
10    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

FILE SYSTEMSA Study of Linux File System Evolution
L A N Y U E L U , A N D R E A C . A R P A C I - D U S S E A U , R E M Z I H . A R P A C I - D U S S E A U ,
A N D S H A N L U

Lanyue Lu is a PhD student
in Computer Sciences at the
University of Wisconsin—
Madison. His research interests
include file systems, storage

systems, and cloud computing.
ll@cs.wisc.edu

Andrea Arpaci-Dusseau is
a Professor and Associate
Chair of Computer Sciences at
the University of Wisconsin-
Madison. Andrea co-leads

a research group with her husband, Remzi
Arpaci-Dusseau, and has advised 13 students
through their PhD dissertations. She is currently
a UW-Madison Vilas Associate and received
the Carolyn Rosner “Excellent Educator” award;
she has served on the NSF CISE Advisory
Committee and as faculty Co-director of the
Women in Science and Engineering (WISE)
Residential Learning Community. 
dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Professor in the Computer
Sciences Department at the
University of Wisconsin—
Madison. He received his BS in

Computer Engineering summa cum laude from
the University of Michigan, Ann Arbor, and
MS and PhD in Computer Science from the
University of California, Berkeley, under advisor
David Patterson. Remzi co-leads a research
group with his wife, Andrea Arpaci-Dusseau.
Remzi also cares deeply about education and
has won the SACM Student Choice Professor
of the Year award four times and the Carolyn
Rosner “Excellent Educator” award once for his
efforts in teaching operating systems.
remzi@cs.wisc.edu

Shan Lu is an Assistant Professor in the Computer Sciences Department at the University
of Wisconsin—Madison. Her research interests include software reliability and computer
systems. shanlu@cs.wisc.edu

We conducted a comprehensive study of Linux file system evolu-
tion by analyzing eight years of changes across 5,079 patches,
deriving numerous new (and sometimes surprising) insights into

the file-system development process. Our observations should be useful to
file-system developers, systems researchers, and tool builders. Careful study
of these results should bring about a new generation of more robust, reliable,
and performant file systems.

A file system is not a static entity. Its code base constantly evolves through the addition of
new features, repair of uncovered bugs, and improvement of performance and reliability.
For young file systems, code sizes increase significantly over time. For example, ext4 nearly
doubled its code size from Linux 2.6.19 (when it was introduced) to Linux 2.6.39. Even for
ext3 (a stable file system), size increased more than 30% within eight years in Linux 2.6.

Patches describe how one version transforms to the next version and, thus, precisely rep-
resent the evolution of a file system code base. For open source file systems, every patch is
available online, enabling us carefully to analyze in great detail how file systems change over
time. A new type of “system archeology” is thus possible.

A comprehensive study of file system evolution can quantitatively answer many important
questions. For example, where does the complexity of such systems lie? What types of bugs
are dominant? Which performance techniques are utilized? Which reliability features exist?
Is there any similarity across different file systems?

Such a study is valuable for different communities. For file system developers, they can learn
from previous bug patterns to avoid repeating mistakes. They can improve existing designs
by borrowing popular performance and reliability techniques. For system researchers, this
study can help them identify real problems that plague existing systems, and match their
research to reality. For tool builders, our study provides thousands of bug patterns, bug con-
sequences, and performance and reliability techniques. These large-scale statistics can be
leveraged to build various useful tools.

We studied six major file systems of Linux, including XFS, ext4, Btrfs, ext3, ReiserFS,
and JFS. Readers may wonder why we only studied local file systems when distributed
file systems are becoming increasingly important. We note that local file systems remain
a critical component in modern storage, given that many recent distributed file systems,
such as Google GFS and Hadoop DFS, all replicate data objects (and associated metadata)
across local file systems. On smartphones and personal computers, most user data is also
managed by a local file system; for example, Google Android phones use ext4 and Apple’s
iOS devices use HFSX.

