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Highly Undersampled Magnetic Resonance Image
Reconstruction via Homotopicy,tMinimization
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Abstract—In - clinical Magnetic Resonance Imaging (MRI), this paper, we describe a method for reconstructing MR
any reduction in scan time offers a number of potential benets jmages at sampling rates even further below that which are
ranging from high-temporal-rate observation of physiologcal achievable using {-based CS methods by directly attack-

processes to improvements in patient comfort. Following reent . the ideal inimizati bl Followi .
developments in Compressive Sensing (CS) theory, severalNd (he iaea l-minimization problem. Following a review

authors have demonstrated that certain classes of MR images Of Shannon sampling theory in the context of MRI and a
which possess sparse representations in some transform dam  discussion of L-based CS methods in Sections II-A and II-

can be accurately reconstructed from very highly undersamfed B, the Ly-minimization problem is described in Section II-
K-space data by solving a convex L-minimization problem. ¢ ai5ng with both its applied and theoretical implications.

Although L -based techniques are extremely powerful, they - . .
inherently require a degree of over-sampling above the Moreover, a practical scheme is presented for addressig th

theoretical minimum sampling rate to guarantee that exact Lo Semi-norm based on homotopic approximation using a
reconstruction can be achieved. In this paper, we propose a wide class of deformable sparse priors, and an efficient-semi
generalization of the Compressive Sensing paradigm basecho jmplicit numerical scheme for computation is described in
homotopic approximation of the Lo semi-norm and show how  gection |11, Finally, several examples are presented intiGec
MR image reconstruction can be pushed even further below . . .

the Nyquist limit and significantly closer to the theoreticd v Qemonstratlng the ability 9f our proposed technlq_l_Je to
bound. Following a brief review of standard Compressive achieve accurate reconstructions beyond the capabilites o

Sensing methods and the developed theoretical extensionsLi-minimization and close to the true theoretical minimum
several example MRI reconstructions from highly undersamped  sampling rate.
K-space data are presented.

Keywords: Magnetic Resonance Imaging (MRI), Image [I. THEORY

Reconstruction, Compressive Sensing, Compressed Sensingp Shannon’s Sampling Theory and MR Image Reconstruction
Nonconvex Optimization.

Shannon’s sampling theorem has served as the dogma of
signal processing theory for over half a century and suc-
I. INTRODUCTION cessfuly guided the development of countless technologies
In contemporary clinical practice, MRI is one of the mosf@nging from telecommunication systems to MRI. While the
popular imaging modalities due to its excellent depictioffader is certainly familiar with Shannon’s theorem, a fbrie
of soft tissues, allowance of arbitrary vantage points, af@view of this classical argument is given to offer a coneani
inherent absence of emitted ionizing radiation. Despite iUxtaposition against the more contemporary CS theory to be
many advantages, a fundamental limitation of MRI is thedine discussed later in this section. _ _
relation between the number of measured data samples anhetting = be a continuous variable representing spatial po-
net scan time. Increased scan duration presents a numbefit#n, SUppose’(z) is a signal of interest. For most practical
practical challenges in clinical imaging including higheers- appllcatlolns,f is nelther analytllc nor finite and t_hus must be
ceptibility to physiological motion artifacts, diministieclin- Sampled into a discrete numerical sequence prior to any form
ical throughput, and added patient discomfort. RecentdserP! Processing. The significance of Shannon's theorem is that
towards large-scale applications such as 3D and timewesol 9'Ven a_(_:ertam assumption about _the spectra! properties of
acquisitions generally require faster acquisition teghes to J/» conditions on the rate of sampling can be imposed such
achieve clinical practicality. Unfortunately, such aerations that the continuous signal can be recovered exactly from the
may result in a compromise of image quality (e.g. spatial affiscrete subset of sample measurements. _
temporal resolution, SNR). . An ideal _sampler is often described by the Dirac comb or
The emerging theory of Compressive Sensing [1], [2] hd@Pulse train,
offered great insight into both when and how a signal may o0
be recovered to high accuracy (or, in some instances, gxactl sx(x) =Y 6(z—nX), (1)
even when sampled at significantly below the Nyquist rate. n=o00
To date, most CS applications, especially within medicalhere § is the Dirac generalized function and is the
imaging, have centered on theg-minimization problem. In sampling period; asx is periodic, it can also be expressed

, _ , as a Fourier series, namely
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Given sx, f can be sampled by simply taking the pointwise
product between itself and the sampling vectfx(z) =
f(x)-sx(x). Computing the Fourier Transform of the sampled
signal then yields

fx =5 3 fte- %), €

wherek is a spectral index. Resultantly, the one-sided band-
width of f must be less tha@l7 to ensure that aliasing in
fx does not arise from overlap of the periodic copies of (@ (b)

§. Conversely, any signal witta priori known maximum Fig. 1. The Shepp-Logan phantor256 x 256) is a prime example of an

supported absolute frequendy,.., must be sampled at ajmage that posseses a sparse representation in a transtonaing here the
rate higher tharfy = %;, the so-called Nyquist limit, to magnitude of its gradient. While the image space repretientéa) is clearly

ensure that the aforementioned overlap is avoided. When fifsParsellz/lo ~ 61% - N), the transform representation of the image (b)
. L. . . . . exhibits very high sparsity||Vz|lo ~ 3% - N).

