
Local Label Descriptor for Example based
Semantic Image Labeling

Yiqing Yang1, Zhouyuan Li1, Li Zhang1

Christopher Murphy2, Jim Hoeve1, Hongrui Jiang1

University of Wisconsin-Madison1

University of California, Davis2

Abstract. In this paper we introduce the concept of local label de-
scriptor, which is a concatenation of label histograms for each cell in
a patch. Local label descriptors alleviate the label patch misalignment
issue in combining structured label predictions for semantic image label-
ing. Given an input image, we solve for a label map whose local label
descriptors can be approximated as a sparse convex combination of ex-
emplar label descriptors in the training data, where the sparsity is regu-
larized by the similarity measure between the local feature descriptor of
the input image and that of the exemplars in the training data set. Low-
level image over-segmentation can be incorporated into our formulation
to improve efficiency. Our formulation and algorithm compare favorably
with the baseline method on the CamVid and Barcelona datasets.

1 Introduction
Local image feature descriptors, such as SIFT and HOG, are widely used in
computer vision, for example, in object detection, key point matching, and scene
classification, to name just a few. When used in semantic image segmentation,
the local feature descriptors are often first fed into local classifiers that produce
class label scores, and then the scores are combined in a Conditional Random
Field (CRF) to generate the final segmentation. Previously, local classifiers are
either two-class (car or non-car) or multi-class (human, building, or sky). In
both cases, although the local classifiers use local context information in making
decisions, no context information is present in their label score output that is
passed onto the higher level CRF.

In this paper, we propose a novel energy formulation to model context for
spatially consistent semantic image segmentation. Our energy function is based
on sparse coding of local label descriptors. Local label descriptors are analogous
to local feature descriptors, such as HOG. Recall that when we construct a
local feature descriptor, the common idea is to treat an image patch as a set of
overlapping cells and concatenate the histograms of image features in each cell
to form the descriptor. Applying this idea to a label patch, we define a local
label descriptor to be a concatenation of label histograms for each cell in the
label patch. Local label descriptors offer two computational conveniences in pixel
labeling.

– A local label descriptor models the probability of local label patterns. Con-
tinuous mathematical operations (e.g., linearly combination) can be defined
on such descriptors but cannot be done on hard label patches.



2 Authors Suppressed Due to Excessive Length

– If two local feature descriptors are similar, we should expect their histograms
of the labels in corresponding cells to be similar, rather than the label values,
because feature descriptors are designed to be robust to small geometric
misalignment and hence the label patches corresponding to similar feature
descriptors may not be perfectly aligned, especially for label patterns with
detailed label transition (e.g., a lamp post with a sky background). This
problem is illustrated in Figure 1.1

Fig. 1: Illustration of the misalignment
problem. A patch with lamp post is
queried in the training set. Several can-
didates with similar feature descriptors
are retrieved; although all candidates
contain the lamp post in the sky, but
they are not well aligned. Each individ-
ual pixel gets most votes for sky back-
ground, and the lamp post structure is
lost in the final output label. We can re-
solve this issue by using the label patch
descriptors which is robust to small ge-
ometric transformation.

Building upon local label descrip-
tors, we cast the semantic image la-
beling as a convex optimization prob-
lem, as illustrated in Figure 2. Given
an input image, we solve for a la-
bel map whose local label descrip-
tors can be approximated as a sparse
convex combination of exemplar la-
bel descriptors in the training data,
where the sparsity is regularized by
the similarity measured between the
local feature descriptor of the input
image and that of the exemplars in
the training data set. Since the joint
space of feature descriptor and label
descriptor is huge, we propose an it-
erative approximate method to op-
timize the proposed objective func-
tion. We also demonstrate that low-
level image over-segmentation can be
incorporated into our formulation to
further improve the solution. In sum-
mary, this paper makes the following
contributions:

– We introduce the concept of local label descriptor and show its effectiveness
in semantic image labeling.

– Based on the local label descriptor, we formulate the semantic image label-
ing as a convex optimization problem and propose a continuous optimization
procedure that is less prone to local minimum than the previous discrete
greedy search [1]. Our formulation can incorporate low-level image segmen-
tation that is often used in the literature.

