ZoneFS: Stripe Remodeling in Cloud Data Centers

Lanyue Lu
University of Wisconsin-Madison
ll@cs.wisc.edu

Abstract—Cloud data centers will contain tens of thousands
of servers with massive aggregate bandwidth requirements for
generating, accessing, and analyzing immense amounts of data.
The I/0 requirements of the myriad applications that these data
centers must support run the gamut from extreme IOPS intensive
to extreme bandwidth intensive. Delivering high performance
with unreliable commodity hardware for this range of workloads
is truly a grand challenge.

ZoneFS is a parallel file system that targets cloud data center
infrastructures built up of commodity network switches. ZoneFS
employs a highly-available and flexible storage architecture that
divides a cluster switch hierarchy into zones and stripes data
across servers and disks to maximize aggregate 1/O throughput
and avoid storage server hotspots. In this paper, we present
the overall design and implementation of ZoneFS and evaluate
its key features with several cloud computing workloads. Our
experimental results show that ZoneFS can improve application
runtime performance by up to 76% over standard parallel file
systems and by up to 85% over Internet-scale file systems.

I. INTRODUCTION

The emergence of cloud computing poses a grand challenge
for modern data centers [1]. Cloud data centers will need
to support thousands of simultaneous users, each running
jobs that may generate and access petabytes of data with a
variety of access patterns. Managing these massive data sets
is increasingly becoming difficult, as no single file system can
currently efficiently support every application. For example,
file systems that support “Big Data” applications[2], [3] cannot
support enterprise and web applications due to their lack
of standardized interfaces, and enterprise file systems cannot
scale to the degree required by “Big Data” applications.

As storage cloud architectures evolve to support more
and more types of applications, file data must be globally
accessible using standard interfaces. Carving up the data
center into several specialized clusters, each with their own
storage solution and access mechanisms, limits flexibility and
will become unmanageable as no single client is capable of
managing all the data. A single storage solution that can
deliver good performance for analytic, web server, database,
and virtual machines will be required. Moreover, cloud data
centers use commodity hardware, and so any storage solution
must be robust under failures. Consider a typical compute
cloud architecture that presents a virtualized environment.
Applications run inside a virtual machine (VM) and access
data from a virtual LUN, which is typically stored as a file,
e.g., VMware .vmmdk file, in the storage system. If the virtual
LUN is stored on a single server, the VM must run on that

978-1-4577-0428-4/11/$26.00 © 2011 IEEE

Dean Hildebrand
IBM Almaden Research Lab
dhildeb@us.ibm.com

Renu Tewari
IBM Almaden Research Lab
tewarir@us.ibm.com

same machine, creating possible hotspots. Alternatively, if
the virtual LUN is stored on a separate NAS server, then
the VM can run on any server, but must transfer all of its
data (greater than 80 GB) over the oversubscribed data center
network. A better solution would stripe all file data across
the servers connected to a single switch, allowing VMs to
run on any server without having to transfer data across
higher-level switches. This enormously simplifies both the
time and complexity of configuring new VMs and dynamically
migrating them from one server to another.

Parallel file systems that perform wide striping have enabled
supercomputers to push the limits of modern compute and
data processing capabilities. Unfortunately, this approach is
expensive and relies on a massive network switch. By forcing
all I/O through a single switch, parallel file systems and other
network attached storage solutions are severely bandwidth
limited in cloud data centers that use cheap commodity-based
compute clusters and networking hardware [4]. With each
successive level in the data center switch hierarchy, more
and more compute nodes must share a decreasing amount of
available bandwidth to the parallel file system.

To take better advantage of commodity hardware and work
around switch limitations, Internet scale file systems such
as HDFS [5] and GFS [6] have applications use customized
interfaces to access data locally by randomly assigning large
data chunks directly on compute nodes. These file systems
centralize large chunks (128 MBs) of contiguous data on a
single node. This can create data hotspots as compared with
parallel file systems that tend to use a 64K-1MB stripe size.
While triplication helps alleviates these hotspots somewhat, it
provides little benefit if an entire rack of 20 to 40 servers wants
to access the same piece of data. In addition, re-replicating the
terabytes of data on a failed node could take hours, if not days,
increasing the probability of data loss. Another issue is that
general applications have difficulty using these file systems
since they do not support POSIX and remote data access via
NFS or CIFS is slow. In addition, the tight coupling of data
and compute ignores the required ratio of storage space to
compute power in a data center. Administrators cannot just
add storage or computing resources, but must scale both in
tandem, which is particularly problematic for large data sets
that need to be accessible but are infrequently accessed.

A. Contributions

In this paper, we propose ZoneFS, which explores empow-
ering the file system with an understanding of the data center’s

network infrastructure. ZoneFS views the data center as a
collection of mini-clusters, or zones, each with their own high-
bandwidth and fully connected switch. In this manner, ZoneFS
uses parallel I/O to effectively load balance I/O requests across
each zone, improving I/O performance over the entire range
of I/O workloads.

ZoneFS is a novel POSIX-compliant parallel file system that
retains the reliability, scalability, and performance benefits of
standard parallel file systems while leveraging the commodity
switch architecture of Internet scale file systems. ZoneFS
distributes data across any number of nodes, eliminating data
“hotspots”. As the number of zones and data sets increases, so
does the aggregate I/O bandwidth. Numerous applications can
be launched on any number of nodes in a zone and all realize
similar performance—even if they all access the same data sets.
This paper uses benchmarks and applications to demonstrate
that ZoneFS can exceed the performance of both parallel and
Internet-scale file systems.

ZoneFS has a flexible data architecture that can support
directly-attached disks, storage area networks, or even SAS
disk arrays, with each offering different levels of cost, avail-
ability, and performance. For example, ZoneFS can use client-
driven RAID across multiple storage nodes connected to SAS
disk arrays. This allows clients to fail without affecting data
availability and avoids the need to replicate data within a
zone. In addition, by allowing a separation between compute
and storage nodes, administrators can turn off under-utilized
compute nodes for power conservation. In this paper, we
analyze and compare directly-attached disk and Fibre Channel
disk array architectures.

