Top-down parsing
Last time

CYK

- Step 1: get a grammar in Chomsky Normal Form
- Step 2: Build all possible parse trees bottom-up
 - Start with runs of 1 terminal
 - Connect 1-terminal runs into 2-terminal runs
 - Connect 1- and 2- terminal runs into 3-terminal runs
 - Connect 1- and 3- or 2- and 2- terminal runs into 4 terminal runs
 - ...
 - If we can connect the entire tree, rooted at the start symbol, we’ve found a valid parse
Some Interesting properties of CYK

Very old algorithm
 – Already well known in early 70s

No problems with ambiguous grammars:
 – Gives a solution for all possible parse tree simultaneously
CYK Example

F → I W
F → I Y
W → L X
X → N R
Y → L R
N → id
N → I Z
Z → C N
I → id
L → (
R →)
C → ,
Thinking about Language Design

Balanced considerations

– Powerful enough to be useful
– Simple enough to be parseable

Syntax need not be complex for complex behaviors

– Guy Steele’s “Growing a Language”

https://www.youtube.com/watch?v=_ahvzDzKdB0
Restricting the Grammar

By restricting our grammars we can
 – Detect ambiguity
 – Build linear-time, O(n) parsers

LL(1) languages
 – Particularly amenable to parsing
 – Parseable by Predictive (top-down) parsers
 • Sometimes called recursive descent
Top-Down Parsers

Start at the Start symbol

“predict” what productions to use

– Example: if the current token to be parsed is an id, no need to try productions that start with integer literal

– This might seem simple, but keep in mind multiple levels of productions that have to be used
Predictive Parser Sketch

Parser

Selector table

Row: nonterminal

Col: terminal

“Work to do”
Stack

Scanner

Token Stream

a b a a EOF

current
Algorithm

stack.push(eof)
stack.push(Start non-term)
t = scanner.getToken()
Repeat
 if stack.top is a terminal y
 match y with t
 pop y from the stack
 t = scanner.next_token()
 if stack.top is a nonterminal X
 get table[X,t]
 pop X from the stack
 push production’s RHS (each symbol from Right to Left)
Until one of the following:
 stack is empty
 stack.top is a terminal that doesn’t match t
 stack.top is a non-term and parse table entry is empty
accept
Example

\[S \rightarrow (S) | \{S\} | \varepsilon \]

Stack

```
{ S S )
```

“Work to do” Stack
Example 2, bad input: You try

$S \rightarrow (S) \mid \{S\} \mid \varepsilon$

INPUT

$(() \{ \} \varepsilon \varepsilon \varepsilon$
This Parser works great!

Given a single token we always knew exactly what production it started

```
S → ( ε{S}{S} ε ε
```
Two Outstanding Issues

1. How do we know if the language is LL(1)
 - Easy to imagine a Grammar where a single token is not enough to select a rule

\[S \rightarrow (S) \mid \{S\} \mid \epsilon \mid () \]

2. How do we build the selector table?
 - It turns out that there is one answer to both:

If our selector table has 1 production per cell, then grammar is LL(1)
LL(1) Grammar Transformations

Necessary (but not sufficient conditions) for LL(1) Parsing:

– Free of left recursion
 • No nonterminal loops for a production
 • Why? Need to look past list to know when to cap it

– Left factored
 • No rules with common prefix
 • Why? We’d need to look past the prefix to pick rule
Left-Recursion

Recall, a grammar such that $X \Rightarrow + \leftarrow X \alpha$ is left recursive

A grammar is immediately left recursive if this can happen in one step:

$$A \to A \alpha | \beta$$

Fortunately, it’s always possible to change the grammar to remove left-recursion without changing the language it recognizes.
Why Left Recursion is a Problem (Blackbox View)

CFG snippet: \[XList \rightarrow XList \, x \mid x \]

Current parse tree: \[XList \]

Current token: \(x \)

How should we grow the tree top-down?

\[XList \]

\[x \]

(OR)

\[XList \]

\[XList \]

\[x \]

Correct if there are no more \(x \)s

Correct if there are more \(x \)s

We don’t know which without more lookahead
Why Left Recursion is a Problem (Whitebox View)

CFG snippet: \[XList \rightarrow XList \times | \times \]

Current parse tree: \[XList \]

Parse table: \[XList \quad XList \times \quad \varepsilon \]

Current token: \[\times \]

(Stack overflow)
Removing Left-Recursion
(for a single immediately left-recursive rule)

A → A α | β

A → β A'
A' → α A'
| ε

Where β does not begin with A
Example

A → A α | β

A → β A’
A’ → α A’

Exp → Exp – Factor
| Factor
Factor → intlit | (Exp)

Exp → Factor Exp’
Exp’ → - Factor Exp’
| ε
Factor → intlit | (Exp)
Let's check in on the Parse Tree...

\[
\begin{align*}
\text{Exp} & \rightarrow \text{Exp} - \text{Factor} \\
& \quad \mid \text{Factor} \\
\text{Factor} & \rightarrow \text{intlit} \mid (\text{Exp})
\end{align*}
\]

\[
\begin{align*}
\text{Exp} & \rightarrow \text{Factor Exp'} \\
\text{Exp'} & \rightarrow -\text{Factor Exp'} \\
& \quad \mid \varepsilon \\
\text{Factor} & \rightarrow \text{intlit} \mid (\text{Exp})
\end{align*}
\]
... We’ll fix that later
General Rule for Removing Immediate Left-Recursion

\[A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \mid A \beta_1 \mid A \beta_2 \mid \ldots A \beta_m \]

\[A \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \ldots \mid \alpha_n A' \]

\[A' \rightarrow \beta_1 A' \mid \beta_2 A' \mid \ldots \mid \beta_m A' \mid \varepsilon \]
Left Factored Grammars

If a nonterminal has two productions whose RHS has a common prefix it is not left factored and not LL(1)

\[Exp \rightarrow (\ Exp \) \mid (\) \]

Not left factored
Left Factoring

Given productions of the form

\[A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \]

\[A \rightarrow \alpha A' \]

\[A' \rightarrow \beta_1 \mid \beta_2 \]
Combined Example

\[Exp \rightarrow (\ Exp\) \mid Exp \ Exp \mid () \]

Remove Immediate left-recursion

\[Exp \rightarrow (\ Exp\)\ Exp' \mid ()\ Exp' \]
\[Exp' \rightarrow Exp\ Exp' \mid \varepsilon \]

Left-factoring

\[Exp \rightarrow (\ Exp''\) \]
\[Exp'' \rightarrow Exp\)\ Exp' \mid)\ Exp' \]
\[Exp' \rightarrow \text{exp exp'} \mid \varepsilon \]
Where are we at?

We’ve set ourselves up for success in building the selection table

– Two things that prevent a grammar from being LL(1) were identified and avoided
 • Not Left-Factored grammars
 • Left-recursive grammars

– Next time
 • Build two data structures that combine to yield a selector table:
 – FIRST set
 – FOLLOW set