1 This problem is essentially an aliasing problem in sampling the training patches. If
we could afford to store all possible training patches at the highest sampling density
with respect to various geometric transformation, this problem might be alleviated.
However, it may not be practical to do so; very often in practice, we face a budget of
limited computational resources. Therefore, it is beneficial to have a general solution
to this problem.



Local Label Descriptor for Example based Semantic Image Labeling 3

– Under our new problem formulation, we show that it is possible to use the
intermediate label estimation to update label prediction exemplars and im-
prove the accuracy of final label estimation.

We evaluate the idea of local label descriptor and our algorithm on CamVid [2]
and Barcelona [3] datasets and show that they improve the performance of the
baseline algorithm [1]. As the structured label prediction is a rather unexploited
topic in computer vision, we wish our idea and formulation may provoke further
studies on the topic.

Fig. 2: A diagram illustrating our formulation of semantic image labeling using local
label descriptors. Each local label descriptor is a concatenation of label histograms for
each cell in a patch. Because computing the histogram over a cell can be viewed as a
box filtering whose support has the same size as the cell, our formulation can be viewed
as a label descriptor deconvolution process: given the predicted local label descriptors,
we seek to restore a per-pixel label map.

2 Related Work
One proven approach to image labeling is by optimizing a Conditional Random
Field (CRF). Traditional CRF models [4, 5] consist of unary terms and pairwise
terms. The unary terms measure the likelihood of associating a pixel with a par-
ticular class label while the pairwise terms regularize neighboring pixels taking
different labels. Although the pairwise terms have limited power to express long
range contextual information, several variants of CRF have been proposed to
address this issue. For example, Kohli et al. [6] propose robust high order poten-
tials for enforcing label consistency. Galleguillos et al. [7] and Ladický et al. [8]
propose to model co-occurrence using CRF. Gonfaus et al. [9] propose harmony
potentials to allow for different labels to appear in one region at different scales.
Several other works also in this endeavor include [10–13].

Another approach to image labeling is based on the idea of scene alignment,
a.k.a. non-parametric scene parsing. This idea was first proposed in the seminal
work by Russell et al. [14], in which an input image is matched in a set of
training images with labels. The labels of the retrieved images are transferred to
the input image. In [15], Liu et al. used SIFT flow to transfer per-pixel labels.
SIFT flow is most effective when the spatial layout of objects is similar between
the input image and the retrieved images. To relax this requirement, Tighe and
Lazebnik [3] introduced a scalable approach that operates on super-pixels, which
is more efficient than [15] that operates on pixels.



4 Authors Suppressed Due to Excessive Length

The third approach is using Recursive Neural Networks (RNN) [16]. This
method requires more sophisticated training but the testing speed is very fast.
This method reports comparable results with [3]. While it has its biological
inspiration, the intuition behind this method is not as well understood than the
first two approaches.

Our method is most related to the work by Kontschieder et al. [1], in which
exemplar local label patches are retrieved using a random forest and a greedy
discrete search is used to produce a label map that has the most consensus
to the retrieved label patches. In our work, instead of using raw label patches
for structure prediction, we propose to use local label descriptors, which is more
robust to the label patch misalignment issue in label voting. Furthermore, instead
of directly solving for the hard label map, we propose to solve a label probability
map, which is formulated as a convex optimization problem. We show that a
continuous convex optimization is less likely to be stuck in local minimum and
thereby improves the accuracy of label estimation. Finally, we demonstrate that
low level over-segmentation can be incorporated in our formulation to reduce
the number of unknown variables and make the optimization more efficient.

Our work also takes much inspiration from the work by Huang et al. [17],
which proposes to use a global label descriptor to select scene-specific CRF
models to improve labeling accuracy. Our label descriptor is designed for local
image patches and we show that intermediate estimates of local label descriptors
can be used to update label structure prediction and thus improve the accuracy
of final label estimates.

3 Problem Formulation

We state the semantic image labeling problem as follows. Assume a set of training
images, each with a label map. The label of a pixel indicates the class to which
the pixel belongs. Given a test image, the task is to compute its label map.