Nyquist criterion is satisfied during the sampling proceiss,

continuous signalf, can be exactly recovered frorfy by

simply filtering with an ideal low-pass signal of b"’md"\’idtlﬁéuch that it is only necessary to perform measurements on

equal to h_alf the Nqu_st rate. i _ . half of the spectral grid. In practice, however, the strezlity

In the discrete domain, the sampling peridd, and spatial ;55 mption is violated due to resonant frequency variation
resolution,Az, of fx are equivalent. iV measurements are ,ising from thermal instabiliies as well as artifacts nfro
acquired at intervals oMk across the spectral banbl = siological motion and flow. As a result, errors in phase
[~Kmaz, kimaz], then must be corrected prior to making the Hermitian assumption.
If image phase is assumed to be smoothly-varying over space,

NAz the standard approach to phase correction involves meagsuri

where FOV is the field-of-view of the signal space. Cons& Symmetric low-frequency band of K-space and estimating
quently, for a target image of fixed spatial resolution ana/FOtN€ image space phase solely from this restricted measateme
absence of even a single measurement from the spectral g e solution magnitude is then derived from a modeyatel
changes the effective local value &fk and leads to violation undersampled subs_et of K-space V_Vh'cr_' also includes the
of Shannon’s recovery condition. For higher-dimensional agmall s_upport used in the phqs_e estlmgtlon step. A complex
plications such as time-resolved 3D MRI, this rigid sarng;;)lin'mage IS then forme_d by conjoining the image mqgmtude and
constraint and its inherent dependence on dimensionatity °hase estimates, with only the real portion of this genédrate
be crippling. |mag¢_be|ng retalne(_j as the solution. Due to the nece_ssny of

In the event that the spectral or K-space measurem&(fgwrmgas;_/mm_etrlc, low-frequency spec_tral band forluse_z_
grid is only partially filled, the inversion problem becomeghe phase estimation process, methods which rely on Hemit
underdetermined and there are an infinite number of potenfyMMetry such as POCS [4] and homodyne detection [5] can
solutions to choose from. A simple technique for choosir!!y decrease the number of required measurements by less
a solution from this infinite set is to select the one with th'an half of that delimited by Shannon’s theorem.
minimum energy by solving

Ab= -1 — FOV ™1, 4)

w=argmin |u|? st Gu=df, (5) B. Compressive Sensing and L;-Minimization

For many applications, the signal of interest rarely exhibi
where the Fourier sampling operatbr= F~'®F and® is true compact spectral support. Many images, such as those
the characteristic function of the subset of measured Kepagroduced in high-resolution MRI, can essentially be modele
values. It is quite trivial to show that (5) is achieved by piyn  as piecewise-smooth functions containing a substantiabeu
setting ®¢ to zero and directly inverting the spectral signabf jump discontinuities. As the Fourier basis is compriséd o
using standard Fourier methods. In practice, aliasinggmtesquadrature trigonometric functions, it is inherently ficént
within the minimum-energy solution arising from violationat representing sharp spatial gradients and a large number
of Shannon’s theorem typically results in an image of littlef coefficients are required to provide sufficient suppi@ssi
diagnostic value. of Gibbs ringing. A similar phenomenon occurs in textured

Since its inception, substantial effort has been made fegions or signal areas containing significant high-fremye
decrease the required scan time in MRI. Early techniquds su@riation. Such limitation placed on the class of signals of
as echo-planar imaging (EPI) [3] traverse the entirety of Knterest naturally raises the question as to whether bafttyvi
space during a single relaxation cycle (TR), offering a catien or effectively energy, is really the functional propertyath
increase in speed but at the expense of demanding hardwstreuld serve as the basis for determining recoverability.
performance and significantly-lowered signal-to-noisbIR$ At first glance, signals are not typically characterized in
levels. Alternatively, if the signal of interest is assumede terms of their bandwidth but rather anecdotally, such as, fo
strictly real, Hermitian symmetry of K-space can be exjgdit example, “cartoon-like” for piecewise-constant imageee li
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(

b)
(d)

Fig. 2. A comparison of L-minimization versus Homotopic g-minimization based reconstructions of the canonical $Heggan phantom shown in
Figure la. Given a 96% undersampled K-space sampling magkicimg only 10 radial lines (a) and its associated minimemergy reconstruction (b),

L1-minimization (c) fails to recover the undersampled imadelevHomotopic Lo-minimization (d) achieves exact reconstruction. For #iample, the b
[Vul

homotopy prior employed was(|Vu|,0) =1 —e~ "=

the Shepp-Logan phantom shown in Figure 1. While thiperator (e.g. wavelet, curvelet, etc...), note that thisiot
gualitative assessment may seem trivial at face value, suchequired condition. For instance, in variational moddls,
an intuitive descriptor is very powerful as it is, in essencenay instead be a vector collection of finite difference necasi
outlining a transform space in which the signal of interesinalogous to the continuous gradient operator.
possesses a sparse representation. For the aforemention®dthout loss of generality, consider the cae= I which
piecewise-constant scenario, the magnitude of the imaapi-gr implies that signal of interest is intrinsically sparsetsgiven
ent will accordingly be sparse. If such a sparsifying transf, domain. Following the definition of Candés and Tao [B]is
W, can be readily defined for a signal, one could ideallgn S-restricted isometry if, for every one of itf x K sub-
select the estimation with the sparsest representatio inmatrices, @y, {VK | |K| < S} and M > K, 365 € (0,1)
that still matches the limited observation set. Mathenadliic such that