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  11

FILE SYSTEMS
A Study of Linux File System Evolution

Our study is based on manual patch inspection. We analyzed all
patches of six file systems in Linux 2.6 multiple times. We have
turned our manual analysis into an annotated data set, which
enables us quantitatively to evaluate and study file systems in
various aspects. We easily can analyze what types of patches
exist, what the most common bug patterns are, how file systems
reduce synchronization overhead, how file systems check for
metadata corruption, and other interesting properties.

We make the following major observations:

◆◆ Bugs are prevalent in both young and mature file systems.

◆◆ Among these bugs, semantic bugs dominate.

◆◆ Over time, the number of bugs does not diminish, but rather
remains a constant in a file system’s lifetime.

◆◆ Data corruption and system crashes are the most common bug
consequences.

◆◆ Metadata management has high bug density.

◆◆ Failure paths are particularly error-prone.

◆◆ The same performance techniques are used across file systems,
whereas reliability techniques are included in a more ad hoc
manner.

More results and analysis are discussed in our FAST ’13 paper
[3]. Another outcome of our work is an annotated data set of file-
system patches, which we make publicly available for further
study (at http://www.cs.wisc.edu/adsl/Traces/fs-patch).

Methodology
We chose a diverse set of file systems: XFS, ext4, Btrfs, ext3,
ReiserFS, and JFS. These file systems are developed by different
groups of people, use various techniques, and even represent a
range of maturity. For each file system, we conducted a com-
prehensive study of its evolution by examining all patches from
Linux 2.6.0 (Dec ’03) to 2.6.39 (May ’11). We manually analyzed
each patch to understand its purpose and functionality, examin-
ing 5,079 patches in total.

Each patch contains a patch header, a description body, and
source-code changes. The patch header is a high-level sum-
mary of the functionality of the patch (e.g., fixing a bug). The
body contains more detail, such as steps to reproduce the bug,
system configuration information, proposed solutions, and so
forth. Given these details and our knowledge of file systems,
we categorize each patch along a number of different axes, as
described later.

Listing 1 shows a real ext3 patch. We can infer from the header
that this patch fixes a null-pointer dereference bug. The body
explains the cause of the null-pointer dereference and the loca-
tion within the code. The patch also indicates that the bug was
detected with Coverity [1].

[PATCH] fix possible NULL pointer in fs/ext3/super.c.

In fs/ext3/super.c::ext3_get_journal() at line 1675

`journal’ can be NULL, but it is not handled right

(detect by Coverity’s checker).

- /fs/ext3/super.c

+++ /fs/ext3/super.c

@@ -1675,6 +1675,7 @@ journal_t *ext3_get_journal()

1 if (!journal){

2 printk(KERN_ERR “EXT3: Could not load ... “);

3 iput(journal_inode);

4 + return NULL;

5 }

6 journal->j_private = sb;

Listing 1: An ext3 patch

This patch is classified as a bug (type=bug). The size is 1
(size=1), as one line of code is added. From the related source
file (super.c), we infer the bug belongs to ext3’s superblock
management (data-structure=super). A null-pointer access is a
memory bug (pattern=memory,nullptr) and can lead to a crash
(consequence=crash).

Limitations: Our study is limited by the file systems we chose,
which may not reflect the characteristics of other file systems.
We only examined kernel patches included in Linux 2.6 mainline
versions, thus omitting patches for ext3, JFS, ReiserFS, and XFS
from Linux 2.4. As for bug representativeness, we only studied
the bugs reported and fixed in patches, which is a biased subset;
there may be (many) other bugs not yet reported.

Major Results
In this section, we present our major study results of bug and
performance patches. Our results are illustrated around several
key questions in the following sections.

What Do Patches Do?
We classified patches into five categories: bug fixes (bug), per-
formance improvements (performance), reliability enhance-
ments (reliability), new features (feature), and maintenance
and refactoring (maintenance). Each patch usually belongs to a
single category.

Figure 1(a) shows the number and relative percentages of patch
types for each file system. Note that even though file systems
exhibit significantly different levels of patch activity (shown
by the total number of patches), the percentage breakdowns of
patch types are relatively similar.