3.1 Notation and Representation

We use i as the index of a pixel in an image I and let K be the number of
classes and K = {1, · · · ,K} be the set of classes. We represent an image as a
set of overlapping cells; each cell is an array of C × C pixels. Let N and N be
the number and set of all cells, respectively, and n be the index of a cell in N .
Each patch is a consecutive array of B × B cells. Similarly, let M and M be
the number and set of all patches, respectively, and m be the index of a patch
in M. To avoid introducing too many symbols, we use the notation n ∈ m to
indicate that cell n is used in patch m. (The cell size C and patch size B, as well
as cell stride and patch stride, are parameters to set up the cells and patches,
which will be provided in Section 6). For each training image, given the cell and
patch structure, we extract a local image feature descriptor for each patch. HOG
is used in our implementation, which is a concatenation of gradient orientation
histograms computed over each cell in the patch. Each training image has a label
map; we use the cell and patch structure to extract a local label descriptor for



Local Label Descriptor for Example based Semantic Image Labeling 5

each patch.2 Specifically, we first compute a histogram of labels for each cell
in the patch and then concatenate the histograms to form the label descriptor
for the patch. In the end, the training data set is a set of exemplar pairs of
local feature descriptor and local label descriptor. Let the number of pairs be J ,
and (gj ,qj) be the j’th pair, where gj and qj are feature and label descriptors,
respectively.

3.2 The Objective Function
Given a testing image, we also set up the cell and patch structure. We seek a
label map whose local descriptors can be represented as a sparse combination
of exemplar label descriptors in the training set. Instead of solving for the label
map directly, we formulate the problem based on the the probability that one
pixel belongs to a particular class.

Specifically, let pi,k be the probability of pixel i belonging to class k; all pi,k’s
are non-negative and sum up to 1 over k for each i. Using pi = [pi,1; · · · ; pi,K ]
to represent the label probability vector for pixel i, we can evaluate the label
histogram over cell n as pn = 1

C2

∑
i∈n

pi. Then the label descriptor for patch m is

simply a concatenation of pn for all cell n in patch m. This label descriptor can
be expressed as a matrix vector product Amp, where p = [pi,k]i∈I,k∈K is the
vector of label probability values for all pixels and Am is a constant coefficient
matrix whose elements depend on the location of patch m in the image.

To design our objective function, we seek to express Amp as a sparse con-
vex combination of exemplar label descriptors in the training set. For patch m,
let {am,j}j∈J be its combination coefficients. We hope am,j is nonzero only if
the feature descriptor exemplar gj in the training set is similar to the feature
descriptor of patch m, fm. If we fix Amp, such {am,j}j∈J can be computed by
minimizing the following regularized objective function:

φm({am,j}j∈J ,p) = ‖Amp−
∑
j∈J

qjam,j‖2 + η
∑
j∈J

wm,jam,j

subject to am,j ≥ 0 and
∑
j∈J

am,j = 1

pi,k ≥ 0 and
∑
k∈K

pi,k = 1

(1)

where the weight wm,j encourages non-zero coefficients to be those whose cor-
responding feature descriptor exemplars gj are similar to the feature descriptor
fm of patch m. We set wm,j = ‖fm − gj‖.

We add Eq. (1) for all patches together to form our global objective function
Φ with respect to p and all combination coefficients {am,j}m∈M,j∈J

Φ({am,j}m∈M,j∈J ,p) =
∑
m

φm({am,j}j∈J ,p) + λ
∑
(i,i′)

vi,i′‖pi − pi′‖2 (2)

where ‖pi − pi′‖2 is a regularization that encourage label smoothness. The reg-
ularization is modulated by the weight vi,i′ , which measures the color similarity
between the adjacent pixel pair (i, i′).
2 The cell size and cell stride for label descriptors can be different from those used

for feature descriptors. Without loss of generality, we assume them to be the same
when describing our formulation.



6 Authors Suppressed Due to Excessive Length

3.3 Segmentation-based Representation
In Eq. (2), each pixel’s label probability vector is unknown, and the whole image
has a large number of unknowns to solve for. We can incorporate low-level seg-
mentation in our formulation to make the label inference more efficient. Given
an over-segmentation of an image with S segments, we assume all the pixels in
one segment share the same label probability vector. In this case, the segmen-
tation serves as a change of variables that reduces the number unknowns in the
optimization.

Specifically, let zs = [zs,1; · · · ; zs,K ] be the label probability vector for seg-
ment s and z = [z1; · · · ; zS ] be the concatenation of label probability vectors
of all segments. Then we have p = Sz, where S is a matrix whose element at
i’th row and s’th column is 1 if pixel i belongs to segment s, and 0 otherwise.
Substitute p = Sz into Eq. (2) gives the following objective function with much
fewer of unknowns.

