
Zone-based data striping
for cloud storage

L. Lu
D. Hildebrand

R. Tewari

Data centers in the Bcloud[will need to support a wide range of
applications, each with their own input/output (I/O) requirements.
Some applications perform small and random I/O operations,
whereas others demand high streaming bandwidth. In addition,
in order to reduce costs, cloud data centers will contain thousands
of commodity servers and network switches. Delivering high
performance with unreliable commodity hardware for this range of
workloads is a grand challenge. ZoneFS uses zone-based data
striping in data center infrastructures built from commodity network
switches. By striping data in zones, ZoneFS reduces network
congestion and avoids one or more storage servers from becoming
I/O bottlenecks. In this paper, we present the overall design and
implementation of ZoneFS and evaluate its key features with several
cloud-computing workloads.

Introduction
Cloud data centers will need to support thousands of
simultaneous users, each running jobs that may generate and
access petabytes of data with a variety of access patterns and
then sharing this data in a secure manner with other data
centers around the world [1]. Several specialized storage
systems are emerging that would force administrators to
divide the data center into several miniclusters [2–4].
In addition, while enterprise and web applications require
standard file system interfaces, many of these specialized
storage systems rely on specialized interfaces [5, 6]. With
applications demanding increasingly more compute,
bandwidth, and storage capacity, access to file data must
scale with the available hardware. Dividing the data center
into a series of specialized clusters limits scalability and can
quickly become unmanageable. What is needed is a single
storage solution that can offer scalability and performance for
virtual and nonvirtual analytic, web server, and database
applications.
Additionally, the use of commodity hardware suggests that

any storage solution must be robust with respect to failures.
Consider a typical compute-cloud architecture that presents
a virtualized environment. Applications run inside a virtual
machine (VM) and access data from a virtual logical unit
number (LUN), which is typically stored as a file, e.g.,

a VMWare**.vmdk file, in the storage system. If the virtual
LUN is stored on a single server, theVMmust run on that same
machine, creating possible Bhotspots.[Alternatively, if the
virtual LUN is stored on a separate network-attached storage
(NAS) server, then the VM can run on any server but must
transfer all of its data (9 80 GB) over the oversubscribed data
center network. A better solution would be to stripe all file
data across the servers connected to a single switch, allowing
VMs to run on any server without having to transfer data
across higher level switches. This enormously reduces both
the time and the complexity of configuring new VMs and
dynamically migrating them from one server to another.
Supercomputers have been operating at the limits of

modern compute and data-processing capabilities using a
massive and expensive single network switch. By forcing all
input/output (I/O) through a single switch, parallel file
systems and other NAS solutions are severely bandwidth
limited in cloud data centers that use inexpensive
commodity-based compute clusters and networking hardware
[7]. With each successive level in the data center switch
hierarchy, increasingly more compute nodes must share a
decreasing amount of available bandwidth to the parallel
file system.
To take better advantage of commodity hardware and

overcome switch limitations, Internet-scale file systems such
as the Hadoop** distributed file system (HDFS) and the
Google** file system have applications that use customized
interfaces to access data locally by randomly assigning large

�Copyright 2011 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

L. LU ET AL. 1 : 1IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

0018-8646/11/$5.00 B 2011 IBM

Digital Object Identifier: 10.1147/JRD.2011.2165681

data chunks directly on compute nodes. These file systems
centralize large (128 MB) chunks of contiguous data on
a single node. This can create data hotspots as compared to
parallel file systems that tend to use a 64-KB to 1-MB stripe
size. While triplication somewhat helps alleviate these
hotspots, it provides little benefit if an entire rack of
20–40 servers needs to access the same piece of data.
In addition, re-replicating the terabytes of data on a failed
node may require hours, if not days, increasing the
probability of data loss. Another challenge is that general
applications have difficulty using these file systems since they
do not support POSIX** (Portable Operating System Interface
[for UNIX**]), and remote data access via Network File
System (NFS) or Common Internet File System (CIFS) is
slow. In addition, the tight coupling of data and compute
processing ignores the required ratio of storage space to
compute power in a data center. Administrators cannot just
add storage or computing resources but must scale both in
tandem, which is particularly problematic for large data sets
that need to be accessible but are very infrequently accessed.
In this paper, we propose ZoneFS, which addresses the

storage limitations imposed by commodity local disk servers
and small commodity switches by providing the file system
with an understanding of the network infrastructure of the
data center. ZoneFS views the data center as a collection of
miniclusters, or zones, each with their own high-bandwidth
and fully connected switch. In this manner, ZoneFS uses
parallel I/O to effectively load balance I/O requests across
each zone, improving I/O performance over the entire range
of I/O workloads. ZoneFS focuses on the storage architecture
within a data center but can share data between data
centers by using other existing data transfer and caching
technologies [8].
ZoneFS is a novel POSIX-compliant parallel file system

