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Highly Undersampled Magnetic Resonance Image
Reconstruction via Homotopic L0-Minimization
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Abstract— In clinical Magnetic Resonance Imaging (MRI),
any reduction in scan time offers a number of potential benefits
ranging from high-temporal-rate observation of physiological
processes to improvements in patient comfort. Following recent
developments in Compressive Sensing (CS) theory, several
authors have demonstrated that certain classes of MR images
which possess sparse representations in some transform domain
can be accurately reconstructed from very highly undersampled
K-space data by solving a convex L1-minimization problem.
Although L 1-based techniques are extremely powerful, they
inherently require a degree of over-sampling above the
theoretical minimum sampling rate to guarantee that exact
reconstruction can be achieved. In this paper, we propose a
generalization of the Compressive Sensing paradigm based on
homotopic approximation of the L0 semi-norm and show how
MR image reconstruction can be pushed even further below
the Nyquist limit and significantly closer to the theoretical
bound. Following a brief review of standard Compressive
Sensing methods and the developed theoretical extensions,
several example MRI reconstructions from highly undersampled
K-space data are presented.

Keywords: Magnetic Resonance Imaging (MRI), Image
Reconstruction, Compressive Sensing, Compressed Sensing,
Nonconvex Optimization.

I. I NTRODUCTION

In contemporary clinical practice, MRI is one of the most
popular imaging modalities due to its excellent depiction
of soft tissues, allowance of arbitrary vantage points, and
inherent absence of emitted ionizing radiation. Despite its
many advantages, a fundamental limitation of MRI is the linear
relation between the number of measured data samples and
net scan time. Increased scan duration presents a number of
practical challenges in clinical imaging including highersus-
ceptibility to physiological motion artifacts, diminished clin-
ical throughput, and added patient discomfort. Recent trends
towards large-scale applications such as 3D and time-resolved
acquisitions generally require faster acquisition techniques to
achieve clinical practicality. Unfortunately, such accelerations
may result in a compromise of image quality (e.g. spatial and
temporal resolution, SNR).

The emerging theory of Compressive Sensing [1], [2] has
offered great insight into both when and how a signal may
be recovered to high accuracy (or, in some instances, exactly)
even when sampled at significantly below the Nyquist rate.
To date, most CS applications, especially within medical
imaging, have centered on the L1-minimization problem. In
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this paper, we describe a method for reconstructing MR
images at sampling rates even further below that which are
achievable using L1-based CS methods by directly attack-
ing the ideal L0-minimization problem. Following a review
of Shannon sampling theory in the context of MRI and a
discussion of L1-based CS methods in Sections II-A and II-
B, the L0-minimization problem is described in Section II-
C along with both its applied and theoretical implications.
Moreover, a practical scheme is presented for addressing the
L0 semi-norm based on homotopic approximation using a
wide class of deformable sparse priors, and an efficient semi-
implicit numerical scheme for computation is described in
Section III. Finally, several examples are presented in Section
IV demonstrating the ability of our proposed technique to
achieve accurate reconstructions beyond the capabilites of
L1-minimization and close to the true theoretical minimum
sampling rate.

II. T HEORY

A. Shannon’s Sampling Theory and MR Image Reconstruction

Shannon’s sampling theorem has served as the dogma of
signal processing theory for over half a century and suc-
cessfuly guided the development of countless technologies
ranging from telecommunication systems to MRI. While the
reader is certainly familiar with Shannon’s theorem, a brief
review of this classical argument is given to offer a convenient
juxtaposition against the more contemporary CS theory to be
discussed later in this section.

Letting x be a continuous variable representing spatial po-
sition, supposef(x) is a signal of interest. For most practical
applications,f is neither analytic nor finite and thus must be
sampled into a discrete numerical sequence prior to any form
of processing. The significance of Shannon’s theorem is that,
given a certain assumption about the spectral properties of
f , conditions on the rate of sampling can be imposed such
that the continuous signal can be recovered exactly from the
discrete subset of sample measurements.

An ideal sampler is often described by the Dirac comb or
impulse train,

sX(x) =

∞
∑

n=∞
δ(x − nX), (1)

where δ is the Dirac generalized function andX is the
sampling period; assX is periodic, it can also be expressed
as a Fourier series, namely

sX(x) =
1

X

∞
∑

n=∞
e

−2πjnx

X . (2)
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Given sX , f can be sampled by simply taking the pointwise
product between itself and the sampling vector,fX(x) =
f(x)·sX (x). Computing the Fourier Transform of the sampled
signal then yields

f̂X(k) =
1

X

∞
∑

n=∞
f̂(k − n

X
), (3)

wherek is a spectral index. Resultantly, the one-sided band-
width of f must be less than1

2X
to ensure that aliasing in

f̂X does not arise from overlap of the periodic copies of
f̂ . Conversely, any signal witha priori known maximum
supported absolute frequency,kmax, must be sampled at a
rate higher thanTN = 1

2kmax
, the so-called Nyquist limit, to

ensure that the aforementioned overlap is avoided. When the
Nyquist criterion is satisfied during the sampling process,the
continuous signal,f , can be exactly recovered fromfX by
simply filtering with an ideal low-pass signal of bandwidth
equal to half the Nyquist rate.