Φseg({am,j}m∈M,j∈J , z) =
∑
m

φm({am,j}j∈J ,Sz) + λ
∑
(s,s′)

us,s′‖zs − zs′‖2 (3)

where us,s′ measures similarity between the average colors of adjacent segment
pair (s, s′).

4 Optimization
We first note that Eq. (3) is a convex function. Any downhill algorithm will
converge to a global optimum solution. However, the challenge in practice is
that the dimension of coefficients {am,j}m∈M,j∈J is very high, which is the
number of patches times the number of exemplars in the training set. Therefore,
it is impractical to optimize Eq. (3) with respect to all {am,j} simultaneously.

Instead, we propose an iterative approach to optimize Eq. (3). Our basic idea
is that, at each iteration, we select only a small number of exemplars for each
patch m and only optimize the corresponding coefficients while enforcing other
coefficients to be zero. We call the selected exemplars for patch m its candidate
set, denoted with Jm, (Jm ⊂ J ). Note that, in practice, the solution of the
coefficients {am}j∈Jm

for patch m is sparse; that is, the number of non-zeros
is much smaller than the size of the candidate set Jm. As a result, in the next
iteration, we can keep the exemplars that correspond to the non-zeros coefficients
and replace the ones with zero coefficients with new exemplars. Therefore, the
candidate set Jm for each patch m is evolving as iterations continue.

Using the candidate sets {Jm}m∈M for all patches, the objective function in
Eq. (3) becomes
Φ({am,j}m∈M,j∈Jm

, z) =
∑
m∈M

φm({am,j}j∈Jm
,Sz)+λ

∑
(s,s′)

us,s′‖zs−zs′‖2 (4)

We next discuss how to minimize Eq. (4) and then present our strategy to update
the candidate sets.
4.1 Minimizing Eq. (4)
The objective function in Eq. (4) is quadratic; its variables are non-negative
subject to the normalization constraints:

∀s ∈ S,
∑
k∈K

zs,k = 1 and ∀m ∈M,
∑
j∈Jm

am,j = 1 (5)



Local Label Descriptor for Example based Semantic Image Labeling 7

We could solve this constrained optimization problem using standard quadratic
programming with constraints. However, given the special nature of the con-
straints, we apply a multiplicative weight [18] type of algorithm. Specifically, we
use a change of variables to eliminate the constraints and update each variable
by multiplying it with a factor to minimize the objective function. Without loss
of generality, we first simplify the constraints in Eq. (5) to be a single normaliza-
tion constraint; multiple normalization constraints can be easily handled with a
simple modification. Since the objective function in Eq. (4) is quadratic, we can
write the problem as

min
x

{
Φ(x) = 1

2x
THx + bTx

}
subject to x ≥ 0,1Tx = 1

(6)

To satisfy the non-negative and normalization constraints on x, we param-
eterize x using y of the same dimension as x = exp(−y)

1T exp(−y) , where exp(−y) is
evaluated element-wise. Starting from an initial estimate x(0), we iteratively
update x(t+1) ∝ x(t) � exp(−∆y(t)), where � denotes element-wise product;
∆y(t) is obtained by minimizing arg min

∆y
= Φ(x(t) + ∂x

∂y∆y) without constraints,

where ∂x
∂y is the Jacobian matrix at y(t). It is straight forward to verify that the

Jacobian matrix is ∂x
∂y

= xxT − diag(x) (7)

Note that the computational cost of ∂x
∂y∆y = x(xT∆y) − diag(x)∆y is linear

(rather than quadratic) with respect to the dimension of x.
If the normalization constraint in Eq. (6) is defined for several non-overlapping

groups of elements in x, the algorithm remains the same, except that the param-
eterization is applied to each group separately and the Jacobian matrix ∂x

∂y has
a block-wise diagonal structure, with each diagonal block still having the special
form as in Eq. (7).

4.2 Evolving Candidate Sets
Once we update the segment label probability vectors z and coefficients for cur-
rent candidate sets {am,j}m∈M,j∈Jm

, we update the candidate sets {Jm}m∈M
for all patches in preparation for the next iteration. Specifically, we seek to re-
place the exemplars in Jm that correspond to zero coefficients am,j with new
exemplars. Several strategies exist. For example, for each patch m, we could swap
in a random set of exemplars in J and continue the optimization. However, this
strategy leads to slow convergence.