12    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

FILE SYSTEMS
A Study of Linux File System Evolution

Maintenance patches are the largest group across
all file systems (except Btrfs, a recent and not-yet-
stable file system). These patches include changes to
improve readability, simplify structure, and uti-
lize cleaner abstractions; in general, these patches
represent the necessary costs of keeping a complex
open-source system well-maintained. Because main-
tenance patches are relatively uninteresting, we do
not examine them further.

Bug patches have a significant presence, comprising
nearly 40% of patches across file systems. Not sur-
prisingly, Btrfs has a larger percentage of bug patches
than others; however, stable and mature file systems
(such as ext3) also have a sizable percentage of bug
patches, indicating that bug fixing is a constant in a
file system’s lifetime (see “Do Bugs Diminish Over
Time?” below).

Both performance and reliability patches occur as
well, although with less frequency than maintenance
and bug patches. They reveal a variety of the same
techniques used by different file systems. Finally,
feature patches account for a small percentage of total
patches; but, most of feature patches contain more lines
of code than other patches.

What Do Bugs Look Like?
We partitioned file-system bugs into four categories
based on their root causes. The four major categories
are incorrect design or implementation (semantic),
incorrect concurrent behaviors (concurrency), in-
correct handling of memory objects (memory), and
missing or wrong error code handling (error code).
The detailed classification is shown in Table 1. Fig-
ure 1(b) shows the total number and percentage of
each type of bug across file systems. There are about
1,800 bugs, providing a great opportunity to explore
bug patterns at scale.

Semantic bugs dominate other types (except for
ReiserFS). Most semantic bugs require file-system
domain knowledge to understand, detect, and fix;
generic bug-finding tools (e.g., Coverity [1]) may have
a hard time finding these bugs. An example of a logic
bug is shown in S1 of Table 2: find_group_other()
tries to find a block group for inode allocation, but
does not check all candidate groups; the result is a
possible ENOSPC error even when the file system has
free inodes.

Concurrency bugs account for about 20% of bugs on
average across file systems (except for ReiserFS),
providing a stark contrast to user-level software in

Figure 1: This figure shows the distribution of patch types and bug patterns. The
total number of patches is on top of each bar.

Table 1: Bug Pattern Classification. This table shows the classification and definition
of file-system bugs.

Patch Type (a) Bug Pattern (b)

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  13

FILE SYSTEMS
A Study of Linux File System Evolution

which fewer than 3% of bugs are concurrency-related [2]. Rei-
serFS stands out along these measures because of its transition,
in Linux 2.6.33, away from the Big Kernel Lock (BKL), which
introduced a large number of concurrency bugs. An example of
an atomicity violation bug in ext4 is shown in C1 of Table 2. For
this bug, when two CPUs simultaneously allocate blocks, there is
no protection for the i_cached_extent structure; this atomicity
violation could thus cause the wrong location on disk to be read
or written. A simple spin-lock resolves the bug.

There are also a fair number of memory-related bugs in all file
systems; their percentages are lower than that reported in user-
level software [2]. Many research and commercial tools have
been developed to detect memory bugs [1, 5], and some of them
are used to detect file-system bugs. An example of a null-pointer
dereference bug is shown in M1 of Table 2; a return statement is
missing, leading to a null-pointer dereference.

Error code bugs account for only 10% of total bugs. A missing
error code example is shown in E1 of Table 2. The routine posix_

acl_from_disk() could return an error code (line 2); however,
without error checking, acl is accessed and thus the kernel
crashes (line 3).

Do Bugs Diminish Over Time?
File systems mature from the initial development stage to the
stable stage over time, by applying bug-fixing and performance
and reliability patches. Various bug detection and testing tools
are also proposed to improve file-system stability. A natural

question arises: Do file-system bug patterns change over time
and, if so, in what way?

Overall, our results (Figure 2) show that the number of bugs does
not die down over time (even for stable file systems), but rather
ebbs and flows. A great example is XFS, which under constant

Figure 2: Bug Pattern Evolution. This figure shows the bug pattern evolu-
tion for each file system over all versions.

Table 2: Code Examples. This table shows the code examples of bug and performance patches.