In the discrete domain, the sampling period,X , and spatial
resolution,∆x, of fX are equivalent. IfN measurements are
acquired at intervals of∆k across the spectral bandB =
[−kmax, kmax], then

∆k =
1

N∆x
= FOV−1, (4)

where FOV is the field-of-view of the signal space. Conse-
quently, for a target image of fixed spatial resolution and FOV,
absence of even a single measurement from the spectral grid
changes the effective local value of∆k and leads to violation
of Shannon’s recovery condition. For higher-dimensional ap-
plications such as time-resolved 3D MRI, this rigid sampling
constraint and its inherent dependence on dimensionality can
be crippling.

In the event that the spectral or K-space measurement
grid is only partially filled, the inversion problem becomes
underdetermined and there are an infinite number of potential
solutions to choose from. A simple technique for choosing
a solution from this infinite set is to select the one with the
minimum energy by solving

u = arg min
u

‖u‖2
2 s.t. Φu = Φf, (5)

where the Fourier sampling operatorΦ = F−1Φ̂F and Φ̂ is
the characteristic function of the subset of measured K-space
values. It is quite trivial to show that (5) is achieved by simply
setting Φ̂c to zero and directly inverting the spectral signal
using standard Fourier methods. In practice, aliasing present
within the minimum-energy solution arising from violation
of Shannon’s theorem typically results in an image of little
diagnostic value.

Since its inception, substantial effort has been made to
decrease the required scan time in MRI. Early techniques such
as echo-planar imaging (EPI) [3] traverse the entirety of K-
space during a single relaxation cycle (TR), offering a dramatic
increase in speed but at the expense of demanding hardware
performance and significantly-lowered signal-to-noise (SNR)
levels. Alternatively, if the signal of interest is assumedto be
strictly real, Hermitian symmetry of K-space can be exploited

(a) (b)

Fig. 1. The Shepp-Logan phantom (256 × 256) is a prime example of an
image that posseses a sparse representation in a transform domain, here the
magnitude of its gradient. While the image space representation (a) is clearly
not sparse (‖x‖0 ≈ 61% · N ), the transform representation of the image (b)
exhibits very high sparsity (‖∇x‖0 ≈ 3% · N ).

such that it is only necessary to perform measurements on
half of the spectral grid. In practice, however, the strict reality
assumption is violated due to resonant frequency variations
arising from thermal instabilities as well as artifacts from
physiological motion and flow. As a result, errors in phase
must be corrected prior to making the Hermitian assumption.
If image phase is assumed to be smoothly-varying over space,
the standard approach to phase correction involves measuring
a symmetric low-frequency band of K-space and estimating
the image space phase solely from this restricted measurement
set. The solution magnitude is then derived from a moderately
undersampled subset of K-space which also includes the
small support used in the phase estimation step. A complex
image is then formed by conjoining the image magnitude and
phase estimates, with only the real portion of this generated
image being retained as the solution. Due to the necessity of
acquiring a symmetric, low-frequency spectral band for usein
the phase estimation process, methods which rely on Hermitian
symmetry such as POCS [4] and homodyne detection [5] can
only decrease the number of required measurements by less
than half of that delimited by Shannon’s theorem.

B. Compressive Sensing and L1-Minimization

For many applications, the signal of interest rarely exhibits
true compact spectral support. Many images, such as those
produced in high-resolution MRI, can essentially be modeled
as piecewise-smooth functions containing a substantial number
of jump discontinuities. As the Fourier basis is comprised of
quadrature trigonometric functions, it is inherently inefficient
at representing sharp spatial gradients and a large number
of coefficients are required to provide sufficient suppression
of Gibbs ringing. A similar phenomenon occurs in textured
regions or signal areas containing significant high-frequency
variation. Such limitation placed on the class of signals of
interest naturally raises the question as to whether bandwidth,
or effectively energy, is really the functional property that
should serve as the basis for determining recoverability.

At first glance, signals are not typically characterized in
terms of their bandwidth but rather anecdotally, such as, for
example, “cartoon-like” for piecewise-constant images like
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(a) (b)

(c) (d)

Fig. 2. A comparison of L1-minimization versus Homotopic L0-minimization based reconstructions of the canonical Shepp-Logan phantom shown in
Figure 1a. Given a 96% undersampled K-space sampling mask containing only 10 radial lines (a) and its associated minimumenergy reconstruction (b),
L1-minimization (c) fails to recover the undersampled image while Homotopic L0-minimization (d) achieves exact reconstruction. For thisexample, the L0
homotopy prior employed wasρ(|∇u|, σ) = 1 − e−

|∇u|
σ .

the Shepp-Logan phantom shown in Figure 1. While this
qualitative assessment may seem trivial at face value, such
an intuitive descriptor is very powerful as it is, in essence,
outlining a transform space in which the signal of interest
possesses a sparse representation. For the aforementioned
piecewise-constant scenario, the magnitude of the image gradi-
ent will accordingly be sparse. If such a sparsifying transform,
Ψ, can be readily defined for a signal, one could ideally
select the estimation with the sparsest representation inΨ
that still matches the limited observation set. Mathematically,
this search consists of solving the equality-constrained L0-
minimization problem,

u = argmin
u

‖Ψu‖0 s.t. Φu = Φf, (6)

where the zero semi-norm,‖ · ‖0, is a measure of functional
cardinality. AlthoughΨ is often assigned to be a unitary

operator (e.g. wavelet, curvelet, etc...), note that this is not
a required condition. For instance, in variational models,Ψ
may instead be a vector collection of finite difference matrices
analogous to the continuous gradient operator.