Our strategy is to effectively use the estimated label to guide the candidate
set update. Note that, because of the sparse regularization in Eq. (3), the solution
of {am,j}j∈Jm

is sparse for each patch m, which in turn makes the solution of
segment label probability zs sparse. If zs has only one (significantly) nonzero
element, it means segment s has a confident class label estimate. Otherwise,
there is uncertainty in labeling this segment. For example, in practice, we find
it is easy for a pixel on “sidewalk” to have non-zero label probabilities for both
“road” and “sidewalk”, because the local appearance of both road and sidewalk
are similar in many cases. We hope to find exemplars to help disambiguate the



8 Authors Suppressed Due to Excessive Length

estimate of zs in the future iteration. Our intuition, which is based on empirical
observation, is that nonzero components in zs indicate the potential labels.

Recall that for each patch, its label descriptor is a concatenation of label
histograms from all its cells. Since the cells in the patch is a B×B 2D array, the
label descriptor can be viewed as a volume data of size B ×B ×K, where K is
the number of classes. One slice of this volume with constant class index k can
be viewed as the local response map of this patch for class k. Let q be a local
label descriptor, we denote this slicing operation as Slice(q, k), which produces
a local response map for class k.

Given the current label descriptor estimation of the patch m, for each of its
non-zero local response maps, we look for label descriptor exemplars with similar
local response map of the same class k in the training data. We also require the
corresponding feature descriptor exemplars to be similar to the feature descriptor
of the patch. To balance these two requirements, we use the following heuristic
distance metric.

‖ Slice(Amp, k)
‖Slice(Amp, k)‖∞

− Slice(qj , k)‖+ η‖fm − gj‖ (8)

where p = Sz is the pixel label probability map, Amp is the current estimation
of label descriptor for patch m, ‖·‖∞ is the infinity norm that takes the maximum
value in the matrix. The response map of current label descriptor estimation is
normalized because the exemplar label descriptors are always very sparse, but
current label descriptor estimation may not be. Normalizing the response map
of the latter makes the two response maps more comparable.
4.3 Using Random Forests for Candidate Set Search
Given Eq. (8) as distance metric, we use a KNN algorithm to update the can-
didate set. Several approaches exist for this purpose, such as the various exact
KNN methods evaluated in [19] for image patch query, the approximated NN
methods such as LSH [20], and more recently, the PatchMatch [21]. Searching
for KNN is not a technical contribution in this paper. We use the random forest
as a data structure for approximate nearest neighbor search. The construction
of the random forests with structured labels follows [1], with slight modifications
made to adapt from hard labels to label descriptors; the details are provided in
our supplemental material.

Given a random forest, at each iteration, to update the candidate set Jm
for patch m, we randomly pick one tree from the forest, and pass the feature
descriptor of patch m from the root to the leaf. The exemplar feature descriptors
may not be very similar to the query feature descriptor. Then we backtrack by
moving up from the leaf to the root and traverse the sibling subtrees that are
not visited during the pass from the root to the leaf node. The backtracking
stops if a pre-determined number of exemplars are visited; 12000 is used in our
experiment. From these 12000 exemplars, we select the top candidates, measured
by Eq. (8), to update the candidate set for patch m.

5 Relationship to [1]
Kontschieder et al. [1] proposed the first method that uses random forests to
exploit structured labels. Our work is inspired by this seminal work, which can



Local Label Descriptor for Example based Semantic Image Labeling 9

be viewed as a special case of our formulation. In this section, we elaborate the
comparison and in the next section, we present experiment results to demon-
strate the advantage of our formulation. Specifically, [1] is a special case of our
formulation when:

– No segmentation is used (or each pixel is a segment)
– No label histogram descriptor is used (or the cell size over which the label

histogram is computed is one pixel)
– Elements of pi,k and am,j are constrained to be binary (pi,k, am,j ∈ {0, 1})
– η = 0, i.e., no sparse regularization that favors label patch predictions whose

feature descriptors are more similar to the query feature descriptor
– λ = 0, i.e., no smoothness regularization between adjacent pixels with similar

colors
– No candidate set evolution (fixed to the initial retrieval result)
– Discrete greedy search (rather than relaxed continuous convex optimization)