this search consists of solving the equality-constraingd L ) ) )
minimization problem, (1 =ds)llz]lz < [[Pxallz < (1 +ds)ll]z (7)

w=argmin ||Yully st DPu=Df, (6) for an arbitrary vectorz, of length K. Any measurement
“ matrix which satisfies (7) acts as an approximate orthonbrma
where the zero semi-nornj,- ||o, is a measure of functional system or isometry and the value of the constégt,provides
cardinality. Although¥ is often assigned to be a unitarya bound on eigenvalues of the Grammian mati,®x, and
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is thus proportional to the condition number of the invemsiodepends only on the restricted isometry constant [Candes].
From (7), it immediately follows that ifb satisfiesd,s < 1, The ability to recover an undersampled signal then degrades
(6) will have a unique minimizer; conversely, this conditio gracefully in the presence of noise. Moreover, medical iesag
also asserts unique recovery of a signal with cardinalitf interest are typically not truly sparse in any prescribed
S cannot be guaranteed if less thas measurements aretransform domain but do tend to exhibit high compressipilit
acquired. Exact determination of the sampling bounds genee. their enumerated coefficients exhibit exponentialgtan
ally requires probabilistic analysis of the sampling maag magnitude. Although the energy of the signal is concerdrate
well as incorporation of the mutual incoherence between thathin relatively few transform coefficients, the suppoftam
sparsity and sampling bases; however, a detailed discussixact representation of the signal may be dense. Nonesheles
of the techniques required to describe exact recovery munehen a compressible signal is undersampled and recoretruct
is beyond the scope of this paper and we refer the readenta L;-minimization, the approximation error will be on the
[7], [8] for more information. One example for the particulaorder of||u — f||2 < C - || f — fs|1, wherefs consists of the
case of random Fourier measurement ensembles will be givetargest coefficients of the sparse representatiod ¢f In
in Section 1I-C. Unlike that imposed by Shannon’s theorenother words, the solution generated by-minimization using
this condition is independent of dimensionality and stétes random sampling posseses error that is on the same order as
the number of measurements necessary to recover a signdahébest possiblé-term or compressive approximation [10].
linearly proportional to the underlying complexity of a s& Following the development of CS theory within the the-
given a priori knowledge of a sparsifying transformationoretical mathematics community, medical imaging and, in
Despite the remarkable theoretical implications of thsute particular, MRI was immediately recognized as a strong can-
directly solving the ly-minimization problem to recover andidate for a specific application where this new conceptdaoul
S-sparse signal of lengttV requires a combinatorial searchhave dramatic practical implications. In the past seveealsy,
through all (g’) potential solutions and is thus intractable fothe practical performance of CS theory and, specifically, L
any practical application. minimization based technigues, has been successfully mlemo
The remarkable result of Compressive Sensing theory, pitrated for a large range of clinical applications inclgdimon-
neered by Candes et al. [1] and Donoho [2], is that if on@artesian and 3D MR angiography (MRA) [11], [12], and
replaces the § semi-norm prior in (6) with the L norm, time-resolved or k-t SPARSE imaging [13]. More recently,
namely several groups in the MRI community have proposed novel
numerical techniques for attacking the-minimization prob-
lem with specific focus on image reconstruction including

then exact signal recovery is still possibly albeit at thstcoPrecondmoned Conjugate Gradient (PCG) [11], [14], Bragm

of a modest degree of oversampling. In other words, giv iteration or inverse scale space [15], and reweighted Least

a sufficient rate of sampling, the solutions to (6) and (8) a‘:g]quares or FOCUSS [16], [17] methods. In essence, each

equivalent. Moreover, (8) is a tractable convex optimizati 0‘? the aforementioned techniques solves theminimization

problem. In practice, the requisite degree of oversamplitl?rObIem either directly or asymptotically and the differen

. ; . irg quality of their produced results is anticipated to be
necessary to achieve exact reconstruction of a signal ef car.

dinality S is roughly 3 — 55 [9], where the multiplicative minimal. As there has not been an extensive comparison of

constant is proportional to the restricted isometry ccnftstathe computational performance .Of these_techmques on_-lgrge
cale problems, which method, if any, will best meet clihica

for a given®. Despite the fact that exact reconstruction vi% o !
L : emands is still an open question.
L;-minimization cannot generally be achieved at the true
minimum sampling rate associated with thg-hinimization
problem, this approach nonetheless offers the abilitytopga C. A Homotopy Method for L,-Minimization
drasucally be'OVY the Nyquist rate and perform the rECOVETY In section II-B, it was stated that a signal or image can,
with a computationally tractable procedure. .
S . . : : ._in theory, be exactly reconstructed from fewer samples when
In most medical imaging applications including MRI, sig- . . . .
the recovery task is cast using an Isemi-norm sparsity

nals of interest are rarely noise-free. Consequently, it .f)srior as opposed to the,Lnorm (see example in Figure

desirable to take into account the presence of noise dur%‘; While a direct solution of (6) is infeasible for most
the reconstruction process such that measurement error_’is .. R " .
ctical applications, it is natural to ask whether thetiste