Without loss of generality, consider the caseΨ = I which
implies that signal of interest is intrinsically sparse in its given
domain. Following the definition of Candès and Tao [6],Φ is
an S-restricted isometry if, for every one of itsM × K sub-
matrices,ΦK , {∀K | |K| < S} and M ≥ K, ∃δS ∈ (0, 1)
such that

(1 − δS)‖x‖2
2 ≤ ‖ΦKx‖2

2 ≤ (1 + δS)‖x‖2
2 (7)

for an arbitrary vector,x, of length K. Any measurement
matrix which satisfies (7) acts as an approximate orthonormal
system or isometry and the value of the constant,δS , provides
a bound on eigenvalues of the Grammian matrix,Φ∗

KΦK , and
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is thus proportional to the condition number of the inversion.
From (7), it immediately follows that ifΦ satisfiesδ2S < 1,
(6) will have a unique minimizer; conversely, this condition
also asserts unique recovery of a signal with cardinality
S cannot be guaranteed if less than2S measurements are
acquired. Exact determination of the sampling bounds gener-
ally requires probabilistic analysis of the sampling matrix as
well as incorporation of the mutual incoherence between the
sparsity and sampling bases; however, a detailed discussion
of the techniques required to describe exact recovery bounds
is beyond the scope of this paper and we refer the reader to
[7], [8] for more information. One example for the particular
case of random Fourier measurement ensembles will be given
in Section II-C. Unlike that imposed by Shannon’s theorem,
this condition is independent of dimensionality and statesthat
the number of measurements necessary to recover a signal is
linearly proportional to the underlying complexity of a signal
given a priori knowledge of a sparsifying transformation.
Despite the remarkable theoretical implications of this result,
directly solving the L0-minimization problem to recover an
S-sparse signal of lengthN requires a combinatorial search
through all

(

N
S

)

potential solutions and is thus intractable for
any practical application.

The remarkable result of Compressive Sensing theory, pio-
neered by Candès et al. [1] and Donoho [2], is that if one
replaces the L0 semi-norm prior in (6) with the L1 norm,
namely

u = argmin
u

‖Ψu‖1 s.t. Φu = Φf, (8)

then exact signal recovery is still possibly albeit at the cost
of a modest degree of oversampling. In other words, given
a sufficient rate of sampling, the solutions to (6) and (8) are
equivalent. Moreover, (8) is a tractable convex optimization
problem. In practice, the requisite degree of oversampling
necessary to achieve exact reconstruction of a signal of car-
dinality S is roughly 3S − 5S [9], where the multiplicative
constant is proportional to the restricted isometry constant
for a givenΦ. Despite the fact that exact reconstruction via
L1-minimization cannot generally be achieved at the true
minimum sampling rate associated with the L0-minimization
problem, this approach nonetheless offers the ability to sample
drastically below the Nyquist rate and perform the recovery
with a computationally tractable procedure.

In most medical imaging applications including MRI, sig-
nals of interest are rarely noise-free. Consequently, it is
desirable to take into account the presence of noise during
the reconstruction process such that measurement error is
not propagated. Suppose that the measured data is given by
f̂n = Φ̂ ◦ f̂ + n, wheren is a stochastic noise process such
as Additive White Gaussian Noise (AWGN) found on each
of the quadrature measurement channels in MRI. Under this
assumption, (8) can be reformulated as

u = argmin
u

‖Ψu‖1 s.t. ‖Φu − Φfn‖2
2 ≤ ǫ, (9)

where ǫ is a statistic of the noise process,n. It can be
shown that the solution to (9) will exhibit reconstruction error
on the order of‖u − f‖2 ≤ C · ǫ, where the constantC

depends only on the restricted isometry constant [Candes].
The ability to recover an undersampled signal then degrades
gracefully in the presence of noise. Moreover, medical images
of interest are typically not truly sparse in any prescribed
transform domain but do tend to exhibit high compressibility,
i.e. their enumerated coefficients exhibit exponential decay in
magnitude. Although the energy of the signal is concentrated
within relatively few transform coefficients, the support of an
exact representation of the signal may be dense. Nonetheless,
when a compressible signal is undersampled and reconstructed
via L1-minimization, the approximation error will be on the
order of‖u− f‖2 ≤ C · ‖f − fS‖1, wherefS consists of the
S-largest coefficients of the sparse representation ofΨf . In
other words, the solution generated by L1-minimization using
random sampling posseses error that is on the same order as
the best possibleS-term or compressive approximation [10].

Following the development of CS theory within the the-
oretical mathematics community, medical imaging and, in
particular, MRI was immediately recognized as a strong can-
didate for a specific application where this new concept could
have dramatic practical implications. In the past several years,
the practical performance of CS theory and, specifically, L1-
minimization based techniques, has been successfully demon-
strated for a large range of clinical applications including non-
Cartesian and 3D MR angiography (MRA) [11], [12], and
time-resolved or k-t SPARSE imaging [13]. More recently,
several groups in the MRI community have proposed novel
numerical techniques for attacking the L1-minimization prob-
lem with specific focus on image reconstruction including
Preconditioned Conjugate Gradient (PCG) [11], [14], Bregman
iteration or inverse scale space [15], and reweighted Least
Squares or FOCUSS [16], [17] methods. In essence, each
of the aforementioned techniques solves the L1-minimization
problem either directly or asymptotically and the difference
in quality of their produced results is anticipated to be
minimal. As there has not been an extensive comparison of
the computational performance of these techniques on large-
scale problems, which method, if any, will best meet clinical
demands is still an open question.