Specifically, when η = λ = 0 and elements of pi,k and am,j are constrained to be
binary and subject to the constraints that for each i,

∑
k pi,k = 1, and for each

m,
∑
j am,j = 1, our energy function is equivalent to

Φ({am,j}m∈M,j∈Jm ,p) =
∑
m

∑
j∈Jm

am,j‖Amp− qj‖2 (9)

To minimize this energy with respect to the binary variables, we note that
fixing p, for each m, am,j = 1 if qj is the closest to the current label estima-
tion Amp; and am,j = 0, otherwise. Fixing {am,j}, for each pixel i, its label
probability pi,k will be 1 for label k if the label k receives most votes at pixel
i from all the selected label patches that cover pixel i. This is exactly the label
inference algorithm presented in [1]. Our optimization can be viewed as a convex
relaxation of the discrete greedy search. In summary, our formulation has three
advantages over the previous work.

– Our convex optimization is less likely to be stuck in a local minimum. The
relaxed probability vectors contain labeling uncertainties, which can be ex-
ploited in the optimization.

– By combining the local label descriptors and segmentation based represen-
tation, our formulation is more robust to label patch misalignment, which
prevents fine label structures from being correctly labeled.

– The initial query of local feature descriptors is not guaranteed to obtain
correct label predictions if the local feature is ambiguous. Our formulation
allows the candidate set of label predictions to be updated during the opti-
mization, which may lead to higher chance of finding correct label predictions
after context information is propagated.

6 Experiments
We tested our method on two datasets, CamVid [2] and Barcelona [3]. In this
section we report a subset of the performance comparisons between our method
and the baseline method [1]. More evaluations are available in the sup-
plemental material. Our method extends [1] in the following aspects:



10 Authors Suppressed Due to Excessive Length

(1) Segmentation-based vs. Pixel-based
(2) Convex Continuous Optimization vs. Discrete Greedy Search
(3) Label Histogram Descriptor vs. Raw Label Patch
(4) Evolving Candidate Set vs. Freeze Initial Candidate Set

We tested both combinations of (1)+(2)+(3) and (1)+(2)+(3)+(4). Note
that if we do not apply any of these options, the method will be equivalent
to the baseline method. If discrete greedy search is evaluated, we initialize the
solution using the Simple Fusion as in [1]. If continuous optimization is evaluated,
we initialize all unknown variables using uniform probability distribution. After
continuous optimization, we generate the label map by first selecting the class
label with the dominant label probability and then refine the label map with the
discrete greedy search.

In all of our experiments, the training images and the testing images are
resized to be within a box of 320 × 240. Patches are sampled on a grid with
a stride of 6 on both training images and testing images. We extract extra
training patches from a pyramid with a factor of 0.8 to increase tolerance to
scale variation. Patches from the second scale and the third scale are sampled
with stride 5 and 4, respectively. The cell size C = 8 for both feature and label
descriptors in all scales; each patch has 24×24 pixels. To extract HOG features,
we set up 5×5 cells in a patch with a cell stride of 4. To extract label descriptors,
we set up 13× 13 cells centered within the patch with a cell stride of 1.

We train 6 random trees to form one forest in our experiment, and each
tree is trained on the whole training set. When constructing the tree, we do not
stop splitting a node until the maximal difference over all the components of the
descriptor has converged within a predefined threshold.

Given a testing image, we over-segment the image using MeanShift3 with
spatial and range bandwidth 2 and minimum area 12, so that one segment is very
likely to have only one label. To evaluate the results, we use three measurements
as in [3], including the global pixel-wise recall, per-class pixel-wise recall, and
the average intersection vs. union score used in PASCAL VOC challenges.

We implemented these methods in C++ with OpenCV, and run them on
a workstation with an Intel E5506 (2.13GHz) CPU. The computational cost
for one iteration depends on the number of segments and the number of query
patches. We achieve 0.5 second per iteration under our experiment setup.