L a
not propagated. Suppose that the measured data is glverp[)yalternative prior, or class of priors, that admit better

: . : n
fn=®o f+n, wheren is a stochastic noise process sucﬁ1 . . .
as Additive White Gaussian Noise (AWGN) found on eacﬁiwogui?]g b;:;g::;ggnrln":;‘g ?r:e[(z:? m(?#:rattrlgzglly[/lza:hlerz;/aglseé d
of the quadrature measurement channels in MRI. Under this 9 ! prop

. uSe of the L, semi-norm(0 < p < 1] class of sparsity priors
assumption, (8) can be reformulated as e . . d . .
within a basis pursuit reconstruction framework. Whilesthi

w=argmin ||Wull; st ||[Pu—Bf,]|2<e, (9) approach generates a non-convex optimization problem and
“ thus a global minima can no longer be guaranteed, Chartrand
where ¢ is a statistic of the noise process, It can be offered proof of asymptotic and continuous convergence of
shown that the solution to (9) will exhibit reconstructiameg the L, sampling bounds towardsyLthrough assessment of
on the order of|ju — fll2 < C - ¢, where the constant’ the restricted isometry constants as well as several exanopl

u=argmin ||Pull; st Du=7>f, (8)
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Let the zero semi-norm of a signal, be defined as follows:

—_— m

| lullo = 3" 1 (ju(n)] > 0), (12)

Q

where(? is the image domain antl is the indicator function.
Consider the general class of semimetric functionals, i.e.
positive definite and symmetric about the origin, that are-no
decreasing oveR ™. Intuitively, any semimetric functionah,
satisfying

lim 3™ p (Ju(n)],0) = S 1 (ju(m)] > 0)  (13)
Q Q

08

=

06

8,4 (Restricted Isometry Constant)
g
Oversampling Factor

04 o can be used as a sparsity prior as longrais chosen to be
¢ e e e sufficiently small. The class of functionals satisfying &8e
said to be homotopic with thejLsemi-norm in the sense that
(@ they can be continuously deformed into the desired measure.

Fig. 3. As the L, sparsity prior is evolved towardsl-the restricted isometry While the LP seml-norm(o < p.< 1] c[ass C!early satisfies
constant,é3s (M = %S), is progressively relaxed. When considering thd13), so do many other functionals including robust error

Shepp-Logan phantom in Figure 1, the cardinality of the igrtdmagnitude  norms such as the Laplace function,
of the signal isS = 2200. Given the definition in (11) and defi?ir)]g the .
K(p u(n

expected oversampling factor required for exact recoostm by =) & p (|u(n)|, 0') =1l—-e < , (14)
decrease in required number of samples towards the thearetiinimum
sampling rate limit can be seen as— 0. shown in Figure 4, the Geman-McClure function [19],
|u(n)|
u(n)|, o) = ———— 15
plu(mlo) = oS (15)

local minima providing exact signal and image reconstansi
to within numerical precision at sampling rates far beloosta and the concave logarithmic penalty
achievable by l-based methods. Extending on [18], it can be lu(n)|
shown that, for the class of,Lsemi-norm priors, p(lu(n)|,o) = log < i 1> : (16)

P57
S M

For a tabulation of additional non-convex functionals that
(0<p<1], (10) are potentially homotopic with the Lsemi-norm, see [20].
The authors also note that Candeés et al. [21] have recently

. A introduced a reweighted ;L minimization scheme for CS
for some M > 5 (see Appendix | for derivation). Lel which implicitly utilizes (16) with a fixed value of. When

denote the cardinality of the solution space akidbe the is assigned to be sufficienty small, as anticipated, results

required number of measurements necessary to reconstruct.a . . .
q y Similar to those shown in Figure 2 are obtained. In effect,

S-sparse signal. When the measurement matrix is compriﬁﬁg reweighted L-minimization scheme can be viewed as a
of a random Fourier ensembl&g,;; < v whenever ewelg ; .
special instance of our generalized proposition.
2M log N 2M log N 9 While p will ideally be concave oveR™ as this allows for
K=>C (72) log (T) log®2M,  (11) straighforward generation of a uniqueness condition (sge e
[22]), there are also many quasi-convex priors that are homo
for some absolute constant [8]. Consequently, ag %, topic with the Ly semi-norm such as the Tukey Biweight [23],
utilization of diminishing values op allows a signal to be Gaussian error function, and other redescending M-estimat
exactly reconstructed from fewer and fewer measuremeess (§24], [25]. As a consequence of their uniform continuity,
Figure 3). Although Donoho [2] dismisses the practical use such functionals often contain a small convex well about the
the L, semi-norms as a consequence of their intractabilityrigin and are concave outside of this region. While sudoéss
energy functionals employing the,lsemi-norm class admit a reconstructions have been achieved using quasi-convex pri
non-zero gradient almost everywhere, unlike theproblem. functions [26], it is conjectured that the presence of this
Thus at least local minima, many of which are more than sufttenvex well offers the potential for error accumulationidgr
cient in practice, can be found via standard descent me#mdsterative solution generation and sub-optimal reconsimns
opposed to combinatorial search. When consideping be a are likely without extreme care being taken in numerical
static variable, practical selection is non-trivial asréhexists implementation. As will be demonstrated in Section IV, the
a tradeoff between reconstruction performance and probl@mactical ability to reconstruct a signal via homotogig-
stiffness and this is still an open problem. minimization is fairly invariant to the particular emplaye as
Chartrand’s work provides an exact characterization of theng as the selected functional is concave. Given a reas®mnab
performance of reconstructions employing thedemi-norms schedule for the reduction of, it is conjectured that any such
(0 < p < 1], but the results are not at all surprising — bettdromotopy prior can provide asymptotically-equivalentutts
approximations of the § semi-norm simply yield sampling although the rate at which these are achieved is still open to
bounds that are closer to the theoretical minimum rate limtheoretical investigation.