C. A Homotopy Method for L0-Minimization

In Section II-B, it was stated that a signal or image can,
in theory, be exactly reconstructed from fewer samples when
the recovery task is cast using an L0 semi-norm sparsity
prior as opposed to the L1 norm (see example in Figure
2). While a direct solution of (6) is infeasible for most
practical applications, it is natural to ask whether there exists
an alternative prior, or class of priors, that admit better
sampling bounds than L1 and are computationally achievable.
Following assertions made in [2], Chartrand [18] proposed
use of the Lp semi-norm(0 < p < 1] class of sparsity priors
within a basis pursuit reconstruction framework. While this
approach generates a non-convex optimization problem and
thus a global minima can no longer be guaranteed, Chartrand
offered proof of asymptotic and continuous convergence of
the Lp sampling bounds towards L0 through assessment of
the restricted isometry constants as well as several examples of
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(a)

Fig. 3. As the Lp sparsity prior is evolved towards L0, the restricted isometry
constant,δ3S (M = 3

2
S), is progressively relaxed. When considering the

Shepp-Logan phantom in Figure 1, the cardinality of the gradient magnitude
of the signal isS ≈ 2200. Given the definition in (11) and defining the
expected oversampling factor required for exact reconstruction by K(p)

K(0)
, a

decrease in required number of samples towards the theoretical minimum
sampling rate limit can be seen asp → 0.

local minima providing exact signal and image reconstructions
to within numerical precision at sampling rates far below those
achievable by L1-based methods. Extending on [18], it can be
shown that, for the class of Lp semi-norm priors,

δ2M <

[

1 +

√

2M

S
·
(

S

M

)
1
p

]−1

(0 < p < 1], (10)

for someM ≥ S (see Appendix I for derivation). LetN
denote the cardinality of the solution space andK be the
required number of measurements necessary to reconstruct an
S-sparse signal. When the measurement matrix is comprised
of a random Fourier ensemble,Eδ2M < γ whenever

K ≥ C

(

2M log N

γ2

)

log

(

2M log N

γ2

)

log2 2M, (11)

for some absolute constantC [8]. Consequently, asγ ∝ 1

p
,

utilization of diminishing values ofp allows a signal to be
exactly reconstructed from fewer and fewer measurements (see
Figure 3). Although Donoho [2] dismisses the practical use of
the Lp semi-norms as a consequence of their intractability,
energy functionals employing the Lp semi-norm class admit a
non-zero gradient almost everywhere, unlike the L0 problem.
Thus at least local minima, many of which are more than suffi-
cient in practice, can be found via standard descent methodsas
opposed to combinatorial search. When consideringp to be a
static variable, practical selection is non-trivial as there exists
a tradeoff between reconstruction performance and problem
stiffness and this is still an open problem.

Chartrand’s work provides an exact characterization of the
performance of reconstructions employing the Lp semi-norms
(0 < p < 1], but the results are not at all surprising – better
approximations of the L0 semi-norm simply yield sampling
bounds that are closer to the theoretical minimum rate limit.

Let the zero semi-norm of a signal,u, be defined as follows:

‖u‖0 =
∑

Ω

1 (|u(n)| > 0) , (12)

whereΩ is the image domain and1 is the indicator function.
Consider the general class of semimetric functionals, i.e.
positive definite and symmetric about the origin, that are non-
decreasing overR+. Intuitively, any semimetric functional,ρ,
satisfying

lim
σ→0

∑

Ω

ρ (|u(n)|, σ) =
∑

Ω

1 (|u(n)| > 0) (13)

can be used as a sparsity prior as long asσ is chosen to be
sufficiently small. The class of functionals satisfying (13) are
said to be homotopic with the L0 semi-norm in the sense that
they can be continuously deformed into the desired measure.
While the Lp semi-norm(0 < p < 1] class clearly satisfies
(13), so do many other functionals including robust error
norms such as the Laplace function,

ρ (|u(n)|, σ) = 1 − e−
|u(n)|

σ , (14)

shown in Figure 4, the Geman-McClure function [19],

ρ (|u(n)|, σ) =
|u(n)|

|u(n)| + σ
, (15)

and the concave logarithmic penalty

ρ (|u(n)|, σ) = log

( |u(n)|
σ

+ 1

)

. (16)

For a tabulation of additional non-convex functionals that
are potentially homotopic with the L0 semi-norm, see [20].
The authors also note that Candès et al. [21] have recently
introduced a reweighted L1 minimization scheme for CS
which implicitly utilizes (16) with a fixed value ofσ. When
σ is assigned to be sufficienty small, as anticipated, results
similar to those shown in Figure 2 are obtained. In effect,
the reweighted L1-minimization scheme can be viewed as a
special instance of our generalized proposition.