14    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

FILE SYSTEMS
A Study of Linux File System Evolution

development goes through various cycles of higher and lower
numbers of bugs. A similar trend applies to ext3. For ext3, a
new block reservation algorithm was added at Linux 2.6.10, and
extended attributes in inodes were added at Linux 2.6.11. There-
fore, a surge of bug patches are related to these new features.
Similar things happened at 2.6.17, where a new multiple block
allocation algorithm was introduced. Then, many related bug
patches followed. At Linux 2.6.38, the spike is because ext3 fixed
multiple error-handling bugs.

New file systems, such as ext4 and Btrfs, have a high number of
bugs at the beginning of their lifetime. JFS and ReiserFS both
have relatively small developer and user bases compared to the
more active file systems XFS, ext4, and Btrfs. JFS does experi-
ence a decline in bug patches.

Within bugs, the relative percentage of semantic, concurrency,
memory, and error code bugs varies over time but does not con-
verge. Interesting exceptions occasionally arise (e.g., the BKL
removal from ReiserFS led to a large increase in concurrency
bugs in 2.6.33).

What Consequences Do Bugs Have?
As shown in Figure 1(b), there are a significant number of bugs
in file systems. But how serious are these file-system bugs?
We now categorize each bug by impact; such bug consequences

include severe ones (data corruption, system
crashes, unexpected errors, deadlocks, system
hangs, and resource leaks) and other wrong
behaviors.

Figure 3(a) shows the per-system break-
downs. If the patch mentions that the crash
also causes corruption, then we classify this
bug with multiple consequences. Data cor-
ruption is the most predominant consequence
(40%), even for well-tested and mature file
systems. Crashes account for the second larg-
est percentage (20%); most crashes are caused
by explicit calls to BUG() or Assert() as well as
null-pointer dereferences. Unexpected errors
and deadlocks occur quite frequently (just
below 10% each on average), whereas other bug
consequences arise less often. For example,
exhibiting the wrong behavior without more
serious consequences accounts for only 5-10%
of consequences in file systems, whereas it is
dominant in user applications [2].

Where Does Complexity Lie?
The code complexity of file systems is grow-
ing. The original FFS had only 1,200 lines of

code; modern systems are notably larger, including ext4 (29K
LOC), Btrfs (47K LOC), and XFS (64K LOC). Several funda-
mental questions are germane: How are the code and bugs
distributed? Does each logical component have an equal degree
of complexity?

File systems generally have similar logical components, such as
inodes, superblocks, and journals. To enable fair comparison,
we partition each file system into nine logical components: data
block allocation (balloc), directory management (dir), extent
mapping (extent), file read and write operations (file), inode
metadata (inode), transactional support (trans), superblock
metadata (super), generic tree procedures (e.g., insert an entry)
(tree) and other supporting components (other).

Figure 4 shows the percentage of bugs versus the percentage of
code for each of the logical components across all file systems
and versions. Within a plot, if a point is above the y = x line, it
means that a logical component (e.g., inodes) has more than its
expected share of bugs, hinting at its complexity; a point below
said line indicates a component (e.g., a tree) with relatively
few bugs per line of code, thus hinting at its relative ease of
implementation.

We make the following observations. First, for all file systems,
the file, inode, and super components have a high bug density.
The file component is high in bug density either due to bugs on

Figure 3: This figure displays the breakdown of bug consequences and performance patches. The
total number of consequences and patches is shown on top of each bar. A single bug may cause
multiple consequences; thus, the number of consequences instances is slightly higher than that of
bugs in Figure 1(b).

Bug Consequences (a) Performance Patches (b)

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  15

FILE SYSTEMS
A Study of Linux File System Evolution

the fsync path (ext3) or custom file I/O routines added for higher
performance (XFS, ext4, ReiserFS, JFS), particularly so for
XFS, which has a custom buffer cache and I/O manager for scal-
ability. The inode and superblock are core metadata structures
with rich and important information for files and file systems,
which are widely accessed and updated; thus, it is perhaps
unsurprising that a large number of bugs arise therein (e.g.,
forgetting to update a time field in an inode, or not properly using
a superblock configuration flag).