that retains the reliability, scalability, and performance
benefits of standard parallel file systems while making use of
the commodity switch architecture of Internet-scale file
systems. ZoneFS distributes data across any number of
nodes, eliminating data hotspots. As the number of zones and
data sets increases, so does the aggregate I/O bandwidth.
Numerous applications can be launched on any node or
nodes in a zone, and all realize similar performanceVeven
if they all access the same data sets. This paper uses
benchmarks and applications to demonstrate that ZoneFS can
exceed the performance of both parallel and Internet-scale
file systems.
ZoneFS has a flexible data architecture that can support

directly attached disks, storage area networks (SANs), or
even SAS (serial-attached SCSI, or Small Computer System
Interface) disk arrays, each offering different levels of cost,
availability, and performance. For example, ZoneFS can use
a client-driven redundant array of independent disks (RAID)
across multiple storage nodes connected to SAS disk
arrays. This allows clients to fail without affecting data

availability and avoids the need to replicate data within a
zone. In addition, by allowing a separation between compute
and storage nodes, administrators can turn off underutilized
compute nodes for power conservation. In this paper, we
analyze and compare directly attached disk and fiber channel
disk array architectures.
The remainder of this paper is organized as follows: First,

we review the data center networking architecture and
discuss the limitations of using parallel and Internet scale file
systems. We then describe the ZoneFS architecture, our
Linux** prototype, and report the results of experiments
with microbenchmarks, as well as analytic and general
applications. Finally, we discuss related and future work, and
then summarize and conclude.

Background
To better understand the motivation for ZoneFS, let us
review current data center network topologies and how they
influence modern file system design.

Data center network topologies
Many data centers use multitier trees of network switches or
routers [9]. Compute servers are connected directly into the
leaves at the bottom tier, which consist of smaller Gigabit
Ethernet (GbE) switches, e.g., 48 ports. The upper tiers
aggregate the leaves to create a fully connected system.
While the upper tiers may use 10-GbE switches, the network
infrastructure is oversubscribed. Typical data centers are
oversubscribed by a factor of 8:1 or even larger. While it is
possible to eliminate oversubscription and use a ratio of
1:1, it is cost prohibitive for most data centers. This
oversubscription creates the interswitch bottleneck that
constrains data access in data centers.

Parallel file systems
Over the last decade, parallel file systems such as GPFS*
(General Parallel File System) [10], Panasas** [11],
and Lustre** [12] have achieved unprecedented scalability
in numbers of clients, servers, and disks. These
achievements require that a system scale every aspect of its
designVespecially the network switching fabric. Parallel file
systems increase aggregate I/O throughput by striping data
across possibly hundreds of storage nodes. This technique
can reduce the likelihood of any one storage node becoming
a bottleneck and offers scalable access to a single file.
One example is the IBM Blue Gene*/P Intrepid

supercomputer, which connects 40 racks of compute servers
to 640 I/O servers, which, in turn, are connected over a
Myri-10 GbE switch complex to 128 storage servers.
While cloud data centers can require such bandwidth, they
lack the budget for such switches, and so, it is doubtful that
parallel file systems will emerge as a popular solution.

1 : 2 L. LU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

Scale-out network attached storage
Scalable NAS systems [13–15] use standard filing protocols
such as NFS and CIFS to scale I/O throughput. Currently,
many users of scalable NAS systems focus on I/O operations
per second, e.g., creates per second, rather than sustained
I/O throughput [16]. Consequently, administrators can
oversubscribe their data center network infrastructure with
little consequence since file create and POSIX stat (get file
status) operations tend to require little raw bandwidth.
If these users start executing Bbig data[applications, they
would encounter the same network oversubscription
problems as with using parallel file systems. (The term big
data often refers to data sets so large that they become
challenging to store and process.)

Internet-scale distributed file systems
Users of big-data applications have realized that
POSIX-compliant file systems and their associated semantics
can be excessive for their specific requirements. This has
driven the creation of file systems that colocate compute
processing and data on a single node with directly attached
disk [5, 6]. However, while applications attempt to always
access data locally, this is not always possible in a
loaded system, and so, data continues to flow over the
oversubscribed network. In addition, their use of replication
and interrack access continue to place a load on the network
infrastructure.

ZoneFS
In this section, we introduce and describe ZoneFS. As shown
in Figure 1, ZoneFS is a novel parallel file system that
uses parallel data access in zones that have the highest
potential aggregate bandwidth.

Architecture
Figure 2 depicts the ZoneFS architecture, which organizes
data center compute and storage resources into one or more
zones, which consist of a leaf switch and its attached set of
compute and storage servers. The number of zones can grow
with the number of leaf switches in the data center, enabling
vast and incremental expansion of the data center. In addition,
ZoneFS uses a zone-mapping manager to maintain a
mapping of the files and directories stored within each zone.
Limiting the striping of a file to a switch and its connected

servers avoids many of the network oversubscription pitfalls
discussed earlier. For example, standalone applications,
Internet workloads, and moderate-sized parallel applications
can all experience the performance of a parallel file system
without the expensive switching hardware. It is also
important to note that ZoneFS supports any number of switch
ports and connected servers within a single zone. This gives
administrators the flexibility to create zones of a standard
size or create zones of varying sizes to handle different types
of workloads.