While ρ will ideally be concave overR+ as this allows for
straighforward generation of a uniqueness condition (see e.g.
[22]), there are also many quasi-convex priors that are homo-
topic with the L0 semi-norm such as the Tukey Biweight [23],
Gaussian error function, and other redescending M-estimators
[24], [25]. As a consequence of their uniform continuity,
such functionals often contain a small convex well about the
origin and are concave outside of this region. While successful
reconstructions have been achieved using quasi-convex prior
functions [26], it is conjectured that the presence of this
convex well offers the potential for error accumulation during
iterative solution generation and sub-optimal reconstructions
are likely without extreme care being taken in numerical
implementation. As will be demonstrated in Section IV, the
practical ability to reconstruct a signal via homotopicL0-
minimization is fairly invariant to the particular employed ρ as
long as the selected functional is concave. Given a reasonable
schedule for the reduction ofσ, it is conjectured that any such
homotopy prior can provide asymptotically-equivalent results
although the rate at which these are achieved is still open to
theoretical investigation.
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Fig. 4. Homotopic approximation of the L0 semi-norm using the Laplace

error function,1 − e
|u|
σ , shown at diminishing values ofσ.

Given any particular choice ofρ satisfying (13), a new
reconstruction paradigm can then be defined by

min
u

lim
σ→0

∑

Ω

ρ (|Ψu(n)|, σ) s.t. ‖Φu − Φfn‖2
2 ≤ ǫ, (17)

where the conditionσ → 0 can be enforced through use of a
standard continuation scheme such as that employed by [27]
for total variation minimization (see Section III). Unlikethe
approach taken for Lp semi-norms, a continuation scheme
allows the problem to be initially solved for large values
of σ and the solution used as the initial condition of the
next problem with diminishedσ. Furthermore,p need not
be fixed in advance and can simply be continually reduced
during minimization. Relaxation of a non-convex measure is
certainly not a new concept, with methods such as Graduated
Non-Convexity (GNC) dating to early work on the shape-
from-shading problem [28] as well as applications in Bayesian
tomography [29], [30]; however, given recent insight on the
conditions of when a signal can be recovered, the authors
believe this to be the first application of this type of approach
within the CS framework for attacking the L0 minimization
problem directly as well as the first application to magnetic
resonance imaging.

D. Regularization and Complex Signals

Spatial localization in MRI relies on the provision of both
frequency and phase encoding of atoms, necessitating the
quadrature measurement of complex signals. If the signal
of interest is dominantly real, as discussed in Section II-
A, a phase correction step such as homodyne detection can
be incorporated into the reconstruction process [11], offering
strong additionala priori information as well as a potential
for improved performance. In many scenarios such as velocity
encoding of blood flow, phase information is crucial to image
formation and the Hermitian assumption cannot be used and
one must instead handle the data in its complex form. In
[15], it was suggested that sparsity be enforced separatelyin
the real and imaginary channels, an approach well known in

the MR image denoising literature (e.g. [31]). The complex
generalization of (17) is simply given by

min
u

lim
σ→0

∑

Ω

ρ (|Ψur(n)|, σ) + ρ (|Ψui|(n)|, σ)

s.t. ‖Φu − Φfn‖2 ≤ ǫ,

(18)

where ur and ui are the real and imaginary components
of u, respectively, and it is this approach that is adopted
here. Recently, the separate regularization of image-space
magnitude and phase components has also been suggested
[32], offering a number of potential benefits for improving
the efficacy of reconstruction and a potential area of future
investigation for the proposed reconstruction technique.

E. Extension to Multicoil MRI

A major advance in the MRI community came with the
advent of parallel or multicoil imaging techniques. Multicoil
methods such as SENSE [33], although offering accelerated
acquisitions, can also be classified as “Nyquist-limited” as they
are governed by Papoulis’ Generalized Sampling Expansion
theorem [34] which essentially states that, givenC orthogonal
encoders, a signal can be exactly reconstructed if it is sampled
at a rate above1

C
of the Nyquist limit on each of theC

channels. In practice, the individual elements of a coil array
are never truly orthogonal and a certain amount of coherance
exists between sensitivity profiles, the degree of which tends
to increase with the number of coils. Consequently, the an-
ticipated 1

C
speed-up is rarely achievable, especially in the

presence of noise. However, the loss in rate reduction can often
be partially recovered though the use of the aforementioned
Hermitian-driven partial K-space methods in conjunction with
parallel MRI reconstruction [35].

When sampled at or above the Nyquist rate, the multicoil
image reconstruction is inherently overdetermined and no
solution to the problem exists. Consequently, the SENSE
approach developed by Pruessmann et al. [33] formulates the
reconstruction as an unregularized least-squares approxima-
tion, namely

min
u

‖Γu − Γfn‖2
2, (19)

where the block operator,Γ, now incorporates both the Fourier
measurement matrix as well as a vector of coil sensitivity
profiles.

The amplification of noise during the reconstruction of
parallel MR images is well-known and several works have
addressed the regularization of (19). While the smoothing
behavior of minimum-energy Tikhonov methods limits their
clinical practicality for morphology-driven imaging suchas
MR angiograpy,maximum a posteriori (MAP) approaches
employing edge-preserving priors have proven very promising.
In particular, Raj et al. [36] employed non-convex image
priors similar to those discussed in Section II-C to the parallel
MRI denoising problem using a formulation nearly identical
to (17) but with σ fixed; a graph cut procedure was then
used for minimization of the energy functional. More recently,
several authors [11], [12] have demonstrated the use of L1-
based regularization methods for undersampled parallel MRI
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reconstruction analogous to that discussed in Section II-Bfor
single receiver imaging. Given the well-established foundation
of non-linear regularization in parallel MRI reconstruction,
extension of the proposed reconstruction paradigm in Section
II-C to this paradigm is straightforward. A more detailed
discussion will be presented in a separate work.