o <
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L0 SemiNorm the MR image denoising literature (e.g. [31]). The complex
generalization of (17) is simply given by

: H e Approximation
— min ;ggpmmr(nﬂ,a) + o (|Pui|(n)], o)

st || Pu—Dfy,|2 <

(18)

] where u,. and u; are the real and imaginary components
of u, respectively, and it is this approach that is adopted
here. Recently, the separate regularization of imageespac
magnitude and phase components has also been suggested
[32], offering a number of potential benefits for improving

‘ i the efficacy of reconstruction and a potential area of future
K 09 . 0o ! investigation for the proposed reconstruction technique.

V1] SRS — ||}/ - e 1

Fig. 4. Homotopic‘ e‘ipproximation of thegLsemi-norm using the Laplace E. Extension to Multicoil MRI

error function, 1 —e =, shown at diminishing values af A major advance in the MRI community came with the

advent of parallel or multicoil imaging techniques. Muttilc
. . ] o methods such as SENSE [33], although offering accelerated
Given any particular choice op satisfying (13), a new 5cquisitions, can also be classified as “Nyquist-limitesitteey
reconstruction paradigm can then be defined by are governed by Papoulis’ Generalized Sampling Expansion
. 2 theorem [34] which essentially states that, gi¢elrthogonal
it ;%Zp (Wun)l,0) st [[u—2fallz <€ (A7) encoders, a signal can be exactly reconstructed if it is fEsdnp
¢ at a rate aboveé— of the Nyquist limit on each of th&”
where the condition — 0 can be enforced through use of &hannels. In practice, the individual elements of a coiaarr
standard continuation scheme such as that employed by [2r¢ never truly orthogonal and a certain amount of coherance
for total variation minimization (see Section Ill). Unlikke exists between sensitivity profiles, the degree of whictisen
approach taken for J semi-norms, a continuation schemeo increase with the number of coils. Consequently, the an-
allows the problem to be initially solved for large Va|ueﬁcipated% speed-up is rarely achievable, especially in the
of o and the solution used as the initial condition of thgresence of noise. However, the loss in rate reduction dan of
next problem with diminishedr. Furthermore,p need not be partially recovered though the use of the aforementioned
be fixed in advance and can simply be continually reducegrmitian-driven partial K-space methods in conjuncticthw
during minimization. Relaxation of a non-convex measure fsarallel MRI reconstruction [35].
certainly not a new concept, with methods such as Graduatedvhen sampled at or above the Nyquist rate, the multicoil
Non-Convexity (GNC) dating to early work on the shapemage reconstruction is inherently overdetermined and no
from-shading problem [28] as well as applications in Bag®si solution to the problem exists. Consequently, the SENSE
tomography [29], [30]; however, given recent insight on thgpproach developed by Pruessmann et al. [33] formulates the

conditions of when a signal can be recovered, the autheegonstruction as an unregularized least-squares appaoxi
believe this to be the first application of this type of aptoa tion, namely

within the CS framework for attacking theyLminimization min |[Tu — Tf,|2, (19)

problem directly as well as the first application to magnetic u

resonance imaging. where the block operatar, now incorporates both the Fourier
measurement matrix as well as a vector of coil sensitivity
profiles.