Zones
A zone consists of a switch and its attached servers. Servers
are logically divided into a set of compute servers and
storage servers, with file data and metadata striped across the
storage servers. Compute servers generate I/O requests to
the storage servers on behalf of applications. Storage servers
are attached to any number of storage mediums such as
direct-attached disks, solid-state drives, or a SAN. This
separation allows administrators to turn off underutilized
compute nodes for power conservation.
The logical division of storage and compute servers allows

significant flexibility in the composition of the zone. If every
server has access to storage, then every server can serve
data requests. On the other hand, all storage devices can be
consolidated in a few robust storage servers that are outfitted
with quad-GbE or 10-GbE cards, and connected to
commodity disk arrays. This allows compute-intensive data
centers to focus on a larger number of compute servers
per zone and Bstorage-heavy[data centers to increase the
number of storage servers per zone. Another option would be
to set up a small SAN for each zone, allowing direct data
access from every server.

Zone-mapping manager
For applications to take advantage of ZoneFS and avoid
interswitch bottlenecks, it is important that applications be
launched on one or more servers in the correct zone. Moving
compute processing to a zone is 20–40 times more flexible
(depending on how many servers are in one’s zone) than the
Internet-scale file system method of moving compute
operations to a particular server.
A set of zone-mapping managers maintain a mapping of

the files stored within each zone. A cluster job scheduler

Figure 1

ZoneFS in the data center. ZoneFS creates zones from the leaf network
switches in the data center. All written data is striped across the storage
nodes in the same zone, avoiding transferring data across the upper
level switch.

L. LU ET AL. 1 : 3IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

uses this service to launch applications on compute servers
within the correct zone. Once an application is running in a
zone, it accesses data on the local storage nodes.
ZoneFS scales metadata access by dividing the information

into two separate groups: file metadata and data location
information. File metadata is stored on storage servers within
the zone in which the file is located. ZoneFS clients or a
cluster job scheduler access and update data location
information, i.e., the mapping of files to zones, by accessing
a zone-mapping manager.
Note that applications running in one zone can access data

in any zone in the data center but are subject to the available
bandwidth between leaf switches. In addition, our current
design places files within a single zone, but we are
investigating whether we can stripe large chunks of a file in
separate zones.

High availability
While this paper focuses on the performance benefits of
ZoneFS, it is worth discussing how ZoneFS can handle disk,
node, and rack failures. While Internet-scale file systems
rely on triplication (mainly for cost reasons), the flexible
architecture of ZoneFS allows for several different
alternatives, depending on the storage subsystem
architecture. For example, to recover from disk failures, each
storage node can employ RAID across its local disks.

To recover from storage server failures, for SAN
architectures, any storage server can serve any piece of data.
Compute nodes and file system clients can simply reroute
their requests to other storage nodes within the zone. For local
disk architectures, ZoneFS can guard against failures by
using replication or client-driven (network) RAID 5/6 [11]
across the storage servers in an individual zone. In either case,
all storage nodes can participate in the reconstruction,
greatly decreasing time to recovery. Another option is to not
install any disks within a storage server at all but rather connect
the storage servers to just a bunch of disks (JBODs) or SAS
disk arrays. In this configuration, the disk-array interface
cables can be connected to multiple storage servers, allowing
failover from one storage server to another.
To recover from the failure or planned shutdown of a zone

(possibly due to a top-of-rack switch failure), one option is
for ZoneFS clients and storage servers to replicate data
between zones and update the zone-mapping manager with
new location information. This technique would force data to
pass through the oversubscribed upper level switches (just
like replication in HDFS). One way to avoid this would be
to connect JBODs or SAS disk-array interface cables to
storage servers in two zones. This allows a zone, with storage
nodes that are inaccessible because its networking facilities
are powered off, to continue serving I/O requests via the
storage nodes of another zone.

Figure 2

ZoneFS architecture. Each zone consists of a file-system metadata manager, a ZoneFS client on each compute server, and ZoneFS server modules,
which can exist on compute servers or on separate storage servers. All data created within a zone is striped across the storage nodes in the same zone.
Zone-mapping managers coordinate to track allocation of data to each individual zone. The cluster job scheduler launches applications in one or more
zones, depending on the location of the required data set. Example storage devices include serial advanced technology attachment and fiber channel.

1 : 4 L. LU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

ZoneFS implementation
We implemented a ZoneFS prototype that is layered upon the
IBM GPFS parallel file system. To support data-intensive
analytic workloads, we also modified Hadoop to support
GPFS and ZoneFS as primary file systems.