III. M ETHODS

In abstraction, two levels of iteration are required to com-
pute a local minima of the problem given in (18): an outer loop
that progressively diminishes the homotopy parameter,σ, and
an inner loop which updates the estimate of the solution for a
fixed σ, generally by some degree of iteration. LetmaxIter

be the maximum number of allowable outer iterations,tol be
the threshold for significant relative change in the solution, and
β ∈ (0, 1). Additionally, as demonstrated in Figure 3, actually
reachingσ = 0 is often unnecessary and a minimum value
for σ, σtarget, can be prescribed such that iteration terminates
on reaching this parameterization with no loss in efficacy. An
outline of the algorithm for homotopic L0 minimization is
given by

Algorithm 1. Pseudocode for Homotopic L0 Minimization

u0 = f , σ >> 0
while (count < maxIter)

ut+1 = update(ut, σ)

if
(

‖ut+1−ut‖2

‖ut‖2
< tol

)

σ = β × σ;
end

if (σ < σtarget)
break

else

continue
end

count = count + 1
end

In our particular implementation and for all presented ex-
amples, a semi-implicit fixed point iteration scheme based
on the Lagged Diffusivity model of Vogel and Oman [37]
was used for the update step. The fixed-point iteration, which
is a special case of the half-quadratic regularization [19],
[37], [20] commonly employed for nonconvex regularization
problems in image processing, is an efficient method with
only one level of internal iteration associated with inversion
of the Hessian approximate via Conjugate Gradient iteration.
While the theoretical convergence of quasi-Newton forms is
only linear, most often only a few tens of outer iterations are
needed to achieve sufficiently accurate solutions. Specifically,
the update step employed in our implementation is

ut+1 = ut − C(ut)−1L̃(ut, σ, λ), (20)

whereC(v) is a Hessian approximate andL is the Lagrangian;
λ is a regularization parameter that equates the constrainedand
unconstrained formulations of the energy functional implicit to

(18). A detailed derivation and discussion of this update step
is given in Appendix II.

Although the fixed-point method provides very accurate
solutions with reasonable efficiency, the authors note thatthe
computational performance of this approach is likely sub-
optimal relative to the many recent proclaimed fast numerical
techniques proposed for the L1 form of the Compressive
Sensing reconstruction problem such as GPSR [38], SPGL1
[39], l1 ls [14], and FPC [40]; however, as the paradigm in
Algorithm 1 is generic, modification of any of these methods
as well as future developments may be naturally embedded
within our scheme.

IV. EXAMPLES

Several example MR images reconstructed from undersam-
pled k-space data using the presented homotopic L0 minimiza-
tion scheme can be seen in Figures 5-7. In each case, the
fully sampled Cartesian k-space data (a) was undersampled
retrospectively by the given binary mask (b) to allow a
direct comparison of the generated reconstruction againstthe
true image. Although only Cartesian sampling examples are
considered in this paper, the extension to non-Cartesian k-
space acquisition can be naturally embedded in this frame-
work through the use of a regridding process or non-uniform
Fourier transform and has been addressed in the context of
L1 minimization in [11]. Subfigures (c-e) show the result of
reconstructing the respective undersampled images via zero-
filling, i.e. the minimum-energy solution, L1-minimization,
and homotopic L0-minimization; the fixed-point numerical
solver presented in Section III was used for the latter two
reconstructions. A line profile of a pertinent section of each
image and its respective L0 reconstruction is shown in (e) and
and enlargements of another section of the fully-sampled and
undersampled reconstructions are shown in (g-j). The window
and leveling of all images is uniform across all subimages of
each example.

The parameterizations used for computation of each of the
examples was fairly consistent.σ was initially set to be the
maximum value of the magnitude image andλ = 1 × 105.
For the Lp semi-norm prior,β = 0.9 and σtarget = 0.2; for
all other sparsity priors,β =

√
10

10
and σtarget = 1 × 10−8.

The maximum number of internal Preconditioned Conjugate
Gradient iterations using in the inversion of the Hessian
approximate was limited to 250 with an early termination
tolerance of1× 10−2. tol was set to1× 10−3 for the results
in Figure 5 and1×10−4 for the results in Figures 6 and 7. In
general, the number of outer iterations will generally increase
as tol is reduced although the number of outer iterations was
always less than 40 and typically only 10-20. On a standard PC
with a 3GHz Intelc© Pentium IV processor and 1GB memory,
a Matlabc© implementation of our reconstruction procedure
runs on average at roughly 5-10s per outer iteration or about
1-3 minutes total execution time making it comparable with
existing numerical methods for L1-minimization in the MRI
literature albeit still not optimal for widespread clinical usage.

For the sake of brevity, only results obtained under the
gradient magnitude sparsity measure are presented. As the key
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 5. Example: (a) standard General Electricc© resolution phantom, (b) simulated k-space trajectory (random phase encoding, 78% undersampling), (c)
minimum-energy solution via zero-filling, (d) reconstruction by L1 minimization, (e) reconstruction by homotopic L0 minimization usingρ(|∇u|, p) = |∇u|p,
(f) line profile across the phantom resolution bars, (g-j) enlargements of (a,c-e), respectively.

diagnostic information of many MR images is morphological,
e.g. for assessment of stenosis in the spinal column in Figure
6, this choice is quite practical for many applications. Alter-
natively, wavelet sparsity measures would more easily model
fine-scale detail such as anatomical texture albeit at a cost
of diminished edge fidelity. A more thorough experimental
comparison of results obtained using different sparsifying
operators as well as the combination of operators [11], [15]
will be presented in a future work.