The remainder of this paper is organized as follows. Section
2 reviews the data center networking architecture and discusses
the limitations of using parallel and Internet scale file systems.
Sections 3 and 4 describe the ZoneFS architecture and our
Linux prototype. Section 5 reports the results of experiments
with micro-benchmarks as well as analytic and general appli-
cations. Sections 6 and 7 discuss related and future work. We
summarize and conclude in Section 8.

II. BACKGROUND

To better understand the motivation for ZoneFS, let’s review
current data center network topologies and how they impact
modern file system architectures.

A. Data Center Network Topologies

Many data centers use multi-tier trees of network switches
or routers [7]. As shown in Figure 1, servers connect directly
into the leaves at the bottom tier, which consist of smaller
GigE switches, e.g., 48 ports. The upper tiers aggregate the
leaves to create a fully connected system. While the upper
tiers may use 10 GigE switches, the network infrastructure is
oversubscribed. Typical data centers are oversubscribed by a
factor of 8:1 or even larger [7]. While it is possible to eliminate
oversubscription and use a ratio of 1:1, it is cost prohibitive
for most data centers. This oversubscription creates the inter-
switch bottleneck that constrains data access in data centers.

o

Fig. 1. Data Center Network Architecture. Example 2-tier net-
work architecture. Servers connect to leaf switches while upper tier
switches create a fully connected network.

B. Parallel File Systems

Over the last decade, parallel file systems such as GPFS [8],
Panasas [9], and Lustre [10], have achieved unprecedented
scalability in numbers of clients, servers, and disks. These
achievements require that a system scale every aspect of its
design—especially the network switching fabric. Parallel file
systems increase aggregate I/O throughput by striping data
across possibly hundreds of storage nodes. This technique can
reduce the likelihood of any one storage node becoming a
bottleneck and offers scalable access to a single file.

One example is the BlueGene/P Intrepid supercomputer
shown in Figure 2, which connects 40 racks of compute
servers to 640 I/O servers, which in turn are connected over a
Myri-10 GigE switch complex to 128 storage servers. While
cloud data centers can require such bandwidth, they lack the
budget for such switches, and so it is doubtful that parallel file
systems will emerge as a popular solution.

C. Scale-Out Network Attached Storage

Scalable NAS systems [11], [12], [13] use standard filing
protocols such as NFS and CIFS to scale I/O throughput.
Currently, many users of scalable NAS systems focus on IOPS,
e.g., creates per second, rather than sustained I/O throughput
[14]. Consequently, administrators can oversubscribe their data
center network infrastructure with little consequence, since file
create and stat operations tend to require little raw bandwidth.
If these users start executing “Big Data” applications, they
would encounter the same network oversubscription problems
as with using parallel file systems.

D. Internet Scale Distributed File Systems

Users of “Big Data” applications have realized that POSIX-
compliant file systems and their associated semantics can be
overkill for their specific requirements. This has driven the
creation of file systems that co-locate compute and data on
a single node with directly-attached disk [5], [6]. While local
disk access can increase I/O throughput beyond the bandwidth
of the network link, it limits the number of applications that
can access a single piece of data. In addition, co-locating
compute and data is not always possible in a loaded system,
and so inter-node data transfers continue to occur.

—_
_

40 K BG/P
Servers

Large Global
Collective
Network Switch

640 1/O Servers

8 8

s —— >
I
 — —’%_)&:j g

—>“—>

S~

128 Storage
Servers

Large 10 GigE
Switch

Fig. 2. Intrepid Supercomputer and GPFS. 40 BG/P racks redirect I/O requests over a specialized network to 640 I/O servers, which in

turn use a large 10 GigE switch to access 128 storage servers.

Data Nodes Data Nodes Name Node

Fig. 3. HDFS Architecture. Data is striped in large chunks (64-128
MB) across the disks directly attached to compute servers. A single
NameNode is used to manage file system metadata.

III. ZONEFS

In this section, we introduce and describe ZoneFS, a novel
parallel file system that uses parallel data access in zones that
have the highest potential aggregate bandwidth.

A. Architecture

Figure 4 depicts the ZoneFS architecture, which organizes
data center compute and storage resources into one or more
zones, which consist of a leaf switch and its attached set of
compute and storage servers. The number of zones can grow
with the number of leaf switches in the data center, enabling
vast and incremental expansion of the data center. In addition,
ZoneFS uses a zone mapping manager to maintain a mapping
of the files and directories stored within each zone.

Limiting the striping of a file to a switch and its connected
servers avoids many of the network oversubscription pitfalls
discussed earlier. For example, stand-alone applications, In-
ternet workloads, and moderate sized parallel applications
can all experience the performance of a parallel file system
without expensive switching hardware. In addition, ZoneFS
allows zones to contain any number of servers, allowing
administrators to create zones of varying sizes to handle
different types of workloads.

1) Zones: A zone consists of a switch and its attached
servers. Servers are logically divided into a set of compute
servers and storage servers, with file data and metadata striped
across the storage servers. Compute servers generate 1/O re-
quests to the storage servers on behalf of applications. Storage
servers are attached to any number of storage mediums such as
direct-attached disks, SSDs, or a SAN. This separation allows
administrators to turn off under-utilized compute nodes for
power conservation.

T /

=
kX

Comp ute TE=IE—— Zone

and EESe— Mapping
Storage Managers
Servers

H
SN=fs
SESYS

>

Zonel

Fig. 4. ZoneFS Architecture. The file system is made up of a set of
zones, each consisting of compute and storage nodes connected to a
switch. All data created within a zone is striped across the storage
nodes in the same zone. A data-to-switch mapping manager tracks
the allocation of data to each individual zone.