ZoneFS prototype
We implemented a prototype of ZoneFS in a layer on top of a
single running instance of GPFS for Linux. Storage nodes
can support either local disk or a shared SAN per zone.
To perform I/O within each zone, compute nodes stripe

data across only their local storage nodes. To perform direct
and parallel I/O to the storage nodes in a different zone,
compute nodes must Bmount[the storage nodes from each
remote zone. ZoneFS clients can access data in other zones
by first contacting the remote zone metadata manager to
determine the storage nodes of the zone. The ZoneFS client
can then use parallel I/O to access the remote file. While
these clients are subject to interswitch bottleneck, they
prevent storage hotspots by balancing requests across all
available storage nodes.
The zone-mapping manager maintains mappings of all

files and directories stored in each zone, assigning a Blocal[
or Bremote[attribute to directories, depending on the zone in
which they are located. To assign jobs to specific zones,
we implemented a job scheduler that works with both
message passing interface (MPI) and Hadoop. The job
scheduler uses the zone-mapping manager to assign jobs to
zones based on the pathname prefix of the required data for
the job. Within each zone, the specific compute nodes that are
utilized depend on many factors, e.g., the current number of
running jobs and central processing unit (CPU) utilization.
Currently, our prototype evenly load-balances jobs across all
nodes and maps directory trees to zones, which drastically
reduces the number of application mapping requests. Failure
recovery relies on the fault tolerance mechanisms of GPFS and
the storage controllers.
Our implementation of ZoneFS is separate from the file

system and is compatible with other parallel file systems
that can be run on commodity hardware and utilize
direct-attached disks or a SAN. It is interesting to note that
ZoneFS does not require all zones to use the same file system
across its storage nodes. Heterogeneous data centers that
use multiple file system across their compute clusters can use
ZoneFS to build a single namespace and allocate jobs across
all available file systems.

Hadoop-GPFS plug-in layer
In order for Hadoop to support a file system, it must be able
to determine all available storage nodes and their associated
data blocks. To support GPFS and ZoneFS, we made use
of the Hadoop abstract file system application programming
interface to implement Hadoop-GPFS and Hadoop-ZoneFS
plug-ins. Hadoop uses these plug-ins to determine the

optimal server to utilize for each data block. Our GPFS and
ZoneFS plug-ins intercept file system data block requests and
determine the node on which to launch a map/reduce job.
For GPFS, the plug-in returns a random node from any
zones, which works because data blocks are striped across all
storage nodes in the data center. For ZoneFS, the plug-in uses
the zone-mapping manager to return a random node in the
zone that contains the requested data.

Evaluation
In this section, we evaluate ZoneFS, GPFS, and HDFS under
typical data center workloads and cluster configurations.
We first compare the I/O scalability and performance of GPFS
and ZoneFS using the IORmicrobenchmark. Next, we analyze
file system performance with large I/O requests using three
Hadoop applications.We then use both a microbenchmark and
a Hadoop application to investigate the ability of these file
systems to provide predictable performance, regardless of how
data is striped across the storage nodes. Finally, we analyze
small- and medium-sized I/O request performance with an
image conversion cloud-computing application.

Experimental setup
In our experiments, we compare ZoneFS with GPFS and the
Hadoop DFS. In addition, with GPFS and ZoneFS, we use
both a SAN, which is used by many parallel file systems,
and a local disk storage configuration, which is used by many
data centers.
Our experiments compare the following configurations:

1) HDFS (Hadoop DFS with local disks); 2) GPFS Local
(standard GPFS with local disks); 3) GPFS SAN (standard
GPFS with SAN); 4) ZoneFS Local (switch-aware GPFS
with local disks), and 5) ZoneFS SAN (switch-aware GPFS
with SAN).
We use Hadoop 0.20.0 with a block size of 64 MB.

Both GPFS and ZoneFS use a stripe size of 1 MB. Write
experiments are complete when all data is on disk. Read
experiments use an empty data cache.
All experiments are conducted on a 16-node cluster,

with eight nodes on each of two racks. Three Netgear**
gigabit switches are used to connect nodes within each rack
and the two racks together. A GbE link connects the leaf
switches to the parent switch. Each node is equipped with
dual 3-GHz Intel Xeon** processors, 4 GB of memory, and a
local disk that runs Red Hat** Enterprise Linux 5.2.
All nodes have access to a shared fiber channel SAN, which
comprises a 16-port fiber channel switch connected to an
IBM DS4700 storage controller. Each node has five
hard drives using RAID5. For local disk configurations,
nodes can directly access data on their local disks but must
communicate with other nodes for access to their data.
For SAN configurations, each rack is allocated a set of devices
and cannot directly access devices on the other rack, which
must be done through the upper layer switch.

L. LU ET AL. 1 : 5IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

Scalability: GPFS versus ZoneFS
This section compares scalability of standard GPFS, which
stripes files across every node on both racks, and ZoneFS,
which stripes files only within a zone. We use the IOR 2.10.1
benchmark [17] to read and write separate 2-GB files.

Local and cross-rack performance
We first motivate the design of ZoneFS by comparing the
performance with respect to accessing files solely within a
single rack versus across racks. As expected with GPFS,
striping files across multiple racks bounds I/O performance
by the upper level gigabit switchVincreasing the number of
nodes does not increase the read or write I/O throughput
beyond 1 Gb/s (gigabits per second). When striping data
within a single rack, GPFS saturates the available read
bandwidth of 600 MB/s (megabytes per second) and the
available write bandwidth of 275 MB/s.