D. Regularization and Complex Sgnals The amplification of noise during the reconstruction of

Spatial localization in MRI relies on the provision of botlparallel MR images is well-known and several works have
frequency and phase encoding of atoms, necessitating #uglressed the regularization of (19). While the smoothing
quadrature measurement of complex signals. If the sigrmhavior of minimum-energy Tikhonov methods limits their
of interest is dominantly real, as discussed in Section Itlinical practicality for morphology-driven imaging suds
A, a phase correction step such as homodyne detection 84R angiograpy,maximum a posteriori (MAP) approaches
be incorporated into the reconstruction process [11],rivife employing edge-preserving priors have proven very prorgisi
strong additionak priori information as well as a potentialln particular, Raj et al. [36] employed non-convex image
for improved performance. In many scenarios such as velocfiriors similar to those discussed in Section II-C to the fpara
encoding of blood flow, phase information is crucial to imag®IRI denoising problem using a formulation nearly identical
formation and the Hermitian assumption cannot be used atod(17) but with o fixed; a graph cut procedure was then
one must instead handle the data in its complex form. lsed for minimization of the energy functional. More reé¢gnt
[15], it was suggested that sparsity be enforced separatelyseveral authors [11], [12] have demonstrated the use;ef L
the real and imaginary channels, an approach well known biased regularization methods for undersampled parallel MR
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reconstruction analogous to that discussed in SectionfdeB (18). A detailed derivation and discussion of this updaggp st
single receiver imaging. Given the well-established fatiwh is given in Appendix Il.
of non-linear regularization in parallel MRI reconstract; Although the fixed-point method provides very accurate
extension of the proposed reconstruction paradigm in &ectisolutions with reasonable efficiency, the authors note ttheat
[I-C to this paradigm is straightforward. A more detaile¢omputational performance of this approach is likely sub-
discussion will be presented in a separate work. optimal relative to the many recent proclaimed fast nunagric
techniques proposed for the; Lform of the Compressive
Sensing reconstruction problem such as GPSR [38], SPGL1
[39], I1-ls [14], and FPC [40]; however, as the paradigm in
In abstraction, two levels of iteration are required to comalgorithm 1 is generic, modification of any of these methods
pute a local minima of the problem given in (18): an outer loogs well as future developments may be naturally embedded
that progressively diminishes the homotopy parameteand within our scheme.
an inner loop which updates the estimate of the solution for a
fixed o, generally by some degree of iteration. khetxlter
be the maximum number of allowable outer iteratiotig,be
the threshold for significant relative change in the sohytand Several example MR images reconstructed from undersam-
3 € (0,1). Additionally, as demonstrated in Figure 3, actuallpled k-space data using the presented homotopiminimiza-
reachingc = 0 is often unnecessary and a minimum valu#ion scheme can be seen in Figures 5-7. In each case, the
for o, orarget, €aN be prescribed such that iteration terminatéglly sampled Cartesian k-space data (a) was undersampled
on reaching this parameterization with no loss in efficaay. Aretrospectively by the given binary mask (b) to allow a
outline of the algorithm for homotopic . minimization is direct comparison of the generated reconstruction agéiest
given by true image. Although only Cartesian sampling examples are
considered in this paper, the extension to non-Cartesian k-
Algorithm 1. Pseudocode for Homotopic [, Minimization —Space acquisition can be naturally embedded in this frame-
work through the use of a regridding process or non-uniform
Fourier transform and has been addressed in the context of
L; minimization in [11]. Subfigures (c-e) show the result of
reconstructing the respective undersampled images vz zer

IIl. METHODS

IV. EXAMPLES

wW=Ffo>>0
while (count < maxiter)
u!tl = update(ut, o)

if (W < tOZ) filling, i.e. the minimum-energy solution, ;kminimization,
o=pxo0; and homotopic b-minimization; the fixed-point numerical

end solver presented in Section Il was used for the latter two

if (0 < orarget) reconstructions. A line profile of a pertinent section ofteac
break image and its respectivelreconstruction is shown in (e) and

else and enlargements of another section of the fully-sampled an
continue undersampled reconstructions are shown in (g-j). The windo

end and leveling of all images is uniform across all subimages of

count = count + 1 each example.

end The parameterizations used for computation of each of the

examples was fairly consistent. was initially set to be the

) ) ] maximum value of the magnitude image ahd= 1 x 10°.

In our particular implementation and for all presented ex, the L, semi-norm prior,3 = 0.9 and oyarger = 0.2; for
.. .. . . . . o — Y. arget — Y-4,
amples, a semi-implicit fixed point iteration scheme bas : : _ V10 _ _8
on the Lagged Diffusivity model of Vogel and Oman [37 f other sparsity priorsyj = 55" and oiarger = 1> 107
! L : -The maximum number of internal Preconditioned Conjugate

was used _for the update step. The flxeq-pomt |terat|c_)n,lwh| radient iterations using in the inversion of the Hessian
is a special case of the half-quadratic regulanzathn '[_19 pproximate was limited to 250 with an early termination
[37], [20] C_O”?mO”'y employ_ed fqr nonconvex regularlzatlo_ti] lerance ofl x 10~2. tol was set tal x 10~ for the results
problems in IMage processing, IS an eff'c'e”t .met.h(.)d wif Figure 5 andl x 10~ for the results in Figures 6 and 7. In
only one level of internal iteration associated with invens general, the number of outer iterations will generally @ase
of the Hessian approximate via Conjugate Gradient itematio '

While the th tical ¢ _Newton f astol is reduced although the number of outer iterations was
e the theoretical convergence ot quasi-Newton forms éﬁways less than 40 and typically only 10-20. On a standard PC

only linear, mO.St often _OT"V a few tens of ou'Fer iteratior_lq alyith a 3GHz Inte® Pentium IV processor and 1GB memory,
needed to achieve suﬁ|C|ethy acc_urate SOIUt'O.nS' _Spaliy‘;c a Matlal®® implementation of our reconstruction procedure
the update step employed in our implementation is runs on average at roughly 5-10s per outer iteration or about
ut =t — O E(ut, o, N), (20 1-3 minutes toFaI execution time ma_kiqg it. comparable with
existing numerical methods for;kminimization in the MRI
whereC'(v) is a Hessian approximate aids the Lagrangian; literature albeit still not optimal for widespread cliniesage.
A is aregularization parameter that equates the constraiméd For the sake of brevity, only results obtained under the
unconstrained formulations of the energy functional imipto  gradient magnitude sparsity measure are presented. Agthe k
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Fig. 5. Example: (a) standard General Eleé®icesolution phantom, (b) simulated k-space trajectory deam phase encoding, 78% undersampling), (c)
minimum-energy solution via zero-filling, (d) reconstioct by L; minimization, (e) reconstruction by homotopig minimization usingo(|Vul,p) = |VulP,
() line profile across the phantom resolution bars, (g-jreyements of (a,c-e), respectively.