In each of the three presented cases, note the superior
recovery of the image morphology and contrast by homotopic
L0 minimization as compared to the results of zero-filling
and L1-minimization. For the standard General Electricc©

resolution phantom shown in Figure 5, 78% undersampling
(roughly a 5X reduction in acquisition time) by random phase
encoding leaves significant artifacts in the minimum energy

reconstruction. While both L1 and L0 minimization do an
excellent job at suppressing aliasing, the L1-minimization
result suffers from several regions of intensity inaccuracies
as well as a slightly blurred reconstruction of the GE logo.
In contrast, the homotopic L0 reconstruction provides a much
crisper logo reconstruction and, in general, provides greater
intensity fidelity to the fully-sampled image. Similar phenom-
ena are observed in the T2-weighted sagittal image of the
spine example shown in Figure 6. In this case, a Cartesian
approximation of a uniform-density multishot spiral sampling
trajectory simulating 83% undersampling is utilized. While L1-
minimization provides a good overall reconstruction, enlarge-
ment of the C6 vertebra demonstrates the superiority of L0-
minimization over the L1-analog at recovering both contrast
and morphology. Additionally, note the fidelity of edges in
the image reconstructed with the proposed method to those
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 6. Example: (a) Sagittal T2-weighted image of the spine, (b) simulated k-space trajectory (multishot Cartesian spiral, 83% undersampling), (c) minimum-
energy solution via zero-filling, (d) reconstruction by L1 minimization, (e) reconstruction by homotopic L0 minimization usingρ(|∇u|, σ) =

|∇u|
|∇u|+σ

, (f)
line profile across C6, (g-j) enlargements of (a,c-e), respectively.

of the fully-sampled data in the line profile. Figure 7 shows
a T1-weighted axial cross-section of a wrist undersampled
by 87% using a varaible density random mask akin to that
described in [11] for multislice imaging. As with the preceding
examples, again note that homotopic L0-minimization is able
to provide a substantially more accurate reconstruction than
L1-minimization as exemplified in the enlargement of the
carpal tunnel region of the wrist.

The L1-minimization procedure is generally very powerful
and the relatively poor quality of the results obtained using this
approach is due to the fact that the degree of undersampling
was intentionally chosen to lie above the rate at which L1-
minimization is capable for the given image. When the sam-
pling rate is sufficiently raised, following [Candes], the L0 and
L1 minimization results are anticipated to converge; however,
in this work, we are only interested in the case where the

equivalence conditions are not satisfied and, in particular, ho-
motopic L0-minimization allows accurate reconstruction from
undersampling rates greater than the level at which accurate
L1-based reconstruction is possible.

V. CONCLUSION

In this work, we have presented a novel extension of the
Compressive Sensing paradigm for homotopic approximation
of the L0-minimization problem and shown its practical and
successful application to the recovery of undersampled mag-
netic resonance images. Although the presented method has
no guarantee of achieving a global minima as does its convex
L1 analog, the computed local minima of the homotopic
L0 minimization problem typically allow for accurate image
reconstructions at higher undersampling rates than are achiev-
able via L1-minimization. Moreover, we have demonstrated
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(a) (b)
 

 

(c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 7. Example: (a) Axial T1-weighted image of the wrist, (b) simulated k-space trajectory (variable density random, 87% undersampling), (c) minimum-
energy solution via zero-filling, (d) reconstruction by L1 minimization, (e) reconstruction by homotopic L0 minimization usingρ(|∇u|, σ) = log

�
|∇u|

σ
+ 1

�
,

(f) line profile across the 2nd and 3rd metacarpals, (g-j) enlargements of (a,c-e), respectively.

that such local minima can be achieved in a computationally
practical manner even under the usage of several different
homotopic sparsity priors. While the specific application of
this technique within this work is for complex MRI recovery,
the extension to other medical imaging modalities such as x-
ray CT is quite natural and will be investigated in a future
publication.

APPENDIX I: DERIVATION OF RESTRICTEDISOMETRY

CONSTANTS FORLp SEMI-NORM PRIORS(0 < p < 1]

Consider the special case of (17) whereǫ = 0, Ψ = I, and
ρ(|u|, p) = |u|p, namely

min
u

lim
p→0

∑

Ω

|u(n)|p s.t. Φu = Φf,

wheref and u are again the true and approximated signals,
respectively. Let the reconstruction errorh = u − f . For a
fixed value ofp, a sufficient condition for the uniqueness of a
solution to the equality-constrained Lp-minimization problem
is given by

∑

T0

|h(n)|p ≥
∑

T c
0

|h(n)|p,

whereT0 = supp {f} andp ∈ (0, 1] [18]. Next, suppose that
hT c

0
is reordered by magnitude (descending) into sets of size

M ≥ K, each denoted ashTj
, namelyh(t) ≤ h(s), ∀s ∈

Tj, t ∈ Tj+1. Without consequence, note that the last subset
might be of cardinality smaller thanM . Invoking the mono-
tonicity of the Lp semi-norms overR+, it immediately follows
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that
(

‖hTj+1‖∞
)p ≤ M−1

∑

Tj

|h(n)|p.