Cluster performance
Now that we understand the baseline interrack and intrarack
I/O performance of GPFS, we compare ZoneFS and GPFS
on the whole cluster. With ZoneFS striping data within
each individual rack, ZoneFS continues to saturate the
available storage bandwidth. GPFS reads and writes data
from both the local and remote rack. As such, it can
perform fast I/O within the rack but is limited by the
interswitch network bandwidth for data blocks on the
remote rack. Consequently, it realizes a maximum read
bandwidth of 425 MB/s and a maximum write bandwidth
of 175 MB/s.

Analytics workloads
As data-intensive applications are growing in popularity,
any file system for the data center must excel for these
workloads. Our goal is to demonstrate that ZoneFS can
outperform GPFS and match the runtime performance of
HDFS, which is the file system built specifically for Hadoop.
We choose the Hadoop workload Grep, with each active
node accessing a separate 1-GB file.
For these experiments, we recreate the 10 : 1 network

oversubscription bottlenecks in large data centers by scaling
down the entire system, using only eight nodes per rack,
a 1-GbE rack switch, and a 100-Mb/s (megabits per second)
interswitch network link [9]. We find that ZoneFS can make
use of switch awareness to achieve similar performance as
HDFS, which uses node awareness. In addition, this
experiment demonstrates that the specialization of HDFS,
while possibly simplifying its implementation, seems to limit
the range of applications HDFS can support and not increase
its performance. On the other hand, GPFS, which stripes
data across multiple racks, has poor performance due to the
interswitch bottleneck.

Grep
The Grep workload searches for an input pattern within a set
of data files and is, therefore, CPU- and read-intensive.
Grep results are shown in Figure 3. GPFS execution time
increases linearly with the number of nodes since, as more
nodes read data, the interswitch network traffic also
increases. With four nodes, the execution time of GPFS SAN
is twice that of ZoneFS SAN and 1.67 times that of HDFS.
For 16 nodes, GPFS SAN execution times surge to
4.24 times that of ZoneFS and 4.83 times that of HDFS. This
clearly shows that standard GPFS suffers from interswitch
network bottleneck due to the wide stripe across racks.
ZoneFS SAN and HDFS experience similar execution times,
whereas ZoneFS Local runtime increases slightly as the
number of nodes increases (due to increased packet loss in
our Netgear switch).
Next, we execute a strong scaling Grep workload of eight

1-GB data files. All data is created on a single node, and all
nodes are in a single rack. Figure 4 demonstrates how
ZoneFS can utilize the additional nodes to analyze the 8-GB
data set, with execution time dropping almost linearly with
the number of nodes. HDFS again suffers from the single
node bottleneck and is unable to use additional compute
resources to reduce execution time.

General applications
With the increasing popularity of cloud-computing services
such as Amazon EC2, successfully handling of traditional
applications is critical. A well-known example is the
New York Times, which used 100 EC2 virtual machine
instances to convert 11 million articles to portable document
format [18]. In this section, we analyze the I/O performance

Figure 3

HadoopGrep read-intensive application. ZoneFS andHDFS have similar
runtimes, whereas GPFS continues to suffer from network switch
oversubscription.

1 : 6 L. LU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

of applications that generate small and random I/O requests
across the file system. This I/O workload is typical of
many different applications including application
programming interface (OLTP), VMaccesses to virtual LUNs,
e.g., a VMWare.vmdk file, and many other applications.
To represent this workload, we use an image-conversion

benchmark to convert the encoding of 200 images (per node)
from a 1-MB JPG image to a 9-MB BMP image using the
Python Imaging Library. Image conversion, which consists
of sequential and random reads and writes to many small to
medium files, is similar to the workload exhibited by OLTP
and mail server applications. In addition, beyond the
well-known New York Times example, image conversion is a
very common operation for data centers that allow users to
upload images and movies, e.g., Facebook** and Google
Picasa**, since they are not stored in the format in which
they were uploaded.
We vary the number of nodes from 4 to 16 on two racks

and use a GbE intraswitch and interswitch network. To
conduct a fair comparison, the benchmark performs the same
three-step process for all three file systems. With HDFS,
we also ensure that the file conversion application executes
on the same node as its input images. HDFS has a specialized
local-disk architecture designed for Hadoop applications
and was not designed to support large numbers of files with a
size less than 64 or 128 MB. The Hadoop experiments
showed that the general local disk (and SAN) architecture of
ZoneFS could match the specialized architecture of HDFS.
These cloud workload experiments demonstrate the degree
to which this specialization has hindered HDFS for
general applications.