e
o
-

(d) ©)

() )

diagnostic information of many MR images is morphologicateconstruction. While both L and Ly minimization do an
e.g. for assessment of stenosis in the spinal column in Eig@xcellent job at suppressing aliasing, the-rhinimization
6, this choice is quite practical for many applications.eMt result suffers from several regions of intensity inaccigsic
natively, wavelet sparsity measures would more easily hodes well as a slightly blurred reconstruction of the GE logo.
fine-scale detail such as anatomical texture albeit at a ctistcontrast, the homotopicgLreconstruction provides a much
of diminished edge fidelity. A more thorough experimentalrisper logo reconstruction and, in general, provides tgrea
comparison of results obtained using different sparsifyirintensity fidelity to the fully-sampled image. Similar ploen-
operators as well as the combination of operators [11], [18ha are observed in the T2-weighted sagittal image of the
will be presented in a future work. spine example shown in Figure 6. In this case, a Cartesian
In each of the three presented cases, note the supefBProximation of a uniform-density multishot spiral samg|
recovery of the image morphology and contrast by homotogi@ectory simulating 83% undersampling is utilized. Vil -
Lo minimization as compared to the results of zero-fillinghinimization provides a good overall reconstruction, egra
and Ly-minimization. For the standard General Electtic ment of the C6 vertebra demonstrates the superiority of L
resolution phantom shown in Figure 5, 78% undersamplifiginimization over the L-analog at recovering both contrast
(roughly a 5X reduction in acquisition time) by random phasahd morphology. Additionally, note the fidelity of edges in
encoding leaves significant artifacts in the minimum enerdfje image reconstructed with the proposed method to those



TRZASKO AND MANDUCA: HIGHLY UNDERSAMPLED MAGNETIC RESONANCE IMAGE RECONSTRUCTION VIA HOMOTOPIC k-MINIMIZATION 9
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Fig. 6. Example: (a) Sagittal T2-weighted image of the spfbgsimulated k-space trajectory (multishot Cartesiaira§B3% undersampling), (c) minimum-

energy solution via zero-filling, (d) reconstruction by minimization, (e) reconstruction by homotopig Iminimization usingp(|Vu|,o) =
line profile across C6, (g-j) enlargements of (a,c-e), retpsy.

\Vu\ulko' ! (f)

of the fully-sampled data in the line profile. Figure 7 showsquivalence conditions are not satisfied and, in partichlar

a Tl-weighted axial cross-section of a wrist undersampletbtopic Ly-minimization allows accurate reconstruction from

by 87% using a varaible density random mask akin to thahdersampling rates greater than the level at which aceurat

described in [11] for multislice imaging. As with the preaagl L;-based reconstruction is possible.

examples, again note that homotopig-tinimization is able

to provide a substantially more accurate reconstructi@m th V. CONCLUSION

L,-minimization as exemplified in the enlargement of the In this work, we have presented a novel extension of the

carpal tunnel region of the wrist. Compressive Sensing paradigm for homotopic approximation
The L;-minimization procedure is generally very powerfubf the Ly-minimization problem and shown its practical and

and the relatively poor quality of the results obtained g¢imis successful application to the recovery of undersampled-mag

approach is due to the fact that the degree of undersamplimgfic resonance images. Although the presented method has

was intentionally chosen to lie above the rate at whigh Lno guarantee of achieving a global minima as does its convex

minimization is capable for the given image. When the sarh; analog, the computed local minima of the homotopic

pling rate is sufficiently raised, following [Candes], the and L, minimization problem typically allow for accurate image

L; minimization results are anticipated to converge; howeveeconstructions at higher undersampling rates than ariewach

in this work, we are only interested in the case where tltadble via L;-minimization. Moreover, we have demonstrated
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] [ 100 180
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Fig. 7. Example: (a) Axial T1-weighted image of the wrist) @mulated k-space trajectory (variable density rando¥% &ndersampling), (c) minimum-
energy solution via zero-filling, (d) reconstruction by minimization, (e) reconstruction by homotopig minimization usingo(|Vul|, o) = log (@ + 1),
(f) line profile across the? and 3¢ metacarpals, (g-j) enlargements of (a,c-e), respectively

that such local minima can be achieved in a computationallshere f and » are again the true and approximated signals,
practical manner even under the usage of several differeespectively. Let the reconstruction ertbr= v — f. For a
homotopic sparsity priors. While the specific applicatidn dixed value ofp, a sufficient condition for the uniqueness of a
this technique within this work is for complex MRI recoverysolution to the equality-constrained dminimization problem
the extension to other medical imaging modalities such asig-given by

ray CT is quite natural and will be investigated in a future

publication. ST hm)P = |h(n))?,
To Ts

APPENDIX|: DERIVATION OF RESTRICTEDISOMETRY

CONSTANTS FORL;, SEMI-NORM PRIORS (0 < p < 1] whereT, = supp {f} andp € (0,1] [18]. Next, suppose that

