1 Nested-word automata (8 points)

Show that NWAs (over finite words) are closed under concatenation.

Careful: The first nested-word might have unmatched calls and similarly the second NWA might have unmatched returns. Make sure they match properly.

Important: Specify in your construction what are the input and output NWAs. I don’t require a proof of correctness, but clearly state the invariants maintained by your construction (e.g., after reading the nested word $a_1...$ the NWA C is in state q with stack $p_1...p_n$ iff $...$).

2 Probabilistic model checking (6 points)

Exercise 10.3 on page 899 of Principles of model checking.

3 Symbolic transducers (7 points)

We refer to the paper “Symbolic Finite State Transducers: algorithms and applications” by Veanes et al.

Provide the code. Use Bek (http://rise4fun.com/bek) to model the following two functions:

- $deletealpha$, that deletes all the alphabetic characters in $[a - z]$ from a string. E.g., $deletealpha(abil33[]) = 133[$.
- $stutter$, that duplicates every charter of a string. E.g., $stutter(abcabc) = aabbeccabbec$.

Now use Bek to prove that

- $deletealpha$ is idempotent: running it twice in a row is equivalent to running it once;
• deletealpha and stutter commute.
• the output of stutter always has even length.

4 \(L^* \) (6 points)

We briefly mentioned in class that the following problem is NP-Complete. Given two DFAs \(A \) and \(B \), such that \(L(A) \cap L(B) = \emptyset \), find the minimal DFA \(C \) that separates them. That is

• \(L(A) \subseteq L(C) \);
• \(L(B) \cap L(C) = \emptyset \);
• every \(C' \) with the two properties above has at least \(n \) states, where \(n \) is the number of states in \(C \).

On the other hand we saw that \(L^* \) can learn a DFA accepting a given regular language \(R \) in polynomial time. Let’s say we adapt \(L^* \) in the following way:

• Membership queries: given a string \(w \), mark it as positive example if \(w \in L(A) \) and negative if \(w \in L(B) \)
• Equivalence queries: is the conjectured automaton \(M \) such that \(L(A) \subseteq L(M) \) and \(L(B) \cap L(M) = \emptyset \)? If not provide a counterexample.

Why doesn’t this algorithm work?

5 Reactive Synthesis: 6 points

Solve the following reactive synthesis problem. A depiction of the situation is given in Figure 1.

You have to synthesize a controller for a traffic light that has the following inputs, outputs, and requirements.

Input signals

• C: car is waiting on farm road
• P: pedestrians want to cross the highway
• Eh: emergency vehicle on highway
• Ef: emergency vehicle on farm road
Figure 1: Road Intersection

Outputs signals

- h: highway light is green
- f: farm road light is green

Requirements

- Lights should not be both green
- Lights should both turn green every now and then
- If pedestrians approach, farm light should go green (i.e. on input, the system should immediately output f).

You have to:

- Formalize the requirements in LTL;
- Is the system realizable? If so provide a controller otherwise provide a winning strategy for the environment.