The single HDFS NameNode is overwhelmed with so
many small files and requires more than 300 seconds to
complete with four, eight, and sixteen nodes. Since each node
is reading data locally, HDFS can scale linearly with each
node added. GPFS requires 75, 100, and 190 seconds for
4, 8, and 16 nodes, respectively. While the fully distributed
architecture increases performance, the runtime increases
with the number of nodes (and images) since increasingly
more data must travel over the interswitch link bottleneck.
ZoneFS runtimes are 50, 72, and 120 seconds for 4, 8, and
16 nodes, respectively. While ZoneFS does not scale linearly
due to the GbE network, ZoneFS outperforms HDFS
because of its distributed architecture and it outperforms
GPFS by avoiding the interswitch bottleneck.

Discussions

Scalability
ZoneFS does not limit the number of racks and switches that
it can support. As the number of nodes per rack increases,
the available disk and network bandwidth will increase
proportionately. The ability to stripe data across all nodes
within a rack enables it to scale with available storage and
network bandwidth. This allows ZoneFS to avoid single
nodes and their associated disks from becoming bottlenecks
as Internet-scale file systems.

Efficiency
Our experiments show that the local disk architecture
performed only slightly worse than the SAN-per-rack
architecture for Hadoop workloads, because the efficiency
of Hadoop is relatively low [19], which means that Hadoop
cannot drive the I/O subsystem of each individual node.
For Grep, the maximal I/O throughput per node during
execution is 40 MB/s, which is much less than the peak
IO throughput of a storage node. As the efficiency of Hadoop
improves over time, ZoneFS will be able to keep pace with
performance improvements. In addition, with commodity
10-GbE switches emerging on the market, the performance
of the local disk architecture will improve and may exceed
that of a low-end SAN such as the one we used for
our experiments.

Flexibility
We used a SAN architecture to determine the potential
benefits of using a more expensive solution than local disk.
Interestingly, beyond the standard benefits of a SAN, e.g.,
storage virtualization, we found little performance benefits.
In addition, although all of our directly attached disk
experiments used the same nodes for both compute and
storage, we believe that separating compute and storage
nodes can bring similar high-availability benefits as a more
expensive SAN solution. ZoneFS clients can stripe across
robust storage nodes that are outfitted with more disk

Figure 4

Hotspot Grep workload of an 8-GB data set. By storing data on a single
node, HDFS cannot scale with increasing number of compute nodes,
whereas ZoneFS stripes data across all nodes in the zone and effectively
utilizes additional compute resources.

L. LU ET AL. 1 : 7IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

and network bandwidth (possibly using client-driven or
network RAID). In addition, the decoupling of storage and
compute nodes would allow better flexibility, turning off
underutilized compute nodes for power conservation.

Related work
Parallel file systems have been widely deployed in
high-performance computing (HPC) environments, including
IBM GPFS [10], Lustre [12], Parallel Virtual File System
(PVFS) [20], and Panasas [11], all of which rely on massive
aggregate bandwidth between separate compute and storage
nodes. Several of these file systems have specialized
interfaces that allow applications to specify per-file
striping parameters, e.g., stripe size and RAID number, but
they continue to lack knowledge of the data center
network topology.
On the other end of the spectrum, Internet-scale file

systems [5–21] and even some HPC targeted file systems
[22] all try to avoid the network altogether by attempting to
colocate compute processing with large chunks of data on
individual nodes. This movement away from parallel I/O has
many roots, including the existence of incast, the lack of
an affordable 10-GbE switching fabric, and an understanding
of how to limit striping to avoid oversubscribed switches.
Today, incast is an understood phenomenon that can be
avoided (to some extent) [23]. In addition, 10-GbE switches
are 50% cheaper than GbE switches when considering
per-megabyte-per-second throughput cost, and file systems
such as ZoneFS provide insights into how to control
file striping.
Investigation into understanding Hadoop-specific

enhancements to the PVFS [24] and GPFS [25] parallel file
systems has begun. These efforts focus on colocating
compute processing and data on a single node, i.e., making
parallel file systems act more like Internet-scale file systems.
By writing large chunks of data to the local disk, these
enhancements reduce the key load-distribution benefits of
parallel file systems.
Recent work in data center network design strives to

eliminate oversubscription to the core switching fabric
[26–28]. This work focuses on removing the interswitch
bottleneck and is therefore complementary to ZoneFS, which
focuses on improving I/O performance within a single
switch. Some of this research might enable wide striping of
data across all racks in a data center, but this approach
continues to have several drawbacks. First, while incast
[23, 29] can be mitigated, every additional switch between
the source and target presents an opportunity for buffer
overflow. Second, wide striping of data means that
performance will be limited to the slowest node on which the
data resides, which means that striping too wide may start to
reduce performance.
Job placement tools such as Tashi [30] and Dynamo [31]

seek to optimize the colocation of compute processing and

data through an understanding of the data placement within
the data center. To assign jobs across the data center,
Tashi uses a fine-grained data location service to track data
blocks and their associated server. ZoneFS is a candidate file
system for use with Tashi. In fact, ZoneFS simplifies and
possibly even increases the scalability of Tashi’s data
location service by mapping data to an entire zone.
Porter explores the advantages and limitations of

decoupling storage from computation in Hadoop [32]. Each
SuperDataNode (SDN) contains an order of magnitude more
disks than traditional Hadoop nodes. This proposal does
not support parallel file access across multiple SDNs; thus,
each SDN must be managed in isolation without a single
complete file system management framework. Consequently,
each SDN can become an I/O bottleneck for frequently
accessed data. ZoneFS avoids these bottlenecks by using
parallel I/O across all storage nodes within a zone.