Consider the special case of (17) where 0, ¥ — I, and hre is reordered by magnitude (descending) into sets of size

p(lul,p) = [ul?, namely M > K, each.denoted aBr,, namely h(t) < h(s),Vs €
T;,t € T;11. Without consequence, note that the last subset
min lim Z lu(n)P st. du=df, might be of cardinality smaller tha/. Invoking the mono-
v p=04s tonicity of the L, semi-norms oveR*, it immediately follows
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that it is possible thatC > 1 such as with variational models
(Il ||Oo)p <M? Z [h(n)|P. that require use of multiple finite difference operators.eivh
T; the sparsifying operators i are arranged to yield &2 x
From [41], the relation column vector, the magnitude operator can be written inimatr
form as
I s < V2620 Sl I |Tu| = 0 (Jo [Tu o Wu))
1 - (SQM >o ’

wheref is an element-wise square-root operathy,is a row
can also be derived through clever manipulation of the inneector of C' identity matrices, and denotes the Hadamard
products inherent to the restriced isometry identity in. (7product. AlthoughF(u,o,\) is not necessarily convex, for
Noting the equivalence of norms over finite domains, simpfixed o and ), local minima of the energy functional are given

algebraic manipulation of the above relation yields by
2M  dap 1 dE
-1 2M -1 - Y=
S ”hTo”l < TmM 2 ZHhTJHQ L(’U/7O'7)\) du 0
j=2 = U (Ic @A) Pu+ A" (du— Pf),

Again exploiting finite norm equivalence and subsequently ) , . ,
summing over all subsets; C T, Where I denotes theC x C identity matrix, ® is the

Kronecker product operator, anti(u) is a diagonal matrix
whose elements are given by

_ P ([Yu(n)], o)
Aw)p,n = W

In practice, a small constant is generally added to the denom
inator of A(u),, to circumvent the need for consideration

P
M7 byl | <MY ()P,
s

Jj=2

where the subadditivity of concave functions ovBr" is
utilized. Consequently,

b S 2M o ? v of subdifferentials. While continuation on this varialdealso
Z'h(”” < M S 11— g Z'h(”” : possible, we simply assign it statically to be 1 x 10~
To 15 Noting that® is both Hermitian and idempotent, consolidation
On imposing the uniqueness condition, if of the target variable; yields
S ( [2M G20 >p<1 [ (Ie @ A(w) T + AD|u = ADSf,,.
M § 1= dam Following the Lagged Diffusivity approach given in [37] for

7 [h(n)|? = 0 and the exact recovery condition is implictlytotal variation minimization, the above can also be cast int
0 . . . .

fulfilled. Resultantly, this condition is met whenever thgper fixed-point form and iterated to admit

bound on the restricted isometry constant given in (10) is -

satisfied. / ° o) utth = B(u') A2 S,

where the Hessian approximate is given by
APPENDIXII: FIXED POINT SOLVER FORHOMOTOPICL
Bw) =9 (Ic ® A(v)) U + \D.

MINIMIZATION
Consider the energy functional When \®f,, is defined by the recursion

A
B(u,0,0) = p([Wu(n),0) + 5[1®u— 23, ARfy = Blu')u’ - L(u',0,A),
) Q_ ) ) a robust quasi-Newton iteration for the computatioruof
where )\ is a regularization parameter controlling the tradeoff ) )
between the sparsity and fidelity measures. It is well-known ut =u' = BT L(u', 0, N),

in optimization theory that the Karush-Kuhn-Tucker (KKT)|S obtained. In our particular implementation, inversidrite
conditions guaranteg) > 0 such that the solutions to ‘ P P '

Hessian approximate is performed via conjugate gradie@) (C
min E(u, o, \) iteration with a simple Jacobi preconditioner.
“ As discussed in Section 1I-D, reconstruction of undersam-
and the constrained problem given in (17) are equivalent. hlag MR images requires the analysis of complex data and a
general, analytic determination of as a function ofe is generalization of the described fixed-point solver is gtrgi

quite challenging and this parameter is often either assigiforward. For the problem described in (17), the associated
manually or determined iteratively using estimation téqhes nconstrained energy functional is given by

such as cross -validation [42]; in this work, only the former

approach is taken. E(u,0,0) = > [p([Yur(n),0) + p (| Wus(n)], 0)]
Let C equal the number of distinct sparsifying operators Q

implicit in W. For most applications such as whé&nis a i éH@u— of 2

basis transformation operator (e.g. wavelét)= 1; however, 2 2
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wherew,. andu,; again denote the real and imaginary compgt7]
nents ofu, respectively. Differentiation oF'(u, o, A) w.r.t u
then yields the Cauchy-Riemann system

(B(M D G) \of.

W int) () ”

however, as this system is not holomorphic, no solutiontgxis
and only an approximation may be obtained. The least-squaja®]
approximate of the solution to the Cauchy-Riemann system is

[18]

given by 21

L(u,0,\) = B(u)u, + iB(u;)u; + A0u — 208 f = 0.
Defining the complex Hessian approximate by (2]
C(v) = B(Rv)R +iB(Iv)Z + \®, [23]

where R andZ denote the real and imaginary operators, a

guasi-Newton iteration for the complex homotopig mini- [24]
mization problem, (23]
u't = ot — C(uh) T L(ut, 0, N), [26]

is obtained.
[27]
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