The logical division of storage and compute servers allows
a great deal of flexibility in the composition of the zone.
If every server has access to storage, then every server can
serve data requests. On the other hand, all storage devices
can be consolidated in a few robust storage servers that are
outfitted with quad-GigE or 10 GigE cards and connected to
commodity disk arrays. This allows compute intensive data
centers to focus on a greater number of compute servers per
zone and storage heavy data centers to increase the number of
storage servers per zone. Another option would be to set up
a small SAN for each zone, allowing direct data access from
every Server.

2) Zone Mapping Manager: For applications to take ad-
vantage of ZoneFS and avoid inter-switch bottlenecks, it is
important that applications are launched on one or more
servers in the correct zone. Moving compute to a zone is 20 to
40 times (depending on how many servers are in your zone)
more flexible than the Internet scale file system method of
moving compute to a particular server.

A set of zone mapping managers maintain a mapping of
the files stored within each zone. A cluster job scheduler uses
this service to launch applications on compute servers within
the correct zone. Once an application is running in a zone, it
accesses data on the local storage nodes.

ZoneFS scales metadata access by dividing the information
into two separate groups: file metadata and data location
information. File metadata is stored on storage servers within
the zone in which the file is located. ZoneFS clients or a cluster

35000 : : S :
IFS/ZoneFS-NoSharing —+—
IFS/ZoneFS-Sharing +
& 30000 PFS-Local B} :
o PFS-Separate %
S 25000 |
=]
Q.
S 20000 |
>
o
E 15000 |
[0}
©
g 10000 f
[}
(@]
< 5000
*
0 e !
0 1 2 3 4 5 6 7 8

Number of Racks

Fig. 5. Data Center Scalability. ZoneFS and Internet file systems
can scale throughput to data in separate racks, but all architectures
are constrained when accessing data on different racks. This is clearly
demonstrated as we increase the number of rack from 1 to 2. Each
rack has 40 nodes. We simulated up to 48 racks but show up to only
8 racks for clarity. The scaling trend is the same for the remaining
racks (until the upper-level switch runs out of ports).

2000 —r—r—r————————
ZoneFS/PFS-Local —+—
PFS-Separate
= IFS-2Replica ¥
o IFS-1Replica_» &t
s 1500 B
2 .,/
< %
()] N
=]
© 1000 f N
< N
= j
Q
® p
2
5 500 f B
2 e
<
: ””EI”~E|wE|ﬂ~EI~”EIH”E|wE|”wE|w‘EI””EIWE!”Ewa
7 8 91011121314151617181920

Number of Nodes

Fig. 6. Single Rack Scalability. While Internet file systems can scale
only with the number of replicas, ZoneFS and GPFS can scale with
the number of nodes on which data is striped. Each rack has 40
nodes, but for clarity up to only 20 nodes are shown since the trend
continues.

job scheduler access and update data location information, i.e.,
the mapping of files to zones, by accessing a zone mapping
manager.

Note that applications running in one zone can access
data in any zone in the data center, but are subject to the
available bandwidth between leaf switches. In addition, our
current design places files within a single zone, but we are
investigating whether we can stripe large chunks of a file in
separate zones.

B. Scalability Simulations

Validating the design of ZoneFS in a large data center would
be extremely beneficial, but any test infrastructure with fewer
than 1000 nodes would fail to prove the benefits of ZoneFS
beyond a reasonable doubt. Instead, we validate the design of

ZoneFS by simulating the scalability of different file system
architectures performing sequential I/O of a large file in a data
center. Our data center uses a 40 nodes per rack, a GigE top
of rack switch, a 10 GigE upper-level switch, and each node
contains a disk subsystem that can sustain 100 MBps.

Figure 5 validates the scalability of ZoneFS as we increase
the number of racks. For Internet file system (IFS) and
ZoneFS, the NoSharing throughput represents workloads that
do not transfer data between racks. For these workloads,
aggregate throughput scales linearly with the number of racks
in the data center, independent of the upper-level switches.
The Sharing experiments represent workloads that do transfer
data between racks, e.g., Reduce phase. For these workloads,
the type of file system architecture is less important, as all
architectures end up being constrained by the 10 GigE upper
level switch. Finally, PFS-Separate represents a parallel file
system that is connected to compute nodes through a dedicated
network switch as described in Figure 2. As the number of
racks increase, the bandwidth of this architecture is limited to
10 GigE by its dedicated switch.

For data access within a rack, Figure 6 shows the throughput
as we increase the number of nodes reading a single chunk
of data. With Internet file systems (IFS), the bandwidth to
the data scales with the number of replicas (or network links)
to the data. The PFS-Separate architecture does better, but is
constrained by the upper-level 10 GigE switch. ZoneFS and
PFS-Local are the only architectures that stripe the data across
all the nodes and therefore scale with the number of nodes in
the rack.

C. High Availability

While this paper focuses on the performance benefits of
ZoneFS, it is worth discussing how ZoneFS can handle disk,
node, and rack failures. While Internet-scale file systems
rely on triplication (mainly for cost reasons), the flexible
architecture of ZoneFS allows for several different alternatives
depending on the storage subsystem architecture.

To recover from disk failures, each storage node can employ
RAID across its local disks.

To recover from storage server failures, for SAN archi-
tectures, any storage server can serve any piece of data.
Compute nodes and file system clients can simply reroute
their requests to other storage nodes within the zone. For
local disk architectures, data can be either replicated across
a zone’s storage servers, or save disk space by using client-
driven (network) RAID 5/6 across the storage servers [9].
Either way, all storage nodes can participate in reconstruction,
greatly decreasing time to recovery. Another option is to not
install any disks within a storage server at all, but rather
connect the storage servers to JBODs or SAS disk arrays.
In this configuration, the disk array interface cables can be
connected to multiple storage servers, allowing failover from
one storage server to another.

