
a hairstyle description generated by Gossamer. In the beginning,
each hair was generated as a very thin NURBS patch because
originally mental ray, our renderer of choice, did not support curve
rendering. This approach worked well only up to a certain level of
complexity. We collaborated with mental images to implement a
new fast and memory efficient "hair" primitive in the renderer.

A couple of more techniques are used to reduce the memory
usage. One is to subdivide a hair object into partitions. Each
partition is treated as a separate object with its own bounding box. If
a partition is in the back of character's head and its bounding box is
completely occluded by the head object, hairs in that partition will
never get generated. The other one is using mental ray's geometry
shader object instancing feature. It was very effective especially
when rendering many Agent Smiths. Rendering hair for ten Smiths
was virtually the same as rendering hair for one Smith.

Hair Shadow and Lighting Reconstruction

With either of two commonly used shadowing methods, shadow
maps and ray traced shadows, it is difficult to produce nice, soft hair
shadows. One proven solution to this problem is the deep shadow
map, but our real world Lighting Reconstruction setups consisted of
many light sources. Generating and maintaining a deep shadow map
for each light would have been a pipeline nightmare. Instead, we use
avolumetric approach which we call a shadow tree.

The shadow tree is an octree representation of the hair's density
which is constructed during the initialization stage of the render.
During rendering, the shadow tree is only visible to shadow rays. When
a shadow ray intersects the shadow tree's bounding volume, it reads the
density value of each intersected voxel and uses these values to
attenuate the light accordingly.

Results

Below we show the results of our techniques. Fig. 2 and 3 show full CG
renderings for Agent Smith and Neo. Fig. 4 is a photograph, which
demonstrates how close we can match the real hairstyle and look. The
image on the bottom is aframe from the film. All hair but the one in the
middle is computer generated for this 3-d head replacement shot.
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Lighting Reconstruction for “The Matrix Reloaded” (sketches 0314)

Haarm-Pieter Duiker*
ESC Entertainment

Introduction

The demands of photo-realism required of the effects for The Matrix
Reloaded and The Matrix Revolutions led us to create a system for
directly and accurately reconstructing real world lighting environments.
The Lighting Reconstruction Toolkit builds on research in the area of
Image-based Lighting and extends current techniques to enable the
reconstruction of lighting that more closely matches the real world.

Lighting Reconstruction

Lighting Reconstruction has two main stages: Data Acquisition, and
Lighting Reconstruction.

On-set photography is the primary means of real world lighting Data
Acquisition. Of the on-set photography, multiply exposed images of
chrome balls play a central roll. Kodak 20-step grey cards and Macbeth
color charts play a not as obvious but also central roll. They are
photographed for film response and color neutrality reference. Color
temperature, exposure settings, photogrammetic reference images, and
set diagrams round out the lot of information gathered.

The images and data are used to create from each group of chrome ball
exposures an extended, or high, dynamic range panorama, i.e. an image
representing the true color and intensity of al the lighting at a certain
point in the real world. The chrome ball images serve as the raw data.
The Kodak 20-step grey scale images serve as the basis for solving for
the response function of the film, the key to turning film exposure
measurements back in to true measurements of intensity.

Given a high dynamic range panorama, the Lighting Reconstruction, of
which there are currently three main modes, can begin.

In the first and simplest mode, a panorama directly drives the creation of
a set of directional lights. The lights represent the integrated color and
intensity of either key or fill areas of the panorama. The key lights are
separated out from the fill light portion of the panorama. Roughly equal
solid angle sub-regions are integrated over to create the fill lights to a
user-specified granularity. These lights will not change in any way with
respect to the location of the object.

In the second mode, multiple panoramas, their real world locations, and a
model of the environment with light source locations allow us to create
lighting that varies as the key and fill lighting varied in the real world.
The input key light locations and sizes are verified by triangulating their
position from the panoramas. The intensity, color, cone angle, and other
parameters of a spot light model are then fit to the data in each
panorama. The intensity of the fill lighting is established by creating a
triangulation of the panorama locations. At render time, for each object,
an interpolation weight for each of the panoramas is established based on
the proximity of the object to each panorama as well as the proximity of
each panorama to the others. An object specific panorama is generated
using the weights. From this panorama an arbitrary number of directional
lights may be generated.

The third mode of Lighting Reconstruction is based on a new light
primitive whose area is dynamically subdivided for each object it will
light. The light fulfills the criteria that none of its sub-regions may be
bigger than a solid angle threshold relative to an object being lit. The
primitive when used in the creation of a smple model of the real world
geometry and textured using the panoramas projected on to the model,

"e-mail: hp@escfx.com

replaces the panorama-interpolating scheme presented in the previous
mode. The primitive allows for better alocation of a limited number of
light samples and a better reconstruction of the object specific lighting
environments.

Figure 1. Row 1 shows two differently exposed images of the same
chrome ball. Row 2 shows a real image of Keanu Reeves (left) and a
version of Keanu Reeves (right) rendered using the lighting from
above chrome ball. Row 3 shows an image from the Burly Brawl
sequence. Row 4 shows two differently exposed images of one of the
chrome balls used to generate the lighting for that sequence.

Conclusion

The Lighting Reconstruction Toolkit has survived a true production
environment and was combined with the Universal Capture, Skin,
BRDF, Subsurface Scattering, Hair, and Cloth Simulation development
efforts at ESC to create many of the realistic images seen in the movie.