Future work
ZoneFS targets oversubscribed hierarchical data center
network architectures and not supercomputer architectures.
As such, ZoneFS does not target HPC workloads since MPI
applications that share ghost cells on every iteration would
perform unacceptably slow in an oversubscribed data center.
However, ZoneFS does support efficient execution of HPC
workloads within a single zone, and it would be a very
interesting to investigate whether such HPC applications
could be modified to account for interswitch bottlenecks.
We are currently implementing ZoneFS in a layer above

the file system. This allows our prototype to work with any
parallel file system but at the cost of additional management
and setup overhead. Integrating directly with GPFS
(or any other parallel file system) would not only remove this
overhead but would also provide easier management
for administrators.
Exploring local-disk and SAN storage systems with a

wider variety of applications workloads such as web servers
and databases would allow us to provide more insight into
their true costs and benefits. For example, with local-disk
architectures, nodes have higher load since they must
both issue and serve data requests. This was not a factor
in our experiments but may become a challenge with
other workloads.
ZoneFS provides flexibility in recovering from failures.

To avoid replication within a zone, we would like to explore
the use of client-driven (network) RAID5/6 or declustered
RAID across the storage servers [11]. This could especially
provide a significant benefit to local-disk architectures in
which it is difficult to add additional disks without adding
additional servers.

Conclusion
This paper addresses the varied storage requirements of
applications running in cloud data centers. The inexpensive

1 : 8 L. LU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

multitier network infrastructures that utilize small switches at
the leaves create I/O bottlenecks that pose problems for
today’s file systems. ZoneFS address these bottlenecks by
combining the scalability, performance, ease of management,
and standard semantics of a parallel file system with the
cost effectiveness of an Internet-scale file system. Striping
data in zones with the highest bandwidth balances I/O
requests across all the disks on all servers within a zone.
For applications that operate on large data sets, we found
that ZoneFS could outperform GPFS and match or
outperform HDFS with identical hardware and storage
configurations.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.

**Trademark, service mark, or registered trademark of VMWare, Inc.,
Apache Software Foundation, Google, Inc., Institute of Electrical and
Electronics Engineers, The Open Group, Linus Torvalds, Panasas, Inc.,
Cluster File Systems, Inc., Netgear, Inc., Intel, Inc., Red Hat, Inc.,
Facebook, Inc., or Google, Inc., in the United States, other countries, or
both.

References
1. BBig data,[Nature (entire issue), vol. 455, no. 7209, pp. 1–136,

2008.
2. Apache Hadoop. [Online]. Available: http://hadoop.apache.org
3. J. Dean and S. Ghemawat, BMapReduce: Simplified data

processing on large clusters,[in Proc. USENIX Symp. Oper. Syst.
Design Implementation, San Francisco, CA, Dec. 2004, pp. 1–13.

4. D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, BFAWN: A fast array of wimpy nodes,[in
Proc. 22nd ACM Symp. Oper. Syst. Principles, Big Sky, MT,
2009, pp. 1–17.

5. S. Ghemawat, H. Gobioff, and S.-T. Leung, BThe Google file
system,[in Proc. ACM Symp. Oper. Syst. Principles, New York,
2003, pp. 137–150.

6. HDFS: Architecture and Design. [Online]. Available:
http://hadoop.apache.org/hdfs

7. L. A. Barroso and U. Holzle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
San Rafael, CA: Morgan and Claypool, 2009.

8. M. Eshel, R. Haskin, D. Hildebrand, M. Naik, F. Schmuck, and
R. Tewari, BPanache: A parallel file system cache for global
file access,[in Proc. USENIX Conf. File Storage Technol.,
San Jose, CA, 2010, pp. 155–168.

9. Cisco Systems, Inc., Cisco Data Center Infrastructure 2.5 Design
Guide. [Online]. Available: http://www.cisco.com/univercd/cc/td/
doc/solution/dcidg21.pdf

10. F. Schmuck and R. Haskin, BGPFS: A shared-disk file system for
large computing clusters,[in Proc. USENIX Conf. File Storage
Technol., Monterey, CA, 2002, pp. 231–244.

11. B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, BScalable performance of the Panasas
parallel file system,[in Proc. USENIX Conf. File Storage
Technol., San Jose, CA, 2008, pp. 17–33.

12. Lustre File System. [Online]. Available: wiki.lustre.org
13. S. Oehme, J. Deicke, J.-P. Akelbein, R. Sahlberg, A. Tridgell, and

R. L. Haskin, BIBM scale out file services: Reinventing
network-attached storage,[IBM J. Res. & Dev., vol. 52, no. 4/5,
pp. 319–328, Jul. 2008.