To recover from the failure or planned shutdown of a zone
(possibly due to a top of rack switch failure), one option is for
ZoneFS clients and storage servers to replicate data between

Zone Mapping Manager

Zone A
Local: /gpfs-A

Remote: /gpfs-B

N

Compute Nodes

T Ae_ N[4p)| (€ App (A)

GPFs M App)Module] [GPFS M(" App JModule

GPFS ModuIe' |GPFS Module

Zone B
Local: /gpfs-B

Remote: /gpfs-A

I 11

Compute Nodes

S = e 2 = =
- w W - & W
GPFS-A GPFS-B

Fig. 7. ZoneFS Prototype. Zone mapping manager keeps track of
all files and directories stored in each zone. Compute nodes stripe
data within a zone for local data access and mount remote zones for
remote data access.

zones and update the zone mapping manager with new location
information. This technique would force data to pass through
the oversubscribed upper level switches (just like replication
in HDFS). One way to avoid this would be to connect JBODs
or SAS disk array interface cables to storage servers in two
zones. This allows storage nodes in one zone to handle /O
requests for data in another zone, even while their switch is
powered down.

IV. ZONEFS IMPLEMENTATION

We implemented a ZoneFS prototype that is layered upon
the IBM GPFS parallel file system. To support data-intensive
analytic workloads, we also modified Hadoop to support GPFS
and ZoneFS as primary file systems.

A. ZoneFS Prototype

As shown in Figure 7, we implemented a prototype of
ZoneFS in a layer on top of a single running instance of GPFS
for Linux. Storage nodes can support either local disk or a
shared SAN per zone.

To perform I/O within each zone, compute nodes stripe
data across only its local storage nodes. To perform direct and
parallel I/O to the storage nodes in a different zone, compute
nodes must “mount” the storage nodes from each remote zone.
For example, in Figure 7, there are two clusters: cluster A and
cluster B. To get a global view of all the files in the system,
each zone mounts both GPFS-A and GPFS-B with different
locality attributes. ZoneFS clients can access data in other
zones by first contacting the remote zone metadata manager
to determine the zone’s storage nodes. The ZoneFS client can
then use parallel I/O to access the remote file. While these
clients are subject to the inter-switch bottleneck, they prevent
storage hot spots by balancing requests across all available
storage nodes.

The zone mapping manager maintains mappings of all files
and directories stored in each zone, assigning a “local” or
“remote” attribute to directories depending on the zone in

(app | app | app | App |

Hadoop
ZoneFsS GPFS HDFS
Zone A Zone B
Local: /gpfs-A |[Local: /gpfs-B Zone A, Zone B Zone A, Zone B
Remote:/gpfs-B) Remote:/gpfs-A; Shared: /gpfs Shared: /hdfs
[Storage Nodes J

Fig. 8. Hadoop-GPFS Plug-in Layer. This layer supports GPFS
and ZoneFS as underlying file system in Hadoop by using Hadoop
abstract file system API.

which they are located. To assign jobs to specific zones, we
implemented a job scheduler that works with both MPI and
Hadoop. The job scheduler uses the zone mapping manager
to assign jobs to zones based on the pathname prefix of
the required data for the job. Within each zone, the specific
compute nodes that are utilized depend on many factors, e.g.,
current number of running jobs, CPU utilization. Currently,
our prototype evenly load balances jobs across all nodes. Our
prototype maps directory trees to zones, which drastically
reduces the number of application mapping requests.

Our implementation of ZoneFS is separate from the file
system and is compatible with other parallel file systems that
can be run on commodity hardware and utilize direct-attached
disks or a SAN. It is interesting to note that ZoneFS does
not require all zones to use the same file system across its
storage nodes. Heterogeneous data centers that use multiple
file system across their compute clusters can use ZoneFS to
build a single namespace and allocate jobs across all available
file systems.

B. Hadoop-GPFS Plug-in Layer

In order for Hadoop to support a file system, it must be able
to determine all available storage nodes and their associated
data blocks. To support GPFS and ZoneFS, we leveraged the
Hadoop abstract file system API to implement Hadoop-GPFS
and Hadoop-ZoneFS plug-ins. Hadoop uses these plug-ins to
determine the optimal server to utilize for each data block.

Our modified Hadoop architecture is shown in Figure 8.
Our GPFS and ZoneFS plug-ins intercept file system data
block requests and determine the node on which to launch
a map/reduce job. For GPFS, the plug-in returns a random
node from any zones, which works because data blocks are
striped across all storage nodes in the data center. For ZoneFS,
the plug-in uses the zone mapping manager to return a random
node in the zone that contains the requested data.

V. EVALUATION

In this section, we evaluate ZoneFS, GPFS, and HDFS
under typical data center workloads and cluster configurations.
We first compare the I/O scalability and performance of GPFS
and ZoneFS using the IOR microbenchmark. Next, we analyze
file system performance with large I/O requests using two
Hadoop applications. We then use both a microbenchmark

and a Hadoop application to investigate the ability of these
file systems to provide predictable performance regardless of
how data is laid out across the storage nodes. Finally, we
analyze small and medium sized I/O request performance with
an image conversion cloud computing application.

Note that ZoneFS targets oversubscribed hierarchical data
center network architectures, and as such we see supporting
HPC applications as future work.

A. Experimental Setup

In our experiments, we compare ZoneFS with both standard
GPFS and the Hadoop DFS. In addition, with GPFS and
ZoneFS we use both a SAN, which is used by many parallel
file systems, and a local disk storage configuration, which is
used by many data centers.

Our experiments compare the following configurations:

o HDFS: Hadoop DFS with local disks

e GPFS-Local: Standard GPFS with local disks

o GPFS-SAN: Standard GPFS with SAN

o ZoneFS-Local: Switch-Aware GPFS with local disks
o ZoneFS-SAN: Switch-Aware GPFS with SAN

We use Hadoop 0.20.0 with block size of 64MB. Both GPFS
and ZoneFS use a stripe size of IMB. Write experiments are
complete when all data is on disk. Read experiments use an
empty data cache.