Making of The Superpunch

Presented at Imagina’'04 by
George Borshukov, ESC Entertainment

Introduction

The Superpunch is the final punch Neo that deliversto Agent Smith
in the final installment of The Matrix trilogy during the film's last
face-off. It was the first shot that the directors Larry and Andy
Wachowski and their conceptual designer storyboarded for the
sequels. (The shot's storyboards were also the first storyboards to
leak out on the Internet back in Spring 2000). The Superpunch was
meant to show, in familiar Bullet Time, the event of Neo’s super-
powerful last punch that occurs over afraction of a second and lands
on Smith’s face deforming it in a surreal, anime-like fashion. As a
Bullet Time shot, it was to feature an impossible virtual camera yet
it had to look real. The nature of the push-in camera move and the
requirement of punching someone with an inhumanly strong force
meant that the original multiple still camera rig approach could not
be deployed. The shot went through many different stages of
visualizations, breskdowns, and considerations. The Superpunch
became even more challenging when we learned that it had to
happen under heavy rain. We explored creating the shot based on
live action elements and augmenting it with CG elements. Tests
revealed that this approach would compromise the required fluid
camera. The camera was meant to glide through space showing us
an exciting event from previously unseen perspectives. Around the
Spring of 2003 when we had gained confidence that our 3 year-long
R&D effort in realistic human face rendering technology could pull
off a full-frame, slow-motion close up of a familiar actor such as
Hugo Weaving, we decided to create the shot entirely in the CG
world.

Study of Target Facial Deformation

One of the main points of discussion and study was what Agent
Smith’s face was supposed to look like during the impact. The
storyboards depicted a surreal, exaggerated, caricature-like extreme
facial deformation. Our team collaborated with the directors to study
the desired target shape by “abusing” Hugo Weaving's face —
pushing fistsinto it, blowing high speed air-nozzle streams at it, etc.
These studies resulted in the construction of a practical maquette
representing the directors’ desired extreme facial deformation. This
shape was well more distorted than areal actor’s face could get even
under the most extreme punch.

Facial Animation

We briefly considered doing a blend-shape like approach to go from
a pre-punch pose to the maquette extreme, but we felt that this
would not give us redlistic results. We had spent 3 years developing
a powerful and successful image-based facial animation technique
called Universal Capture. This technique allowed us to process a
marker-less multiple angle HD footage of an actor’s performance
and produce a 3-D recording which could be displayed from
different angles and in new lighting conditions. By re-projecting the
original images, the process allowed us to vary the color texture on
the face over time which was critical for the realism of our results.
In the case of The Superpunch we felt that although we couldn’'t
capture directly what we wanted, we could still make use of a
powerful performance from Hugo Weaving and manipulate it to
resembl e the maquette. We selected a performance, processed it and
then had an incredibly gifted artist create the additional facia
deformations by hand using a set of cluster, wire and proprietary
deformers in Maya. It was the ultimate marriage of technology and
artistry. The directors were closely involved in the process of
layering the additional facial deformations and ripples. In the end,
they dlightly revised their vision of the target expression to be less
surreal.

Water Elements

The creation of water elements was a very challenging task due to the
large amount of water and its required interaction with the virtua
actors. We deployed a variety of techniques to construct the various
elements. For the static rod-like water drops suspended in the air
during the shot (inspired by the storyboards and having no basis in
physical redity) we used a set of 30 hand-modeled basic shapes
randomly instanced throughout space. After the fists impact in the
beginning of the shot, the water splashes out creating a barn door like
effect. This effect was achieved with a combination of hand modeled,
placed, and animated shapes and instanced raindrop-like objects with
motion derived from particle simulations. For the water on and
around Neo's fist and deeve, we used particle smulations and a
custom implicit blobby surface plug-in to construct meshes from the
particles. The same approach was also used for the water on Smith's
face that flies off at fist impact. The spit coming out of Smith’s mouth
was modeled and animated by hand. Once again the simulation
(movement and timing) of these elements was not physically correct,
but rather entirely driven by artistic vision and direction.

Realistic Appearance and Rendering

Even though the shot’'s animation was not based on physics, the
appearance had to be - the shot didn’t have to feel real, but needed to
look real! This required us to rely on a full ray-tracing solution for
shadows, reflections, refractions, caustics, including accurate
simulation of 3-D depth of field. For the redlistic skin surface detail,
we had access to 100 micron scans of plaster casts of the actors faces
and fists. We converted this information into displacement and bump
maps. For the realistic skin appearance, we relied on modifying our
image-based skin reflectance estimation by adding a wet layer in the
shaders. We aso had an efficient and realistic subsurface-scattering
approximation without which the skin would have looked like
granite. For the clothing, we added a wet layer on top of the
reflectance data measured from dry costume samples. We also
extended our in-house hair tools to support wet hair styling and
appearance which were matched to live-action reference. For added
realism of the skin around the impact areas, we created animated vein
and knuckle imprint maps that allowed us to manipulate the color and
normals of the skin surfaces. The beauty lighting was reconstructed
from high dynamic range chrome ball images of the on-stage lighting
set-up for the surrounding live action shots. The lightning timing and
direction was designed and tweaked to highlight and complement
important moments within the shot. The background, which responds
to the lighting and is also being reflected and refracted by all water
elements, was constructed using our image-based virtual background
pipeline from a lidar scan and photographs of the actual crater built
on-stage for live action photography. For photorealism and physically
accurate appearance, al elements were rendered together in mental
ray with full ray-tracing including proper 3-D depth of field
simulation.

Conclusion

The Superpunch was considered the most difficult shot in The Matrix
sequels for many reasons, most notably because of the challenge of
showing a full frame computer-generated face of a known human
actor. We believe that we met this challenge and also had an
wonderful experience putting the shot together with an approach that
combined state-of-the-art technology with exceptionaly fine artistry
and attention to detail. Most importantly, we felt that were able to
realize the directors' fantastic vision and assert the storytelling power
of visual effects.
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Results

See next page.
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