6.1 Experiments on CamVid Dataset
The Cambridge-driving Labeled Video Database (CamVid) is a collection of
videos with object class semantic labels. It consists of over 10 minutes of high
quality 30Hz footage from four streams. One of the four streams (with prefix
0001TP) was taken during dusk, the other three were taken during daylight. In
total, there are 600 such images. We only used 11 commonly used classes from the
32 provided in the dataset. In our experiments on CamVid, we use 367 training
images as in [1], from which we sampled 1804172 patches for random forest

3 http://coewww.rutgers.edu/riul/research/code/EDISON/index.html



Local Label Descriptor for Example based Semantic Image Labeling 11

Input Image

Ground
Truth

Our Baseline

(1)+(2)+(3)

With
Evolution

Road Building Sky Sidewalk Tree Car Column

Fig. 3: Sample visual results of 3 images from experiments on CamVid dataset, in which
we compared the baseline method and our methods, with or without candidate set evo-
lution. The results show that low level segmentation helps to preserve class boundaries.
Local label descriptors helps to recover thin structures such as lamp posts. Also, our
continuous convex optimization is less prone to local minimum so that it produces
more consistent results. The last row indicates that our candidate set evolution helps
to resolve ambiguity between road and sidewalk that exists in the initial feature query.
Best viewed in color.

construction. The testing set for CamVid consists of 172 images from daylight
video frames. We set us,s′ in Eq. (4) as follows. If the L2 distance between the
average colors of two adjacent segments is less than a threshold, us,s′ = 1; 0,
otherwise. We set λ = 10 and η = 1.

In Table 1, we compare the performance of our methods with the baseline
method. Our methods score higher on overall accuracy using different criteria.
Besides, there are noticeable boosts on accuracy for most classes, for both large



12 Authors Suppressed Due to Excessive Length

Ground
Truth

Our Baseline

(1)+(2)+(3)

With
Evolution

Road Building Sky Sidewalk Tree Car Window

Fig. 4: Results on Barcelona dataset for baseline method and our methods, with and
without evolution, for 3 testing images, from left to right. Compared to the baseline
method, our method reveals more fine structures such as cars, and achieves better
consistency in large objects, i.e. buildings, road, and sky. Best viewed in color.

classes (e.g. sky, trees) and small classes (e.g. columns, cars). Visual comparisons
of several example results are shown in Figure 3.

Note that our implementation of the baseline method does not reproduce the
high accuracy reported in [1]. We believe that this is mainly due to the details
of tree constructions and image feature extraction, some of which are not clearly
documented in [1]. For efficiency reasons, we only enumerate 20 split hypothesis
for each node instead of 500 as in [1]. In our current implementation, we used
only HOG descriptors, but no color information as used in [1]. We sample testing
patches less densely (our test patch stride = 6 while theirs = 1).

However, we believe our comparison is fair because all the comparisons use
the same tree construction procedure, the same feature extraction, and the same
cell and patch setup. We emphasize our primary goal is to show the improvement
when label descriptors, convex relaxation, and candidate set evolution are used.
6.2 Experiments on Barcelona Dataset
We evaluated our methods on the Barcelona dataset, which is also used in [3].
This dataset originates from a subset of LabelMe, and is not as well labeled as



Local Label Descriptor for Example based Semantic Image Labeling 13

Method Global Avg(Class) Avg(Pascal)

Our Baseline 64.42 30.18 22.25
(1)+(2)+(3) 73.46 36.45 29.39

(1)+(2)+(3)+(4) 73.67 36.34 29.55
road building sky tree sidewalk bicyclist fence pedestrian car column

Our Baseline 98.16 70.72 55.07 56.24 9.90 0.00 0.07 0.02 11.52 0.05
(1)+(2)+(3) 97.57 79.31 88.24 66.29 11.09 0.00 0.10 1.03 17.06 3.76

(1)+(2)+(3)+(4) 98.03 80.73 88.86 61.52 12.49 0.07 0.05 1.09 16.40 4.13

Table 1: Evaluation of our methods on CamVid.

CamVid (e.g. a car may be labeled as building). Unlike CamVid in which all
the images come from video clips taken behind the windshield of a car, images
in Barcelona dataset vary in perspective and locations. The testing set consists
of a series of street view images from Barcelona. This dataset is originally la-
beled with 170 different semantic classes, from which we used 11 classes with
top occurrence in the testing set, i.e. SKY, BUILDING, TREE, CAR, ROAD,
PERSON, WINDOW, SIDEWALK, SIGN, WALL and MOTORBIKE. To form
the training set for the forest, we selected 346 images in which the above 11
semantic classes account for more than 94% of the labeled pixels. In Table 2,
we can see that our methods again show improvement over the baseline. Visual
comparison of several example results are provided in Figure 4.