All experiments are conducted on a 16-node cluster, with
8 nodes on each of 2 racks. Three Netgear gigabit switches
are used to connect nodes within each rack and the two
racks together. A GigE link connects the leaf switches to the
parent switch. Each node is equipped with dual 3 GHz Xeon
processors, 4 GB memory, and a local disk that runs Red Hat
Enterprise Linux 5.2. All nodes have access to a shared Fibre
Channel SAN, which is comprised of a 16-port FC switch
connected to an IBM DS4700 storage controller. Each node
has 5 hard drives using RAIDS5. For local disk configurations,
nodes can access data on their local disks directly, but must
communicate with other nodes for access to their data. For
SAN configurations, each rack is allocated a set of devices
and cannot directly access devices on the other rack, which
must be done through the upper-layer switch.

B. Scalability: GPFS VS ZoneFS

This section compares scalability of standard GPFS, which
stripes files across every node on both racks, and ZoneFS,
which stripes files only within a zone. We use the IOR 2.10.1
benchmark [15] to read and write separate 2GB files.

1) Local and Cross Rack Performance: We first motivate
the design of ZoneFS by comparing the performance of
accessing files solely within a single rack vs. across racks.
As expected, Figure 9 demonstrates that striping files across
multiple racks (Read Remote and Write Remote) bounds /O
performance by the upper level gigabit switch—increasing the
number of nodes does not increase the read or write I/O
throughput. GPFS-SAN (Read Local) saturates the available
storage bandwidth with only 2 nodes, demonstrating that a
better SAN could improve performance even further. For

write performance, GPFS-SAN (Write Local) saturates the
available bandwidth of the storage controller, achieving more
than double the cross rack write performance.

2) Cluster Performance: Now that we understand the base-
line inter- and intra-rack I/O performance of GPFS, we com-
pare ZoneFS and GPFS on the whole cluster. With ZoneFS
striping data within each individual rack, Figure 10 shows that
ZoneFS-SAN can continue to saturate the available storage
bandwidth. GPFS-SAN reads and writes data from both the
local and remote rack. As such, it can perform fast I/O
within the rack, but is limited by the inter-switch network
bandwidth for data blocks on the remote rack. Consequently,
its performance is between the baseline inter-rack and intra-
rack values.

C. Analytics Workloads

As data-intensive applications are growing in popularity, any
file system for the data center must excel for these workloads.
Our goal is to demonstrate that ZoneFS can outperform GPFS
and match the runtime performance of HDFS, the file system
built specifically for Hadoop. We choose two representative
Hadoop workloads: Teragen and Terasort. Each experiment
uses weak scaling with each active node accessing a separate
1 GB file.

For these experiments, we re-create the 10:1 network over-
subscription bottlenecks in large data centers by scaling down
the entire system, using only 8 nodes per rack, a GigE rack
switch, and a 100Mbps inter-switch network link [7].

We find that ZoneFS can leverage switch-awareness to
achieve similar performance as HDFS, which uses node
awareness. In addition, these experiments demonstrate that
the specialization of HDFS, while possibly simplifying its
implementation, seems to limit the range of applications HDFS
can support and not increase its performance. On the other
hand, GPFS, which stripes data across multiple racks, has poor
performance due to the inter-switch bottleneck.

1) Teragen: Teragen is a write-intensive workload that gen-
erates the input data sets for Terasort. Each data set contains
of a series of records, each consisting of a key, row id, and
filler.

Figure 11 shows the execution time of GPFS, ZoneFS, and
HDFS with the Teragen workload. With 16 nodes, GPFS-
SAN’s execution time is 1.70 times that of ZoneFS-SAN and
1.55 times that of HDFS respectively. ZoneFS and HDFS per-
formance is similar, as both can saturate the storage subsystem.
For ZoneFS, using a SAN improves performance by 8.5% over
HDEFS or ZoneFS-local disk since it can more evenly balance
write requests across all available storage devices.

2) Terasort: Terasort sorts the output data sets from Ter-
agen. It samples the keys of input data to get the partition
points, then launches jobs to perform a parallel merge sort.
Terasort is initially read-intensive as nodes read their input
data, but becomes write-intensive as nodes write intermediate
and merged results.

Terasort results are shown in Figure 12. Similar to the
Teragen results, GPFS incurs the inter-switch network bottle-

800

GPFS-SAN(Read Local) ——
700 GPFS-SAN(Write Local) ¥ 1
- GPFS-SAN(Read Remote) - -
o GPFS-SAN(Write Remote) - -
= 600 - ———__,
E. 500 |- 1
g
S 400 g
£
=
o 300 g 4
2
& 200 1
< 100? L T
o ‘
2 4 8
Number of nodes
Fig. 9. Cross-rack and Single-rack 1/0O performance. By

striping files across multiple racks, I/0 performance is limited
by the gigabit inter-rack link. By striping files within local
SAN, GPFS-SAN can scale with available SAN bandwidth.

GPFS-SAN =mmm
GPFS-Local m=xxxx
ZoneFS-SAN e=mmm
ZoneFS-Local ===z
HDFS wwzzza

1200

1000

800

600 -

Time (second)

ANANNNNRNNNNY

Number of nodes

Fig. 11. Hadoop Teragen write-intensive application.
ZoneF'S and HDF'S performance are similar as the number of
nodes increases. GPFES execution time increases as the number
of nodes increases due to striping across multiple racks.

ZoneFS-SAN —+—

700 | ZoneFS-Local
HDFS-r1 -

HDFS-r2

Aggregate Throughput (MB/s)

100

Number of nodes

Fig. 13. Hotspot read performance. When all data is located
on a single data node, HDFS-rl hits a single server bottleneck as
the number of nodes increases. With replication, HDFS-r2 increases
performance proportionally to the number of data copies.

neck for both read and write data access. The Terasort shuffle
phase generates inter-switch data transfers, which increases the
runtimes of both ZoneFS and HDFS as the number of nodes
increases. ZoneFS narrowly outperforms HDFS with either a
SAN or local disk.