Second, transactional code represents a substantial percentage
of each code base (as shown by the relatively high x-axis values)
and, for most file systems, has a proportional amount of bugs.
This relationship holds for ext3 as well, even though ext3 uses
a separate journaling module (JBD); ext4 (with JBD2, adding a
transaction checksum to JBD) has a slightly lower percentage
of bugs because it was built upon a more stable JBD from Linux
2.6.19. In summary, transactions continue to be a double-edged
sword in file systems; whereas transactions improve data con-
sistency in the presence of crashes, they often add many bugs
due to their large code bases.

Third, the percentage of bugs in tree components of XFS, Btrfs,
ReiserFS, and JFS is surprisingly small compared to code size.

One reason may be the care taken to implement such trees (e.g.,
the tree code is the only portion of ReiserFS filled with asser-
tions). File systems should be encouraged to use appropriate data
structures, even if they are complex, because they do not induce
an inordinate amount of bugs.

Do Bugs Occur on Failure Paths?
Many bugs we found arose not in common-case code paths
but rather in more unusual fault-handling cases. File systems
need to handle a wide range of failures, including resource
allocation, I/O operations, silent data corruption, and even
incorrect system states. These failure paths have a unique code
style. Goto statements are frequently used. Error codes are
also propagated to indicate various failures detected. We now
quantify bug occurrences on failure paths; Table 3 presents our
accumulated results.

As we can see from the Table 3a, roughly a third of bugs are
introduced on failure paths across all file systems. Even mature
file systems such as ext3 and XFS make a significant number of
mistakes on these rarer code paths.

When we break it down by bug type in Table 3b, we see that
roughly a quarter of semantic bugs occur on failure paths. Once
a failure happens (e.g., an I/O fails), the file system needs to free
allocated disk resources and update related metadata properly;
however, it is easy to forget these updates, or to perform them
incorrectly. An example of a semantic bug on failure path is
shown in F1 of Table 2. When ext4 detects multiple resizers run
at the same time, it forgets to stop the journal to prevent poten-
tial data corruption.

A quarter of concurrency bugs arise on failure paths. Sometimes,
file systems forget to unlock locks, resulting in deadlock. More-
over, when file systems output errors to users, they sometimes
forget to unlock before calling blocking error-output functions
(deadlock). These types of mistakes rarely arise in user-level
code [4].

For memory bugs, most resource-leak bugs stem from forget-
ting to release allocated resources when I/O or other failures
happen. There are also numerous null-pointer dereference bugs
that incorrectly assume certain pointers are still valid after a

Figure 4: File System Code and Bug Correlation. This figure shows the
correlation between code and bugs. The x-axis shows the average per-
centage of code of each component (over all versions); the y-axis shows
the percentage of bugs of each component (over all versions).

Table 3: Failure Related Bugs. This table shows the number and percent-
age of the bugs related to failures in file systems.

16    J U N E 20 13  VO L . 3 8 N O. 3 	 www.usenix.org

FILE SYSTEMS
A Study of Linux File System Evolution

failure. An example of a memory bug on failure path is shown
in F2 of Table 2. When ext4 detects a corrupted inode, it forgets
to release the allocated buffer head. Finally (and obviously), all
error code bugs occur on failure paths (by definition).

Testing failure-handling paths to find all types of bugs is diffi-
cult. Most previous work has focused on memory resource leaks
and missing unlock and error codes; however, existing work can
only detect a small portion of failure-handling errors, especially
omitting a large amount of semantic bugs on failure paths. Our
results provide strong motivation for improving the quality of
failure-handling code in file systems.

What Performance Techniques Are Used?
Performance is critical for all file systems. Performance patches
are proposed to improve existing designs or implementations.
We partition these patches into six categories: inefficient usage
of synchronization methods (sync), smarter access strategies
(access), I/O scheduling improvement (sched), scale on-disk and
in-memory data structures (scale), data block allocation opti-
mization (locality), and other performance techniques (other).
Figure 3(b) shows the breakdown.