14. M. Eisler, P. Corbett, M. Kazar, D. Nydick, and C. Wagner, BData
ONTAP GX: A scalable storage cluster,[in Proc. USENIX Conf.
File Storage Technol., San Jose, CA, 2007, pp. 139–152.

15. Bluearc. [Online]. Available: http://www.bluearc.com
16. Specsfs2008. [Online]. Available: http://www.spec.org/sfs2008

17. IOR HPC Benchmark. [Online]. Available: http://sourceforge.net/
projects/ior-sio

18. D. Gottfrid, BSelf-service, prorated super computing fun![in
New York Times Blog, Nov. 1, 2007. [Online]. Available:
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-
super-computing-fun/

19. E. Anderson and J. Tucek, BEfficiency matters![ACM SIGOPS
Oper. Syst. Rev., vol. 44, no. 1, pp. 40–45, Jan. 2010.

20. W. B. Ligon, III, and R. B. Ross, BPVFS: Parallel virtual
file system,[in Beowulf Cluster Computing With Linux.
Cambridge, MA: MIT Press, 2001, pp. 391–430.

21. CloudStore. [Online]. Available: http://kosmosfs.sourceforge.net
22. O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi,

BGrid datafarm architecture for petascale data intensive
computing,[in Proc. IEEE/ACM Int. Symp. Cluster Comput. Grid,
Berlin, Germany, 2002, pp. 102–110.

23. V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller,
BSafe and effective fine-grained TCP retransmissions for datacenter
communication,[in Proc. ACM SIGCOMM, Barcelona, Spain,
2009, pp. 303–314.

24. W. Tantisiriroj, S. Patil, and G. Gibson, BCrossing the chasm:
Sneaking a parallel file system into Hadoop,[in Proc. Petascale
Data Storage Workshop (poster), Austin, TX, 2008.

25. R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha,
P. Sarkar, M. Shah, and R. Tewari, BCloud analytics: Do we
really need to reinvent the storage stack?[in Proc. USENIX
Workshop Hot Topics Cloud Comput., San Diego, CA, 2009,
pp. 1–5.

26. M. Al-Fares, A. Loukissas, and A. Vahdat, BA scalable,
commodity data center network architecture,[in Proc. ACM
SIGCOMM, Seattle, WA, 2008, pp. 63–74.

27. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, BVL2: A scalable
and flexible data center network,[in Proc. ACM SIGCOMM,
Barcelona, Spain, 2009, pp. 51–62.

28. Ethernet in the data center. [Online]. Available: http://www.
ethernetalliance.org

29. D. Nagle, D. Serenyi, and A. Matthews, BThe Panasas
ActiveScale storage cluster: Delivering scalable high bandwidth
storage,[in Proc. ACM/IEEE Conf. Supercomput., Pittsburgh, PA,
2004, p. 53.

30. M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser,
D. O’Hallaron, J. Cipar, E. Krevat, J. López, M. Stroucken, and
G. R. Ganger, BTashi: Location-aware cluster management,[in
Proc. Workshop Automated Control Datacenters Clouds,
Barcelona, Spain, 2009, pp. 1–6.

31. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, BDynamo: Amazon’s highly available key-value
store,[in Proc. ACM Symp. Oper. Syst. Principles, Stevenson,
WA, 2007, pp. 205–220.

32. G. Porter, BDecoupling storage and computation in Hadoop with
SuperDataNodes,[ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2,
pp. 41–46, Apr. 2010.

Received February 1, 2011; accepted for publication
March 13, 2011

Lanyue Lu University of Wisconsin-Madison, Department of
Computer Sciences, Madison, SI 53706 USA (ll@cs.wisc.edu).
Dr. Lu is a Ph.D. student in computer sciences at the University of
Wisconsin-Madison. He received a B.E. degree from the University of
Science and Technology of China in 2006 and an M.S. degree from
Rice University in 2009. His research interests include storage and
file systems.

L. LU ET AL. 1 : 9IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

Dean Hildebrand IBM Research Division, Almaden Research
Center, San Jose, CA 95120 USA (dhildeb@us.ibm.com).
Dr. Hildebrand is a Research Staff Member in the Distributed Storage
Systems department at the Almaden Research Center. He received a
B.Sc. degree in computer science from the University of British
Columbia in 1998 and M.S. and Ph.D. degrees in computer science
from the University of Michigan in 2003 and 2007, respectively. He is
the primary researcher of parallel network file system (pNFS), a
standard extension that provides direct storage access to a diversity of
parallel file systems while preserving operating system and hardware
platform independence.

Renu Tewari IBM Research Division, Almaden Research Center,
San Jose, CA 95120 USA (tewarir@us.ibm.com). In 1998,
Dr. Tewari became an IBM Research Sta Member at the IBM Thomas
J. Watson Research Center, soon after completing her Ph.D. at the
University of Texas at Austin. In 2002, she moved to the IBM Almaden
Research Center. Her areas of interest include all aspects of caching,
edge servers, and networked and parallel file systems.

1 : 10 L. LU ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 1 NOVEMBER/DECEMBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