D. Data Hotspots

The primary advantage of ZoneFS is data striping in hi-
erarchical network architectures, which allows independent
applications running within one or more zones in a data center

800

GPFS-SAN(Read) ——
ZoneFS-SAN(Read) - oo

GPFS-SAN(Write)
ZoneFS-SAN(Write)

700 -

600 4

500 - B

400 T E

300 - B

200 B G, :

Aggregate Throughput (MB/s)

Number of nodes
Fig. 10. Multi-rack I/O performance. Since ZoneFS stripes

data within each rack separately, it avoids the inter-switch
bottleneck and saturates the underlying storage subsystem.

1400

GPFS-SAN mmmm
GPFS-Local mxxxxx
ZoneFS-SAN ez
ZoneFS-Local ====3
HDFS wzzza

1200 -

1000 -

800

600

Time (second)

400 -

200 -

Number of nodes

Fig. 12. Hadoop Terasort application. Terasort exchanges
a lot of data between rack to merge sorted data sets, which
further constrains the available inter-rack bandwidth as the
number of nodes increases.

to have their I/O requests balanced across all the disks on
all servers within a zone. Fine-grained data striping prevents
hotspots from occurring by equally distributing I/O requests
across multiple servers and their associated disks. With HDFS,
applications write data to the local disk, which is accessible via
a single node. This node can consequently become a hotspot if
many tasks need to access the data on that node. This section
analyzes the effect of these hotspots on I/O throughput and
application run time and if replication can help to mitigate the
problem.

This experiment has each node read a separate 5 GB file
from nodes within a single rack. These files were all created
in ZoneFS and HDFS from a single node. HDFS-r1 uses a
replication factor of one, which means that a single copy of the
data is stored in the file system. As shown in Figure 13, HDFS-
rl quickly hits a bottleneck in accessing the single node that
contains the dataset. Many data centers replicate the data on
two nodes within a single rack, which is represented by HDFS-
r2. We can see that while replication mitigates the hotspot, it
does so by only a factor relative to the number of replicas.
With ZoneFS-Local, even though data is evenly striped across
all the storage nodes, it is still constrained by incast in the
gigabit switch. ZoneFS-SAN uses a much better quality FC
switch and can evenly distribute I/O requests directly across
all available disks, and achieve the maximum throughput of

500

GPFS-SAN mmmm
GPFS-Local mxxxxx
ZoneFS-SAN ez
ZoneFS-Local ====3
HDFS wzzza

400 -

300 -

Time (second)

200

100 -

AHHHHHHIIIY

Number of nodes

Fig. 14. Image conversion workload: 1 MB JPG to 9 MB
BMP. Elapsed time to convert 200 images per node. ZoneFS
and GPFS use their distributed architecture to achieve a low
runtime. HDFS runtime is much longer due to its inefficient
handling of small 1/O requests.

the cluster.

E. General Applications

With the increasing popularity of cloud computing services
such as Amazon EC2, successfully handling traditional appli-
cations is critical. A well known example is the New York
Times, which used 100 EC2 virtual machines instances to
convert 11 million articles to PDF format [16]. In this section,
we analyze I/O performance of applications that generate small
and random I/O requests across the file system. This /O
workload is typical of many different applications including
OLTP, virtual machine (VM) accesses to virtual LUNSs, e.g.,
VMware .vimdk file, among many others.

To represent this workload, we use an image conversion
benchmark to convert the encoding of 200 images (per node)
from JPG to BMP using the Python Imaging Library. Image
conversion, which consists of sequential and random reads
and writes to many small to medium files, is similar to the
workload exhibited by OLTP and mail server applications. In
addition, beyond the well known New York Times example,
image conversion is a very common operation for data centers
that allow users to upload images and movies, e.g., Facebook,
Google Picasa, since they are not stored in the format in which
they were uploaded.

We use two racks, each with 2 to 8 nodes and a GigE
switch, and use a single 1Gbps link between the two racks.
With HDFS, we also ensure that the file conversion application
executes on the same node as its input images. Even though
HDFS has specialized architecture and was not designed to
support large numbers of files with a size less than 128
MBs, these experiments demonstrate a very important point.
While the Hadoop experiments showed that the general local
disk (and SAN) architecture of ZoneFS could match the
specialized architecture of HDFS, these cloud workload ex-
periments demonstrate the degree to which this specialization
has hindered HDFS for general applications.

In Figure 14 we show the results when converting a 1 MB
JPG to a 9 MB BMP file. HDFS uses a single NameNode
that stores the server location of blocks in the file system.
With even the moderate number of small files, the HDFS

800

GPFS-SAN mmmm
700 | GPFS-Local o=

ZoneFS-SAN mE==zmm
ZoneFS-Local ==——~3
600 - HDFS zzzzz

500 -

400 -

XXX

773

300 -

Time (second)

V7772

AN

00

200 -

100 -

ANNANARNANANNRNNNNRNNNY
ANRANNNNANNNNRNNNNRNNNNY

Number of nodes

Fig. 15. Image conversion workload: 4 MB JPG to 35
MB BMP. Elapsed time to convert 200 images per node.
ZoneFS runtime continues to outperform HDFS and GPFS.
GPFS runtime increases substantially as the number of nodes
increases, which saturates the inter-rack network bottleneck.

NameNode is overwhelmed with location requests and takes
two to six times as long to complete the benchmark. GPFS,
on the other hand, has a fully distributed architecture that
scales with the number of metadata requests, allowing it
to outperform HDFS. ZoneFS can leverage this distributed
architecture and outperform GPFS by avoiding the inter-switch
bottleneck. As we increase the number of nodes, the execution
time of ZoneFS and GPFS increases as nodes compete for
access to the storage subsystem. In addition, GPFS execution
time increases even further as the increasing number of nodes
start to saturate the inter-switch link.