From [41], the relation

‖hT0‖2 ≤
√

2δ2M

1 − δ2M

∑

j≥2

‖hTj
‖2

can also be derived through clever manipulation of the inner
products inherent to the restriced isometry identity in (7).
Noting the equivalence of norms over finite domains, simple
algebraic manipulation of the above relation yields

S−1‖hT0‖1 ≤
√

2M

S

δ2M

1 − δ2M

M− 1
2

∑

j≥2

‖hTj
‖2.

Again exploiting finite norm equivalence and subsequently
summing over all subsetsTj ⊂ T c

0 ,


M− 1
2

∑

j≥2

‖hTj
‖2





p

≤ M−1
∑

T c
0

|h(n)|p,

where the subadditivity of concave functions overR
+ is

utilized. Consequently,

∑

T0

|h(n)|p ≤ S

M

(
√

2M

S

δ2M

1 − δ2M

)p
∑

T c
0

|h(n)|p.

On imposing the uniqueness condition, if

S

M

(
√

2M

S

δ2M

1 − δ2M

)p

< 1,

∑

T0
|h(n)|p = 0 and the exact recovery condition is implictly

fulfilled. Resultantly, this condition is met whenever the upper
bound on the restricted isometry constant given in (10) is
satisfied.

APPENDIX II: F IXED POINT SOLVER FOR HOMOTOPICL0

M INIMIZATION

Consider the energy functional

E(u, σ, λ) =
∑

Ω

ρ (|Ψu(n)|, σ) +
λ

2
‖Φu − Φfn‖2

2,

whereλ is a regularization parameter controlling the tradeoff
between the sparsity and fidelity measures. It is well-known
in optimization theory that the Karush-Kuhn-Tucker (KKT)
conditions guarantee∃λ ≥ 0 such that the solutions to

min
u

E(u, σ, λ)

and the constrained problem given in (17) are equivalent. In
general, analytic determination ofλ as a function ofǫ is
quite challenging and this parameter is often either assigned
manually or determined iteratively using estimation techniques
such as cross -validation [42]; in this work, only the former
approach is taken.

Let C equal the number of distinct sparsifying operators
implicit in Ψ. For most applications such as whenΨ is a
basis transformation operator (e.g. wavelet),C = 1; however,

it is possible thatC > 1 such as with variational models
that require use of multiple finite difference operators. When
the sparsifying operators inΨ are arranged to yield aCΩ×Ω
column vector, the magnitude operator can be written in matrix
form as

|Ψu| = θ (JC [Ψu ◦ Ψu])

whereθ is an element-wise square-root operator,JC is a row
vector of C identity matrices, and◦ denotes the Hadamard
product. AlthoughE(u, σ, λ) is not necessarily convex, for
fixed σ andλ, local minima of the energy functional are given
by

L(u, σ, λ) =
dE

du
= 0

= Ψ∗ (IC ⊗ Λ(u))Ψu + λΦ∗ (Φu − Φf) ,

where IC denotes theC × C identity matrix, ⊗ is the
Kronecker product operator, andΛ(u) is a diagonal matrix
whose elements are given by

Λ(u)n,n =
ρ′(|Ψu(n)|, σ)

|Ψu(n)| .

In practice, a small constant is generally added to the denom-
inator of Λ(u)n,n to circumvent the need for consideration
of subdifferentials. While continuation on this variable is also
possible, we simply assign it statically to be< 1 × 10−4.
Noting thatΦ is both Hermitian and idempotent, consolidation
of the target variableu yields

[Ψ∗ (IC ⊗ Λ(u))Ψ + λΦ] u = λΦfn.

Following the Lagged Diffusivity approach given in [37] for
total variation minimization, the above can also be cast into
fixed-point form and iterated to admit

ut+1 = B(ut)−1λΦfn,

where the Hessian approximate is given by

B(v) = Ψ∗ (IC ⊗ Λ(v)) Ψ + λΦ.

WhenλΦfn is defined by the recursion

λΦfn = B(ut)ut − L(ut, σ, λ),

a robust quasi-Newton iteration for the computation ofu,

ut+1 = ut − B(ut)−1L(ut, σ, λ),

is obtained. In our particular implementation, inversion of the
Hessian approximate is performed via conjugate gradient (CG)
iteration with a simple Jacobi preconditioner.

As discussed in Section II-D, reconstruction of undersam-
pled MR images requires the analysis of complex data and a
generalization of the described fixed-point solver is straight-
forward. For the problem described in (17), the associated
unconstrained energy functional is given by

E(u, σ, λ) =
∑

Ω

[ρ (|Ψur(n)|, σ) + ρ (|Ψui(n)|, σ)]

+
λ

2
‖Φu − Φfn‖2

2,
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whereur andui again denote the real and imaginary compo-
nents ofu, respectively. Differentiation ofE(u, σ, λ) w.r.t u

then yields the Cauchy-Riemann system
(

B(ur) iλΦ
λΦ iB(ui)

)(

ur

ui

)

=

(

I

I

)

λΦf ;

however, as this system is not holomorphic, no solution exists
and only an approximation may be obtained. The least-squares
approximate of the solution to the Cauchy-Riemann system is
given by

L̃(u, σ, λ) = B(ur)ur + iB(ui)ui + λΦu − 2λΦf = 0.

Defining the complex Hessian approximate by

C(v) = B(Rv)R + iB(Iv)I + λΦ,

whereR and I denote the real and imaginary operators, a
quasi-Newton iteration for the complex homotopic L0 mini-
mization problem,

ut+1 = ut − C(ut)−1L̃(ut, σ, λ),

is obtained.
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