Method Global Avg(Class) Avg(Pascal)

Our Baseline 57.29 23.89 16.37
(1)+(2)+(3) 63.73 26.52 19.59

(1)+(2)+(3)+(4) 63.73 26.22 19.51

Table 2: Evaluation on Barcelona Dataset.

7 Conclusions
In this paper we introduce the concept of local label descriptor, which is a con-
catenation of label histograms for each cell in a patch. Local label descriptors
alleviate the label patch misalignment issue in combining structured label pre-
dictions for semantic image labeling. Given an input image, we cast the semantic
image labeling as a convex optimization problem, in which we solve for a label
map whose local label descriptors can be approximated as a sparse convex com-
bination of exemplar label descriptors in the training data, while the sparsity is
regularized by the similarity measure between the local feature descriptor of the
input image and that of the exemplars in the training data set. Our new formu-
lation produces encouraging results on the Camvid and Barcelona datasets. In
the future, we would like to (1) engineer better feature representations and tree
construction procedures to have stronger baseline methods, (2) combine local
descriptors with global label descriptors in [17], and (3) design better strategies
for updating candidate sets.

Acknowledgement
This work is supported in part by NSF EFRI-BSBA-0937847, IIS-0845916, IIS-
0916441, a Sloan Research Fellowship, a Packard Fellowship for Science and
Engineering, and a gift donation from Eastman Kodak Company.



14 Authors Suppressed Due to Excessive Length

References

1. Kontschieder, P., Bulo, S., Bischof, H., Pelillo, M.: Structured class-labels in ran-
dom forests for semantic image labelling. In: ICCV. (2011)

2. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition
using structure from motion point clouds. In: ECCV. (2008)

3. Tighe, J., Lazebnik, S.: Superparsing: scalable nonparametric image parsing with
superpixels. In: ECCV. (2010)

4. He, X., Zemel, R., Carreira-Perpinan, M.: Multiscale conditional random fields for
image labeling. In: CVPR. (2004)

5. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost: Joint appearance,
shape and context modeling for multi-class object recognition and segmentation.
In: ECCV. (2006)

6. Kohli, P., Ladicky, L., Torr, P.: Robust higher order potentials for enforcing label
consistency. In: CVPR. (2008)

7. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-
occurrence, location and appearance. In: CVPR. (2008)

8. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph cut based inference with
co-occurrence statistics. In: ECCV. (2010)

9. Gonfaus, J., Boix, X., van de Weijer, J., Bagdanov, A., Serrat, J., Gonz andlez, J.:
Harmony potentials for joint classification and segmentation. In: CVPR. (2010)

10. Torralba, A., Murphy, K., Freeman, W., Rubin, M.: Context-based vision system
for place and object recognition. In: ICCV. (2003)

11. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects
in context. In: ICCV. (2007)

12. Toyoda, T., Hasegawa, O.: Random field model for integration of local information
and global information. TPAMI 30 (2008)

13. Ladický, L., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, where and
how many? combining object detectors and crfs. In: ECCV. (2010)

14. Russell, B.C., Torralba, A., Liu, C., Fergus, R., Freeman, W.T.: Object recognition
by scene alignment. In: NIPS. (2007)

15. Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing via label transfer.
TPAMI 33 (2011)

16. Socher, R., Lin, C.C.Y., Ng, A.Y., Manning, C.D.: Parsing natural scenes and
natural language with recursive neural networks. In: ICML. (2011)

17. Huang, Q., Han, M., Wu, B., Ioffe, S.: A hierarchical conditional random field
model for labeling and segmenting images of street scenes. In: CVPR. (2011)

18. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta
algorithm and applications. Technical report, Princeton University (2005)

19. Kumar, N., Zhang, L., Nayar, S.K.: What is a Good Nearest Neighbors Algorithm
for Finding Similar Patches in Images? (In: ECCV)

20. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. (Commun. ACM)

21. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A ran-
domized correspondence algorithm for structural image editing. ACM Transactions
on Graphics (Proc. SIGGRAPH) (2009)