In Figure 15 we show the results when converting a 4
MB JPG to a 35 MB BMP file. ZoneFS continues to have
the lowest runtime, running 64% faster than HDFS with 4
nodes. With HDFS, since all file sizes are still less than the
64 MB block size, the number of location requests to the
NameNode has not increased from the previous experiment.
Consequently, HDFES runtime actually improves with the larger
dataset. This demonstrates that HDFS is simply more efficient
at accessing larger chunks of data, even if the data is local to
the application. For GPFS, as the number of nodes increases,
the inter-switch bottleneck becomes a limiting factor, and its
runtime exceeds that of even HDFS.

F. Discussions

1) Scalability: ZoneFS does not limit the number of racks
and switches that it can support. As the number of nodes per
rack increase, the available disk and network bandwidth will
increase proportionately. The ability to stripe data across all
nodes within a rack enables it to scale with available storage
and network bandwidth. This allows ZoneFS to avoid single
node and their associated disks to become bottlenecks.

2) Efficiency: Our experiments show that the local disk
architecture performed only slightly worse than the SAN-per-
rack architecture for Hadoop workloads. This is because the
efficiency of Hadoop is relatively low [17], which means that
Hadoop cannot drive the I/O subsystem of each individual
node. For Teragen and Terasort, the maximal I/O throughput
per node during execution is 40 MB/s, which is much less than
the peak IO throughput of a storage node. As the efficiency

of Hadoop improves over time, ZoneFS will be able to ride
the performance wave of improvements. In addition, with
commodity 10 Gbps switches emerging on the market, the
performance of the local disk architecture will improve if not
exceed that of a low end SAN such as the one we used for
our experiments.

3) Flexibility: We used a SAN architecture to determine
the potential benefits of using a more expensive solution than
local disk. Interestingly, beyond the standard benefits of a
SAN, e.g., storage virtualization, we found little performance
benefits. In addition, although all of our directly-attached
disk experiments used the same nodes for both compute and
storage, we believe that separating compute and storage nodes
can bring similar high-availability benefits as a more expensive
SAN solution. ZoneFS clients can stripe across robust storage
nodes that are outfitted with more disk and network bandwidth
(possibly using client driven or network RAID). In addition,
the decoupling of storage and compute nodes would allow
better flexibility to turn off under-utilized compute nodes for
power conservation.

VI. RELATED WORK

Parallel file systems have been widely deployed in high
performance computing environments, including IBM GPFS
[8], Lustre [10], PVES [18] and Panasas [9], all of which rely
on massive aggregate bandwidth between separate compute
and storage nodes. Several of these file systems allow users
to specify per-file striping parameters, e.g., stripe size, RAID
number, but they continue to lack knowledge of the data center
network topology.

On the other end of the spectrum, Internet-scale file systems
[6], [5], [19] and even some HPC targeted file systems [20] all
try to avoid the network altogether by attempting to co-locate
compute processing with large chunks of data on individual
nodes. This swing away from parallel I/O has many roots,
including the existence of incast, the lack of an affordable 10
GigE switching fabric, and an understanding of how to limit
striping to avoid oversubscribed switches. Today, incast is an
understood phenomenon that can be avoided (to some extent)
[21], 10 GigE switches are 50% cheaper that GigE switches
when considering per-MB/s throughput cost, and file systems
like ZoneFS give insights into how to control file striping.

Investigation has begun into understanding Hadoop-specific
enhancements to the PVFS [22] and GPFS [23] parallel file
systems. These efforts focus on co-locating compute and data
on a single node, i.e., making parallel file systems act more
like Internet scale file systems. By writing large chunks of
data to local disk, these enhancements mitigate key benefits
of parallel file systems, load balancing across all available
servers and the ability to avoid data loss without having to
resort to inter-node replication.

Recent work in data-center network design strives to elim-
inate oversubscription to the core switching fabric [24],
[25], [26]. This work focuses on removing the inter-switch
bottleneck and is therefore complementary to ZoneFS, which
focuses on improving I/O performance within a single switch.

Some of this research appears as though it could enable wide-
striping of data across all racks in a data center, but this
continues to have several drawbacks. First, while incast [27],
[28] can be mitigated, every additional switch between the
source and target presents an opportunity for buffer overflow,
and second, wide striping of data means that performance will
be limited to the slowest node on which the data resides, which
means that striping too wide may start to reduce performance.

Job placement tools such as Tashi [29] and Dynamo [30]
seek to optimize the co-location of compute and data through
an understanding of the data placement within the data center.
To assign jobs across the data center, Tashi uses a fine-grained
Data-Location service to track data blocks and their associated
server. ZoneFS is a candidate file system for use with Tashi.
In fact, ZoneFS simplifies and possibly even increases the
scalability of Tashi’s Data-Location service by mapping data
to an entire zone.

Porter explores the advantages and limitations of decoupling
storage from computation in Hadoop [31]. Each SuperDataN-
ode (SDN) contains an order of magnitude more disks than
traditional Hadoop nodes. This proposal does not support
parallel file access across multiple SDNs, thus each SDN
must be managed in isolation without a single complete file
system management framework. Consequently, each SDN can
become an I/O bottleneck for “hot” data. ZoneFS avoids these
bottlenecks by using parallel I/O across all storage nodes
within a zone.

VII. FUTURE WORK

ZoneFS targets oversubscribed hierarchical data center net-
work architectures, not supercomputer architectures. As such,
ZoneFS does not target HPC workloads since MPI applications
that share ghost cells on every iteration would perform unac-
ceptably slow in an oversubscribed data center. But ZoneFS
does support efficient execution of HPC workloads within a
single zone, and it would be a very interesting to investigate
whether such HPC applications could be modified to account
for inter-switch bottlenecks.

We are currently implementing ZoneFS in a layer above
the file system. This allows our prototype to work with any
parallel file system, but at the price of additional management
and setup overhead. Integrating directly with GPFS (or any
other parallel file system) would not only remove this overhead
but would also provide more transparency to administrators.