Synchronization-based performance improvements account
for more than a quarter of all performance patches across file
systems. Typical solutions used include removing a pair of
unnecessary locks, using finer-grained locking, and replacing
write locks with read/write locks. A sync patch is shown in P1
of Table 2; ext4_fiemap() uses write instead of read sema-
phores, limiting concurrency.

Access patches use smarter strategies to optimize performance,
including caching and work avoidance. For example, ext3 caches
metadata stats in memory, avoiding I/O. Figure 3(b) shows
access patches are popular. An example Btrfs access patch is
shown in P2 of Table 2; before searching for free blocks, the
patch first checks whether there is enough free space, avoiding
unnecessary work.

Sched patches improve I/O scheduling for better performance,
such as batching of writes, opportunistic readahead, and
avoiding unnecessary synchrony in I/O. As can be seen, sched
has a similar percentage compared to sync and access. Scale
patches utilize scalable on-disk and in-memory data struc-
tures, such as hash tables, trees, and per block-group struc-
tures. XFS has a large number of scale patches, as scalability
was always its priority.

Lessons Learned
Beyond the results, we also want to share several lessons we
learned from this project. First, a large-scale study of file sys-
tems is feasible and valuable. Finishing this study took us one
and half years. Even though the work is time-consuming, it is

still manageable. A similar study may be interesting for other OS
components, such as the virtual memory system.

Second, details matter. We found many interesting and impor-
tant details, which may inspire new research opportunities. For
example, once you know how file systems leak resources, you can
build a specialized tool to detect leaks more efficiently. Once you
know how file systems crash, you can improve current systems
to tolerate crashes more effectively.

Third, research should match reality. New tools are highly
desired for semantic bugs. More attention may be required to
make failure paths correct.

Finally, history repeats itself. We observed that similar mistakes
recur, both within a single file system and across different file
systems. We also observed that similar (but old) performance
and reliability techniques were utilized in new file systems. We
should pay more attention to system history, learn from it, and
use this knowledge to help build a correct, high-performance,
and robust next-generation file system from the beginning.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under the following grants: CNS-1218405,
CCF-0937959, CSR-1017518, CCF-1016924, as well as generous
support from NetApp, EMC, and Google.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or other institutions.

www.usenix.org	   J U N E 20 13  VO L . 3 8 N O. 3  17

FILE SYSTEMS
A Study of Linux File System Evolution

References
[1] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Ful-
ton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott
McPeak, and Dawson Engler, “A Few Billion Lines of Code
Later: Using Static Analysis to Find Bugs in the Real World,”
Communications of the ACM, February 2010.

[2] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan
Zhou, and Chengxiang Zhai, “Have Things Changed Now?—
An Empirical Study of Bug Characteristics in Modern Open
Source Software,” Workshop on Architectural and System
Support for Improving Software Dependability (ASID ’06),
San Jose, California, October 2006.

[3] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Shan Lu, “A Study of Linux File System Evolu-
tion,” Proceedings of the 11th USENIX Symposium on File
and Storage Technologies (FAST ’13), San Jose, California,
February 2013.

[4] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou,
“Learning from Mistakes—A Comprehensive Study on Real
World Concurrency Bug Characteristics,” Proceedings of the
13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
XIII), Seattle, Washington, March 2008.

[5] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and
Gilles Muller, “Documenting and Automating Collateral Evo-
lutions in Linux Device Drivers,” Proceedings of the EuroSys
Conference (EuroSys ’08), Glasgow, Scotland UK, March
2008.

SAVE THE DATE!
FEB. 17–20, 2014 • SANTA CLARA, CA

12th USENIX Conference
on File and Storage
Technologies

FAST ’14 brings together storage-system researchers and practitioners to explore new directions
in the design, implementation, evaluation, and deployment of storage systems. The conference will
consist of technical presentations, including refereed papers, Work-in-Progress (WiP) reports, poster
sessions, and tutorials.

Interested in participating? Check out the Call for Papers!

www.usenix.org/conference/fast14/cfp