Exploring local-disk and SAN storage systems with a wider
variety of applications workloads such as web-servers and
databases would allow us to provide more insight into their
true costs and benefits. For example, with local-disk architec-
tures, nodes have a higher load since they must both issue and
serve data requests. This was not a factor in our experiments,
but may become an issue with other workloads.

ZoneFS provides flexibility in recovering from failures. To
avoid replication within a zone, we would like to explore the
use of client-driven (network) RAID 5/6 and/or declustered
RAID across the storage servers [9].

VIII. CONCLUSIONS

This paper introduced ZoneFS, a parallel file system that
optimizes the use of data striping and parallel I/O with
hierarchical network architectures that are common in modern
data centers. ZoneFS combines the scalability, performance,
ease-of-management, and standard semantics of a parallel file
system with the cost-effectiveness of an Internet-scale file
system. By understanding the data center network topology
and maintaining the logical separation of storage and compute
nodes, ZoneFS provides an extremely flexible architecture
that can avoid network bottlenecks and saturate available
bandwidth.

We evaluated our prototype of ZoneFS using several data
and metadata micro-benchmarks, as well as several applica-
tions that are mission critical for cloud infrastructures. ZoneFS
data striping allows independent applications running within
one or more zones in a data center to have their I/O requests
balanced across all the disks on all servers within a zone.
For Hadoop applications that operate on large data sets, we
found that ZoneFS could avoid server hotspots and outperform
GPFS and match or outperform HDFS with identical hardware
and storage configurations. We also demonstrated that ZoneFS
could scale linearly with a general cloud workload with a range
of file sizes.

REFERENCES

[1] Nature, “Big Data,” 2008, http://www.nature.com/news/specials/bigdata.

[2] Hadoop, “Apache Hadoop,” in http://hadoop.apache.org/, 2010.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

[4] L. A. Barroso and U. Holzle, The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool, 2009.
[5] HDFS, “HDFS: Architecture and Design,” in

http://hadoop.apache.org/hdfs/, 2010.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2003.

[7] Cisco, “Cisco Data Center Infrastructure 2.5 Design Guide,” 2007,
http://www.cisco.com/univercd/cc/td/doc/solution/dcidg2 1.pdf.

[8] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in Proceedings of USENIX Conference on
File and Storage Technologies (FAST), 2002.

[91 B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,

J. Zelenka, and B. Zhou, “Scalable Performance of the Panasas Parallel

File System,” in Proceedings of USENIX Conference on File and Storage

Technologies (FAST), 2008.

Sun, “LUSTRE FILE SYSTEM: High-Performance Storage Architec-

ture and Scalable Cluster File System,” in White Paper, 2008.

S. Oehme, J. Deicke, J.-P. Akelbein, R. Sahlberg, A. Tridgell, and R. L.

Haskin, “IBM Scale Out File Services: Reinventing Network-attached

Storage,” in IBM Journal of Research and Development. VOL. 52 NO.

4/5, 2008.

M. Eisler, P. Corbett, M. Kazar, D. Nydick, and C. Wagner, “Data

ONTAP GX: A Scalable Storage Cluster,” in Proceedings of USENIX

Conference on File and Storage Technologies (FAST), 2007.

BlueArc, “Bluearc,” 2010, http://www.bluearc.com.

“Specsfs2008,” http://www.spec.org/sfs2008.

IOR, “IOR HPC Benchmark,” 2009,

http://sourceforge.net/projects/ior-sio/.

D. Gottfrid, “Self-service, Prorated Super Computing Fun!” 2007, New

York Times Blog.

E. Anderson and J. Tucek, “Efficiency Matters!” in Proceedings of

Workshop on Hot Topics in Storage and File Systems (HotStorage), 2009.

[10]

(11]

[12]

[13]
[14]
[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

W.B. Ligon III and R. Ross, “PVFS: Parallel Virtual File System,” in
Beowulf Cluster Computing with Linux. MIT Press, 2001.
KFS, “CloudStore (formerly, Kosmos File System),”
http://kosmosfs.sourceforge.net/.

O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, “Grid
Datafarm Architecture for Petascale Data Intensive Computing,” in Pro-
ceedings of IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), 2002.

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and Effective
Fine-grained TCP Retransmissions for Datacenter Communication,” in
Proceedings of ACM SIGCOMM, 2009.

'W. Tantisiriroj, S. Patil, and G. Gibson, “Crossing the Chasm: Sneaking
a Parallel File System into Hadoop,” in Proceedings of Petascale Data
Storage Workshop, 2008.

R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar,
M. Shah, and R. Tewari, “Cloud Analytics: Do We Really Need to
Reinvent the Storage Stack?” in Proceedings of USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud),, 2009.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proceedings of the ACM SIG-
COMM Conference on Data Communication (SIGCOMM), 2008.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of the ACM SIGCOMM Confer-
ence on Data Communication (SIGCOMM), 2009.
EDC, “Ethernet in the data
http://www.ethernetalliance.org.

A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and S. Seshan, “Measurement and Analysis of TCP
Throughput Collapse in Cluster-based Storage Systems,” in Proceedings
of USENIX Conference on File and Storage Technologies (FAST), 2008.
D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage,” in Pro-
ceedings of the ACM/IEEE Conference on Supercomputing (SC), 2004.
M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D. O’Hallaron,
J. Cipar, E. Krevat, J. Lépez, M. Stroucken, and G. R. Ganger, “Tashi:
Location-aware Cluster Management,” in Proceedings of Workshop on
Automated Control for Datacenters and Clouds, 2009.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-Value Store,” in Proceedings of ACM
Symposium on Operating Systems Principles (SOSP), 2007.

G. Porter, “Decoupling Storage and Computation in Hadoop with Super-
DataNodes,” in Proceedings of ACM SIGOPS International Workshop
on Large Scale Distributed Systems and Middleware (LADIS), 2009.

2010,

center,” 2010,

